
1

Eight Years of Rider Measurement in the Android
Malware Ecosystem

Guillermo Suarez-Tangil, Gianluca Stringhini
King’s College London, Boston University

Abstract—Despite the growing threat posed by Android mal-
ware, the research community is still lacking a comprehensive
view of common behaviors and emerging trends in malware
families active on the platform. Without such view, researchers
incur the risk of developing systems that only detect outdated
threats, missing the most recent ones. In this paper, we conduct
the largest measurement of Android malware behavior to date,
analyzing over 1.2 million malware samples that belong to 1.28K
families over a period of eight years (from 2010 to 2017). We aim
at understanding how Android malware has evolved over time,
focusing on repackaging malware. In this type of threat different
innocuous apps are piggybacked with a malicious payload (rider),
allowing inexpensive malware manufacturing.

One of the main challenges posed when studying repackaged
malware is slicing the app to split benign components apart from
the malicious ones. To address this problem, we use differential
analysis to isolate software components that are irrelevant to the
campaign and study the behavior of malicious riders alone. Our
analysis framework relies on collective repositories and recent
advances on the systematization of intelligence extracted from
multiple anti-virus vendors. We find that since its infancy in 2010,
the Android malware ecosystem has changed significantly, both
in the type of malicious activity performed by malware and in the
level of obfuscation used to avoid detection. Finally, we discuss
what our findings mean for Android malware detection research,
highlighting areas that need further attention by the research
community. In particular, we show that riders of malware families
evolve over time. This evidences important experimental bias
in research works levering on automated systems for family
identification without considering variants.

I. INTRODUCTION

The Android app ecosystem has grown considerably over
the recent years, with over 2 million Android apps currently
available on the Google Play official market [1] and with
an average of 28 thousand uploads per day to alternative
markets such as Aptoide [2]. The number of unwanted apps
has continued to increase at a similar pace. For instance,
Google have recently removed about 790K apps that violated
the market’s policies, including: fake apps, spamming apps
or other malicious apps [3]. Alarming detection rates have
also been reported in other markets. In early 2016 Aptoide
took down up to 85% of the apps that were uploaded in
just one month (i.e., 743K apps) after these were deemed
harmful to the users. The poor hygiene presented by third
party markets is particularly serious because they are heavily
used in countries where the Google Play Store is censored
(e.g., China and Iran). While generally better at identifying

A shorter version of this paper appears in IEEE Transactions on Dependable
and Secure Computing. This is the full version.

malware, the official Google Play store is not immune from the
threat of malware either: researchers have recently discovered
the largest malware campaign to date on Google Play with
over 36 million infected devices [4].

The increase in the number of malicious apps has come
hand in hand with the proliferation of collective repositories
sharing the latest specimens together with intelligence about
them. VirusTotal [5] and Koodous [6] are two online services
available to the community that allow security operators to
upload samples and have them analyzed for threat assessment.
While there are extensive sets of malware available, most
past research work focused their efforts on outdated datasets.
One of the most popular datasets used in the literature is the
Android MalGenome project [7] and the version extended by
authors in [8], named the Drebin dataset. While very useful as
a reference point, these datasets span a period of time between
2010 and 2012, and might therefore not be representative of
current threats. More recent approaches are starting to incor-
porate “modern malware” to their evaluation [9], [10], [11]
with insufficient understanding of (i) what type of malicious
activity the malware is performing or (ii) how representative of
the whole malware ecosystem those threats are. Understanding
these two factors plays a key role for automated approaches
that rely on machine learning to model the notion of harm—
if such systems are trained on datasets that are outdated or
not representative, the resulting detection systems will be
ineffective in protecting users.

Despite the need for a better understanding of current
Android malware behavior, previous work is limited. The first
and almost only seminal work putting Android malware in
perspective is dated back to 2012, by Zhou and Jiang [7].
In their work, the authors dissected and manually vetted
1,200 samples categorizing them into 49 families. Most of
the malware reported (about 90%) was so-called repackaging,
which is malware that piggybacks various legitimate apps
with the malicious payload. The remaining 10% accounts for
standalone pieces of malicious software. In the literature, the
legitimate portion of code is referred to as carrier and the
malicious payload is known as rider [12]. In a paper published
in 2017 [13], authors presented a study showing how riders
are inserted into carriers. The scope of their work spans from
2011 to 2014 and covers 950 pairs of apps.

In this work, we aim at providing an unprecedented view
of the evolution of Android malware and its current behavior.
To this end, we analyze over 1.28 million malicious samples
belonging to 1.2K families collected from 2010 to 2017.
Unlike previous studies [7], the vast number of samples

2

scrutinized in this work makes manual analysis prohibitive.
Therefore, we develop tools that allow us to automatically
analyze our dataset.

A particularly important challenge when dealing with
repackaging is identifying the rider part of a malware sample.
Our intuition is that miscreants aggressively repackage many
benign apps with the same malicious payload. Our analysis
framework works in two steps. First, it leverages recent
advances on the systematization of informative labels obtained
from multiple Anti-Virus (AV) vendors [14], [15], to infer
the family of a sample. Second, it uses differential analysis
to remove code segments that are irrelevant to the particular
malware family, allowing us to study the behavior of the riders
alone. Differential analysis has successfully been applied to
detect prepackaging in the past [16], [17], however it has not
been used to study the behavior of the riders as in this study.

We find that riders changed their behavior considerably over
time. While in 2010 it was very common to have malware
monetized by sending premium rate text messages, nowadays
only a minority of families exhibit that behavior, and rather
exfiltrate personal information or use other monetization tricks.
We also find that the use of obfuscation dramatically increased
since the early days of Android malware, with specimens
nowadays pervasively using native code and encryption to
avoid easy analysis. This contrasts with the amount of legiti-
mate apps that are currently obfuscated—a recent investigation
shows that less than 25% of apps in Google Play are obfus-
cated [18], while we find that over 90% of the riders active in
2017 use advanced obfuscation. A consequence of this is that
anti-malware systems trained on both carriers and riders and/or
on older datasets might not be effective in detecting recent
threats, especially when they only rely on static analysis.

To the best of our knowledge, this paper presents the largest
systematic study of malicious rider behavior in the Android
app ecosystem. Our contributions are summarized as follows:
• We propose a system to extract rider behaviors from

repackaged malware. Our system uses differential analy-
sis on top of annotated control flow graphs extracted from
code fragments of an app.

• We present a systematic study of the evolution of rider
behaviors in the malware ecosystem. Our study measures
the prevalence of malicious functionality across time.

• We analyze the most important findings of our study with
respect to the most relevant works in the area of Android
malware detection.

To enable replication and maintain an updated understanding
of Android malware as time passes, we make our analysis
tool publicly available at http: / /github.com/gsuareztangil /
adrmw-measurement. We encourage readers to visit this repos-
itory and the extended version of this paper [19] as it provides
a wider presentation of the measurements left out of this
paper due to space constraints. The dataset of samples and
family labels is available at http://androzoo.uni.lu. The rest
of the paper is organized as follows. We first introduce the
framework used to extract rider behaviors (§II). Then we
describe the landscape of the Android malware ecosystem
(§III). We then analyze the riders alone (§IV) and discuss our
findings (§VII). Finally, we present the related work (§VIII)

Markets:
• Google Play
• Anzhi Market
• Torrent, etc.

AndroZoo
Crawler

Virus
Total Euphony

Families

Differential
Analysis

Carrier → Goodware
Rider → Malware

Legend:

Family

App1
App2

App1 App2

A
P
Is

R
ai
de
r

Time

Fig. 1: Measurement methodology: irrelevant components are
removed to study the behavior of riders alone.

and our conclusions (§IX).

II. METHODOLOGY

A. Overview

A general overview of our measurement methodology is
depicted in Figure 1. For the sample collection we queried
AndroZoo in April 2017 [9], an online repository of samples
that are crawled from a variety of sources including Google
Play, several unofficial markets, and different torrent sources.
At the time of writing, AndroZoo contains over 5.7M samples,
with the largest source of apps being Google Play (with 73%
of the apps), followed by Anzhi (with 13%). Out of all apps,
a large portion of samples have been reported as malicious
by different independent AV vendors (over 25%). Given that
AndroZoo crawls apps over time and covers several markets,
we believe that this dataset is representative of the Android
malware samples that appeared in the wild. A shortcoming
of this dataset is, however, that we do not have information
on how many users installed each app, and this prevents
us from estimating the population affected by such threats.
Interestingly, AndroZoo has reported peaks of about 22%
infection rates in the Google Play [9], constituting the absolute
largest source of malware. In our current snapshot of the
AndroZoo dataset, about 14% of the apps from Google Play
have been flagged as malware.

The information about the AV vendors is offered by Virus-
Total, a subsidiary of Google that runs multiple AV engines
and offers an unbiased access to resulting reports [5]. AV
detection engines are limited, and they certainly do not account
for all the malware existing in the wild. This type of malware
is known as zero-day malware and its study is out of the
scope of this measurement. Nevertheless, both AndroZoo and
VirusTotal keep track of the date where a sample was first seen
and we used this information to understand the time when the
malware was operating. In addition, AV software is likely to
catch up on unknown malware as time passes, and therefore
the threat of zero day malware is mitigated by the length of
our measurement.

For the label collection we relied on AV labels from 63
different vendors provided by VirusTotal. A common problem
in malware labeling is that different AV vendors use different

http://github.com/gsuareztangil/adrmw-measurement
http://github.com/gsuareztangil/adrmw-measurement
http://androzoo.uni.lu

3

mov X, 4
add X, Z
goto +50
add X, Z
goto -100
invoke API1

B[G]B[G]B[F0P1P1SP1I]B[P1P1P1P1P1
SP1F1SP1F1SP1F1SP1F1SP1F1SP1SP1
F1SP1F1SP1P1P1F1F0SP1P1P1P1P1P1S
B[F0P1F1SP0SP1F0P1P1P1P0P1F1F0]
B[R]B[SP1F1SP0SP1F0P1P1P1G]

Methoda

Methody

…

B

B B

GCFG

API1

APP

Fig. 2: Flattened representation of code structures in an APP.

denominations for the same family [14]. To solve this problem,
we unified these labels using Euphony [15], an open-source
tool that uses fine-grained labeling to report family names for
Android. Euphony clusters malware by looking at labels of AV
reports obtained from VirusTotal, inferring their correct family
names with high accuracy—with an F-measure performance
of 95.5% [15]. It is important to note that no a-priori knowl-
edge on malware families is needed to do this. Furthermore,
Euphony works at a fine-granular detection threshold. This
means that it is able yield a label for families with samples
containing only one AV report. On average, the number of
reports per sample is 8.

B. Differential Analysis

We use differential analysis to systematically isolate soft-
ware components that are irrelevant to our study. In its essence,
this technique enables us to discard sets of observations that
do not consistently appear in a population. In our domain, a
population is a family for which we extract the set of methods
that appear in each sample. Methods that are common to the
different members of the same family are assumed to belong
to the rider and stored for further analysis. Our underlying
assumption is that samples from the same family have the
same purpose and are written by the same authors. As part of
the repackaging process, riders are inserted into different apps.
Thus, it is expected to find common code structures within all
the malware samples in the family.

In a nutshell, our approach follows two steps: first, we
extract the Control Flow Graph (CFG) of an app and anno-
tate each node. Second, we identify nodes that are common
throughout the malware family and extract the rider component
from it.
CFG and graph annotation. Miscreants can deliberately
modify riders across infections to evade pattern-based recog-
nition systems. To be resilient to these evasion attempts, we
aim at obtaining an abstract representation of the code. The
most common forms of obfuscation in Android malware are
class and method renaming, variable encryption, dynamic code
loading, and code hiding [20]. In our work, we compute the
CFG of each code fragment extracted. For this, we transform
the sequence of instructions seen in the binary into a list
of statements defining its control flow such as blocks of
consecutive instructions (namely “basic blocks”) and bifur-
cations determined by “if” statements and jumps. Figure 2
shows an example of the code structures found in a particular

app. Each node in the graph represents a piece of code that
will be executed sequentially without any jumps. The CFG
is then flattened based on the grammar proposed by Cesare
and Xiang [21]. We then obtain a hash (fingerprint) of each
code structure and it is used to compare the set of common
fingerprints for each family. Comparing fingerprints of smaller
units of code to measure the similarity between two apps is
known as fuzzy hashing. Fuzzy hashing has been shown to be
an effective way of modeling repackaged apps [22], [16], [17].
One major advantage of leveraging on a fuzzy representation
of the CFG is an improved resistance against class and method
renaming, as well as variable encryption.

We then annotate each node in the CFG with the set of
APIs (Application Program Interfaces) called in that method,
to capture the semantics of each of the basic blocks in the
graph. Annotations are simply done by adding a node to the
building block where the API has been seen. This semantics is
extracted from the parameters of all Dalvik instructions related
to invoke-* such as invoke-virtual. These parameters
typically refer to the invocation of libraries (including those
from the Android framework related to reflection as we detail
in §IV-A). We then parse those parameters to extract the
API calls.1 This enables us to understand when certain code
structures are using dynamic code loading and what is the
prevalence of this behavior across riders. Also, the annotation
of the CFG allows us to combine fuzzy hashing with a
technique known as feature hashing [23]. Feature hashing
reduces the dimensionality of the data analyzed and, therefore,
the complexity of computing similarities among their feature
sets.

We recursively extract fragments from all available re-
sources within the app of type DEX or APK. The reason
for this is that malware often hides its malicious payload in
DEX or in APK files hosted as a resource of the main app.
When the app is executed, the malware then dynamically loads
the hidden component. This is referred in the literature as
incognito apps [20].

Extraction of common methods. Once we have a represen-
tation of the code structures, we can analyze the frequency
(number of apps) in which these methods appear across
a family. In the simplest case, common structures will be
present in all samples in the family. This represents the core
functionality of the riders in this family. In other cases, for
example when a malware family is composed of several
subfamilies, the common code structures will be manifested
in a subset of the samples. These structures are still relevant
to understand how the family has evolved over time. Those
methods that are not common to members of the same family
are deemed irrelevant to characterizing the behavior of the app
and discarded. Varying the percentage of common methods
retained gives us different perspectives on the characterizing
structures of a family. We next show how this is reflected in
our dataset.

1We also tag each API call based on the category of the library it invokes
(package name) from the Android Framework as explained in §IV-A.

4

2012Q1 2013Q1 2014Q1 2015Q1 2016Q1 2017Q1
10

0

10
2

10
4

10
6

N
u

m
b

e
r
 o

f
F

a
m

il
ie

s

Seen Families

New Families

Number of Samples

Fig. 3: Num. of samples and families seen per quarter.

III. THE ANDROID MALWARE ECOSYSTEM

Figure 3 shows the number of families observed across
time. The stacked plot distinguishes between newly observed
and previously seen families at every quarter of a year. Seen
families refer to the set of families where one specimen (of
that family) was seen in VirusTotal prior to the referred date.
After unifying labels and processing all samples as described
in §II-B, we account for over 1.2 million apps and 1.2K
families. The graph depicts the overall number of samples per
quarter used in this measurement.

A. Malware Family Landscape

Our first high level analysis of our dataset aims at un-
derstanding how families evolve over time from a structural
viewpoint. To this end, we identify the top families according
to the following four definitions:
• Largest Families: top(|Fi |). We take a look at the top

families ordered by the number of samples in each
family (|Fi |), where |Fi | < |Fi−1 |∀i = {1, . . . , n}. Note
that this metric only takes into account the number of
samples observed in a family, and not the total number
of installations.

• Prevalent Families: top(|Q j
i |). Top prevalent families are

ordered by the number of quarters (of a year) where
a sample of a family was observed; where Q j

i denotes
quarter j in which a sample of a family i was seen.
This metric aims to identify the longest lasting malware
families.

• Viral Families: top(|Fi |/|Q
j
i |), where we look at the ratio

between how large a family is and the number of quarters
in which the family was present. This metric aims at
identifying families that are both large and also last for
a long period of time.

• Stealthy Families: top(Di), where Di denotes the aver-
age time delta Tvt − Tdex between the moment when the
sample of a family i was compiled (Tdex , as observed in
the DEX file) and the first time the sample was seen by
VirusTotal (Tvt). This metric looks at how difficult it is
for malware detectors to identify the samples in a family
as malicious.

Figure 4 shows the distribution of apps in top families for
each of the categories described above. The graph depicts the
probability density of the data at different values together with
the standard elements of a boxplot (whiskers representing the

maximum and minimum values, and the segments inside the
boxes the average and the median). To cover a wider range
of cases, only unique families are shown across all four plots.
It is worth noting that AIRPUSH appears within the top 10
in all four categories, LEADBOLT appears in all categories
except for the viral one, and other families such as JIAGU,
REVMOB, YOUMI, and KUGUO appear in both largest and viral
categories.

As observed in the timeline given in Figure 4, some families
show multiple distributions indicating that there are outbreaks
at different time periods. This is presumably when malware
authors created a new variant of a family. The similar align-
ment for the second outbreak in some of the families might
be explained by the latency with which AV vendors submit
samples to VirusTotal. Also, it has been reported [24], [25] that
at times miscreants use VirusTotal before distributing samples
to test whether their specimens are detected by AVs or not.
In either case, this is still a good indicator of how malicious
behaviors span over time and one can observe that 2014 and
2016 reported the largest activity.

Special emphasis should be given to SAFEKIDZONE and
PIRATES. The former appears as a top prevalent family and
the distribution of samples across time is remarkably uniform.
This means that the miscreant has been persistently manufac-
turing new specimens across 4 years almost as if the process
was automated. The latter starts the outbreak aggressively in
mid 2013—unlike most of the other families where infections
start progressively.

B. Common Methods in our Dataset
The total number of samples in our dataset after uni-

fying AV labels accounts for almost 1.3 million apps and
3K families. Prior to running the differential analysis, we
process the dataset to extract all classes and build the CFG
of their methods. When processing these samples we found
that approximately 1% of the apps were malformed or could
not be unpacked, leaving us 1,286,145 labeled samples.

Figure 5 shows the number of methods common to all
samples of the 1,226 families. It also displays the number
of samples per family, which are conspicuously unbalanced.
While most of the families have between 7 to 40 samples,
there is one family with about 260K samples (DOWGIN) and
there are two families with about 100K samples (KUGUO and
AIRPUSH). For the sake of readability the graph only displays
sizes up to 100K, with the largest family ending off the chart.
In general, we can observe that there are few families (with
sizes ranging from 7 to 567 samples) where most methods are
common to all apps in the family. In particular, there are 12
families (282 samples) where all of their methods appear in
100% of the samples in the family.

When all the methods seen in a family appear in all of
the samples it means that either the family is standalone
malware (without a carrier) or that all members in the family
are repackaging the same goodware. We refer to the latter
phenomenon as early-stage repackaging. While standalone
families are relevant to our analysis, there is no a priori way
to know the type when only looking at the number of com-
mon methods. For this reason, we avoid running differential

5

2012 2013 2014 2015 2016 2017

droidkungfu
leadbolt
airpush

adwo
kuguo
youmi

revmob
artemis
dowgin

jiagu

(a) Largest Families.
2012 2013 2014 2015 2016 2017

golddream
gpspy
rooter

plankton
ginmaster

safekidzone
fakeflash

basebridge
jsmshider

hippo

(b) Prevalent Families.

2013 2014 2015 2016 2017

wapsx
admogo
startapp

admobads
anydown

utchi
appsgeyser

deng
genpua
spyforw

(c) Viral Families.
2013 2014 2015 2016 2017

waps
vdloader
malform

viser
revmobads

skymobi
jumptapiads

pirates
kazy

lockad

(d) Stealthy Families.

Fig. 4: Distribution of samples over time for the top families in each category. The overall number of samples per family
ranges from 29K to 262K for the largest families (a), from 143 to 11K for the prevalent ones (b), from 2K to 23K for the
virals (c), and from 174 to 18K for stealthy ones (d).

0

20K

40K

60K

80K

100K

0 200 400 600 800 1000 1200

10
-4

10
-2

10
0

10
2

Number of Methods (%)

Number of Samples

Family ID:

Fig. 5: Percentage of methods common to all samples in a
family (blue area) together with the number of samples per
family (red area).

analysis on families where at least 90% of their total methods
are common to all samples of the family. This accounts for
25 families (542 samples), which is 0.04% of the dataset. As
for the remaining families we observe that the proportion of
methods in common varies across families regardless of their
size. An exception to this are very large families, where the
number of riders is lower than the average.

Malware development is a continuous process, and criminals
often improve their code producing variants of the same
malware family. Our framework has the potential to trace
the appearance of such variants. As an illustrative example,

we study the prevalence of methods across some of the most
prevalent families. Figure 6 shows the example of five malware
families in our dataset. When looking at ANYDOWN, we
observe that there are 285 methods common to 99% of the
17,000 samples in the family. The functionality embedded
into these methods constitute the essence of the family. Even
when the number of methods in common to all samples
of the family is small, there are still a number of methods
common to subsets of samples from the family. For instance,
there are only 10 methods shared by 99% of the samples in
LEADBOLT, but over 150 methods are shared by 75% the apps
(23,000). This can be explained by the morphing nature of
malware. It is commonplace to see malware families evolving
as markets block the first set of apps in the campaign [26].
This ultimately translates into different variants that are very
similar. Interestingly, we can observe that the boundaries
defining variants of a family are sometimes well established.
This is the case of ADMOGO, a family that altogether has about
20,000 samples. We can see a variant with 2,683 methods
common to 67.65% of the samples, and we can see another
variant with one additional method in common (i.e., 2,684)
shared by only 36.11% of those samples (c.f. Fig. 6).

C. Choice of a cutoff

To be able to operate, our approach needs a cutoff. This
cutoff determines the fraction of apps within a family that

6

Fig. 6: Prevalence of methods across apps for top most popular families per category (revmob & leadbot for large families,
gpspy & fakeflash for prevalent families, admago & anydown for viral families, and malformed & lockad for stealthy families).

need to share a method before our system considers it as being
representative of that malware family. Ideally, to capture the
behavior of a family we would look at common methods in
all apps (100% threshold). However, in practice this is not the
best choice because AV vendors can accidentally assign wrong
labels to a sample [27], [28], [29]. In our experiments we set
this threshold to 90% based on the F-measure performance
reported by Euphony (92.7%˜95.5% [15]). We consider this
threshold to be a good value to capture the behavior of
families, while allowing some margin for mislabeled samples.
Note that a threshold of 90% means that we look at methods
that are in the interval [100%, 90%). In the best case scenario,
where there is no misclassification, we will be observing
methods in 100% of the apps. In the worst case, we will be
including methods from the largest variant.

Intuitively, different cutoffs could be set to identify methods
that are not common to entire families, but are indicative of
specific variants (see §III-B). Due to space constraints, we
do not explore this possibility in this paper, but in §VII we
discuss how this direction could be explored in future work.
Due to the nature of the differential analysis, we can only
study families with a given minimum number of samples.
This number depends on the cutoff introduced. In particular,
having a cutoff of 90% means that those methods that appear
in more than b90%×nc apps, where n is the number of samples
in a family, will be considered representative methods. For
instance, in a family with n = 3, a representative will appear in
at least 2 (out of 3) samples. Here, in the worst case scenario,
the cutoff used in practice will be forced down to 66% (note
that b90%× 3c = 2 and 2/3 ' 66%) instead of 90%. To avoid
this, we set n = 7 (i.e.: b90% × 7c = 6 and 6/7 ' 85%).
The reason we choose n = 7 is because it is close enough to
the cutoff and also most of the families in our dataset have
7 samples or more (see §III-B). Overall, we discard 0.3% of
the samples, leaving a total of 1,282,022 malicious apps and
1,201 families.

IV. ANALYSIS OF ANDROID RIDERS

We use the techniques described in the previous section to
study and characterize rider behaviors from 2010 to 2017. We
first introduce the set of behaviors that we explore, and then
give an overview of the general state. Finally, we study the
evolution of such behaviors over time.

A. Rider Behaviors

To understand how malware behaves, we analyze rider
methods from all observed families. We are primarily inter-
ested in learning whether malware exhibits actions related to
certain attack goals as characterized in [30]. In particular, we
look at actions related to:
• Privacy Violations. These actions typically involve

queries to the Android Content Resolver framework, the
use of File Access system, or the access to information
such as the Location of the user, etc.

• Exfiltration. The usage of the network combined with
all those actions related to privacy violations can indicate
the leakage of personal information.

• Fraud. These actions aim at getting profit from the users
or the services they use. For instance, malware can send
premium rate messages via the SMS Manager or it might
abuse advertisement networks by changing the affiliate
ID to redirect revenues.

• Evasion. Hardware serial numbers, versions of firmware
and other OS configurations are often used to fingerprint
sandboxes to evade dynamic analysis.

• Obfuscation. The use of obfuscation and other hiding
techniques is a sought after technique to evade static
analysis. Android offers options to dynamically load code
at runtime (e.g., with reflection).

• Exploitation. Certain apps implement technical exploits
and attempt to gain root access after being installed. Most
of these exploits are implemented in native code and

7

triggered using bash scripts that are packed together with
the app as a resource.

To measure these behaviors we look at the invocation of the
APIs used to access key features of the OS or data within the
device. APIs are especially relevant in current smartphones as
they incorporate a number of mechanisms to confine and limit
malware activity. These mechanisms make apps dependent
on the Android framework and all permission-protected calls
are delivered through a well-established program interface.
Furthermore, API calls are useful for explaining the behavior
of an app and reporting its capabilities.

Android APIs are organized as a collection of packages
and sub-packages grouping related libraries together. On the
top of the package structure we can find, for instance, li-
braries from the android.*, dalvik.*, and java.*
packages. On the next level, we can find sub-packages such as
android.os.*, dalvik.system.*, or java.lang.-
reflect.*, among others. As most of the sub-packages
belong to the android.* package, for the sake of simplicity,
in this paper we refer to them starting from the second level.
For instance, android.provider.*, which is a standard
interface to data in the device, is referred as PROVIDER. For
other packages (e.g.: dalvik.system.*), we use the full
name with an underscore (i.e., DALVIK SYSTEM).

While program analysis can tell what are the set of API
calls that appear in an executable, it is hard to understand
what these calls are used for. However, there are some APIs
that are typically used by riders for certain purposes. This
is the case of APIs that load dynamic code, use reflection,
or use cryptography. These are specially relevant to malware
detection as they enable the execution of dynamic code [31]
and allow the deobfuscation of encrypted code [32]. We
summarize these functionalities as follows:

i) JAVA NATIVE: This API category captures libraries that
are used to bridge the Java runtime environment with the
Android native environment. The most relevant API in
this category is java.lang.System.loadLibra-
ry(), which can load ELF executables prior to their
interaction through the Java Native Interface (JNI).

ii) DALVIK SYSTEM: This category allows the execution of
code that is not installed as part of an app. The following
API call is key for the execution of incognito Dalvik
executables: dalvik.system.ClassLoader.Dex-
ClassLoader().

iii) JAVA EXEC: This API category allow apps to inter-
face with the environment in which they are run-
ning. The most relevant API in this category is
java.lang.Runtime.exec(), which executes the
command specified as a parameter in a separate process.
This can be used to run text executables.

iv) JAVA REFLECTION: This category contains a number
of APIs that make possible the inspection of classes and
methods at runtime without knowing them at compilation
time. This can be very effective to hider static analysis
(e.g., by hiding APIs).

v) JAVAX CRYPTO: These APIs provide a number of cryp-
tographic operations that can be used to obfuscate and
de-obfuscate payloads.

It is important to highlight that the categories described
above are not comprehensive and the same set of APIs can
be used for different purposes. For instance, accessing the
contacts (via the PROVIDER) can be used both for leaking
personal information or for evasion.2 Also, text executables
represent any high-level program that can be interpreted
during runtime and does not require prior compilation. This
includes for example Bash shell scripts. JAVA EXEC is gen-
erally used to execute shell scripts during runtime. Contrary,
JAVA NATIVE is used to execute ELF binaries. However,
JAVA EXEC could potentially be used to execute ELFs as
well. We refer the reader to an earlier version of this work for
more details on the relevance of studying sets of API calls [33].
For the purpose of this work, we mainly focus on providing
a time-line understanding of how malware have evolved.

Overall, for the 1.2 million apps in our dataset we observe a
total of 155.7 million methods, out of which about 1.3 million
are rider methods. The average number of methods per app
is 121 and the largest number of different methods in one
single family reaches 16.5 millions. Overall, each family has
on average 1,225 rider methods.

B. Evolution over Time

Malware is a moving target and behaviors drift over time as
miscreants modify their goals and attempt to avoid detection.
In this section we measure how malware behavior evolved
across several years. According to the type of API call, we
group behaviors into three categories: (i) sensitive APIs, (ii)
network communication, and (iii) obfuscation. Sensitive API
calls are permission-protected APIs that are considered to be
indicative of malicious functionality. Figure 7 shows behaviors
associated to families by quarter of a year for each of the
categories. The graphs represent the proportion of families that
exhibit a certain capability in a given quarter, showing how
families evolve over time. It is possible to observe that the
distribution of malware samples per quarter is not uniform,
but there are two spikes in our data, one in Q1 2014 and one
in Q4 2015 (399 and 819 families acting in those quarters,
respectively). On average, the number of families observed
per quarter is 280. Regardless of the presence of these two
spikes, when looking at how behaviors evolve overall, one can
typically observe a trend based on how prevalent API calls
are across time. To study this, we plot the best fit to each
set of API calls using linear regression. Note that the cutoff
here is applied to the samples of a family that were observed
during that quarter (see Figure 3 for a snapshot of the number
of samples and families seen per quarter). As samples in a
family are scattered throughout time, this timeline gives an
understanding of how the family evolves, which naturally fits
with the notion of variant discussed in §III.

a) Sensitive APIs: Figure 7a shows behaviors related
to generic actions such as File System (FS) actions or
OS-related APIs. FS- and OS-related behaviors are typ-
ically found in families that attempt to execute an ex-
ploit [34]. These behaviors include the use of API calls such

2Out-of-the-box sandboxes generally have no contacts, which can be
leveraged to fingerprint these sandboxes.

8

2013Q1 2015Q1 2017Q1

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
u

m
b

e
r

o
f

fa
m

il
ie

s
 (

in
 %

)

Sensitive APIs
File.mkdir

File.ListFiles

Process.myPid

Process.killProcess

Package.getInstalPackages

ContentResolver.query

(a) Prevalence of sensitive APIs.
2013Q1 2015Q1 2017Q1

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
u

m
b

e
r

o
f

fa
m

il
ie

s
 (

in
 %

)

Network Communication

Telephony.getNetworkOperator

Location.requestLocation

Wifi.getConnectionInfo

Sms.sendTextMessage

HttpURLConnection.connect

(b) Prevalence of network comm APIs.

2013Q1 2015Q1 2017Q1

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
u

m
b

e
r

o
f

fa
m

il
ie

s
 (

in
 %

)

Obfuscation

Incognito

Reflection

Runtime.exec

System.loadLibrary

javax.crypto

ClassLoader.DexClassLoader

(c) Prevalence of obfuscation.

Fig. 7: Percentage of families active in each quarter where at least 90% of their members share a feature in common.

as Process.killProcess() or Process.myPid().
Also, IO operations such as File.mkdir() are used in
preparation to the exploitation. Other IO operations shown
in this category (e.g., File.ListFiles()) are commonly
used by ransomware. We present a case study that illustrate
how ransomware makes use of sensitive APIs in §VI-A. Some
of these behaviors (such as Process.killProcess())
have increased steadily only up to about 55%. Other behaviors
have increased more sharply over the last few years, such as
Process.myPid() to all the way to 75%.

b) Network Communication: Figure 7b shows behaviors
related to network communications in general. One of the first
takeaways that can be obtained is related to the negative trend
in the use of the SmsManager.sendTextMessage()
API. This API call is usually associated to a common fraud
that profits from silently sending premium rate messages. As
shown in the timeline, this type of malware was popular
between 2012 and 2014. One factor behind the popularity of
this fraud was its simplicity (it typically does not require the
support of a back-end). However, starting from mid 2014 this
behavior sees a drop in popularity—from about 40% to 10%
of the families. Interestingly, we observe that the overall use

of the SMS category (i.e., macro perspective3) is lower than in
any point of the time line. Thus, the level of granularity shown
when measuring rider behaviors in a time-line manner is much
more precise than when looking at a macro perspective. To
put our work in perspective with respect to malware, we
compare our findings with those in [20]. Authors show that
the prevalence of the SMS category in malware accounts
for 47% of the dataset while it only appears in 2.83% of
the goodware studied. This shows that data-driven detection
approaches that are trained with a non-representative dataset
will perform poorly with recent threats.

We can also observe that the use of the HttpURLConnec-
tion.connect() API call has increased over the last years.
This API call when combined together with those related
to privacy violations (e.g., ContentResolver.query())
is commonly used to exfiltrate personal information [35].
This information can then be sold on underground markets
or used as part of a larger operation [36] (see §VI-B for
a case study discussing exfiltration of personal information).
HttpURLConnection.connect() can also be used to
retrieve new payloads, which is known as update attacks. The
use of more sophisticated attacks such as those requiring the

3We refer as macro perspective analysis to the measure of common methods
using the same cutoffs but without considering the time component.

9

support of a Command & Control (C&C) structure indicate a
change in the way miscreants monetize their creations from the
initial premium-rate fraud [30]. This can be attributed in part
to the proliferation of inexpensive bulletproof servers or robust
botnet structures that allow campaigns to last longer [37], [38].

We also observe behaviors that could be aimed at evad-
ing dynamic analysis. As mentioned earlier, malware often
queries certain hardware attributes (or sensor values) that are
usually set to default in sandboxes. This is the case of the
values given by Connectivity.getActiveNetwork()
or Wifi.getConnectionInfo() API calls. Although the
latter is not shown in the figure, both increase with a similar
trend reaching 70% and 55% of the families by 2017.

c) Obfuscation: The use of reflection has increased over
the last years from slightly over 20% of the families in
2012 to about 50-60% in 2016 and 2017 as shown in Fig-
ure 7c. The use of this feature can be mainly attributed to
obfuscation. Other forms of obfuscation can be evidenced
by looking at the evolution of the crypto category, which is
one the most prevalent ones. The number of families using
cryptographic APIs started at 100% in 2011 and dropped
to 60% in the following year. Soon after that, we observe
a uniform increase reaching 90% in 2017. This most likely
means that back in 2011 miscreants that started manufacturing
malware for Android had a high technical expertise. As
Android became the platform of choice, more actors with
different expertise were involved and the use of crypto dropped
the next years, to become a common feature a few years
thereafter, perhaps out of necessity to evade malware detection
systems. Another reason for which cryptography could be
used, independent from obfuscation, could be ransomware.
Another form of loading Java code during runtime is via
the ClassLoader.DexClassLoader() API call. Results
show that the usage of this interface increases over the years
to 70% in 2017. To trace the use of incognito apps, we
recursively looked at all APK and DEX resources in the app
and analyzed their methods. Common methods originating
from incognito apps are, however, not prevalent. This means
that hiding code relevant to the family via incognito apps is
not popular—note that advanced hiding techniques, such as
those in Stegomalware [39], can be effectively used to evade
automated systems [39].

Interestingly, we can observe that the use of System.-
loadLibrary(), which is related to the invocation of native
libraries, has increased sharply over the years from 25% in
2011 to 80% in 2017. With a more modest trend we observe
that Runtime.exec() is still very prevalent nowadays.
These two APIs are the main entry point for dynamically
loading non-Java code that is not installed as part of the app.
The most common executables loaded are ELF executables
and text executables respectively. As behaviors offloaded to
these components can not be seen from Dalvik, we deep
inspect the resources of each app and give an overview of
these findings in §V.We give more details about the type of
functionality we observed in obfuscated malware in §VI-C.

Recent work studied the use of obfuscation on goodware on
the Google Play store [18]. Authors showed that less than 25%
of apps have been obfuscated by developers. Instead, we show

that the obfuscation in malware is way more prominent. This
might explain why the proliferation of malware has been so
acute over recent years—while miscreants can easily process
un-obfuscated carriers to build new versions of their malware,
security experts are, more than ever before, confronted with
obfuscated riders. The increasingly prevalent use of reflection,
of native libraries, and scripts indicates that the behaviors that
we observe by performing static analysis might not constitute
the full set of actions performed by malware when executed—
we refer the reader to §VII for a discussion on the limitations
of our work. This also means that recent ML-based works in
the area of malware detection that do not take into account
obfuscation are most likely modeling the behaviors seen in
the carriers rather than those belonging to the riders. Thus,
we argue that there is a strong need for a change of paradigm
in the malware detection realm. We argue that the community
should focus efforts on building novel detection techniques
capable of dealing with obfuscation.

V. ANALYSIS OF RESOURCES

Malware authors often offload payloads from the Dalvik
executable to make the app look benign to cursory inspec-
tion [32], [31]. We analyze other types of executables that
are also packed into the APK. In particular, we look at: (i)
Dalvik, (ii) Text, and (iii) ELF executables to provide a cross-
layer inspection. In summary, we observe that finding common
code structures in these type of resources is remarkably
challenging. Overall, we find that only 4% of the families
have unencrypted common resources. This is because the level
of sophistication used to obfuscate these resources is more
evolved than the one used in Dalvik, and can be explained
by looking at the number of tools (e.g., packers) available
to obfuscate external resources [40]. The extended version of
this paper [19] provides further details on the prevalence of
common compiled resources and libraries across families.

VI. CASE STUDIES

In this section we present two case studies to illustrate how
differential analysis can be used to analyze and understand
rider behaviors. In particular, we have selected (i) a case
study from a sophisticated long-lasting ransomware campaign,
and (ii) two shady advertisement libraries that have infected
over 11K apps. We also refer the reader to http://github.
com/gsuareztangil/adrmw-measurement for additional details,
including more verbose outputs of our system and additional
families.

A. Ransomware

We first study the case of SIMPLOCKER, a ransomware
that has been operating since 2014Q3 and mainly targeted
Google Play. While there are several ransomware families in
our dataset such as JISUT, SLOCKER, GEPEW, or SVPENG to
name a few, SIMPLOCKER is one of the first confirmed file-
encrypting malware families targeting Android [41]. The way
Android ransomware operated prior to this family made file re-
covery possible without paying the ransom. In particular, these
early versions attempted to keep user information hostage

http://github.com/gsuareztangil/adrmw-measurement
http://github.com/gsuareztangil/adrmw-measurement

10

by simply locking their devices but without encrypting the
file system. Technical experts could then bypass the locking
mechanism using standard forensic tools (e.g., mounting the
file system from a PC).

Our dataset accounts for 30 specimens of SIMPLOCKER
with a total of 35,825 distinct methods. Out of those, 1,166
(3.2%) methods are common to at least 28 apps. We can
also find 295 (0.8%) methods common to all 30 apps. We
observe the use of the file system (IO behaviors), the access
to personal information (via the content provider), and the
use of database-related libraries (DATABASE). Details about
the most relevant methods seen in this family are listed in
Figure 8. When analyzing the common methods found, we
can see that this family uses the DATABASE library to explore
DDBB in a common method. This library is used to explore
data returned through a content provider, which is used to
access data stored by other apps such as the contacts app.
We also observe that this type of ransomware uses its own
crypto suit rather than relying on standard Java libraries. In
particular, methods in com.nisakii.encrypt.*, such as
method-662 and method-909 shown in Figure 8, are used to
encrypt stolen files.

Once files are encrypted they are erased using the java.io.-
File.delete() API call and the FileProvider class in the
Landroid/support/v4/content library). in method-
1075 (Fig. 8). This library was developed by Google to provide
new features on earlier Android versions.

As mentioned before, our system does not make a priori
assumptions based on the name of the package or its prove-
nance. This is simply because “legitimate libraries” can be
used with a malicious intent4. This is precisely what happens
with method-1075 —while the library is built by Google and
widely used in goodware, SIMPLOCKER heavily relies on it
for malicious purposes.

B. Adware

We next present the case of two adware families named
UTCHI and LOCKAD. This form of fraud typically monetize
personal information to deliver targeted advertisement cam-
paigns. While the campaign delivered by the former family
has been operating for over three years and it is one of the
most viral families, the latter is characterized by its novelty and
stealthiness, and displays a clear distinction in the complexity
of the malware evolution.

UTCHI is a family named after a shady advertisement
library that leaks the user’s personal information after being
embedded into the infected app. The library has been piggy-
backed into over 13K apps distributed throughout different
markets such as AppChina, Anzhi, and Google Play. This
family mostly operated between the end of 2015 and early
2016, although the campaign had been running for almost
three years since the end of 2013. Our analysis found 27
methods with sensitive behaviors (cf. Section IV-A) common
to more than 12K apps. Among others, these behaviors include
network activity, access to content provider, access to unique

4Recall that the term legitimate libraries refers to packages that are
prevalently used in goodware or have been developed by a trusted party.

Method-662:
Seen in: 30 apps (out of 30)
Class Name: Lcom/nisakii/encrypt/msg/

EncryptFragment$EncProcess$2$1;
Method name: <init>
Behaviors: {ANDROID, CONTENT}

Method-909:
Seen in: 29 apps (out of 30)
Class Name: Lcom/nisakii/encrypt/msg/

RegistrationActivity;
Method name: onBackPressed
Behaviors: {ANDROID, CONTENT}

Method-1057:
Seen in: 28 apps (out of 30)
Class Name: Lnet/sqlcipher/CursorWindow;
Method name: onAllReferencesReleased
Behaviors: {ANDROID, DATABASE}

Method-1075:
Seen in: 29 apps (out of 30)
Class Name: Landroid/support/v4/content/

FileProvider;
Method name: delete
Behaviors: {ANDROID, SUPPORT, IO}

Fig. 8: Excerpt of riders for SIMPLOCKER.

serial numbers (via the telephony manager), and the use of
reflection. Similar behaviors can be seen in other data-hungry
advertisement networks such as those observed in LEADBOLT,
ADWO, KUGOU, or YOUMI.

Similarly, LOCKAD piggybacks some libraries that are
used to exfiltrate personal information from the user to
later display unsolicited advertisements. Some of the
services that are loaded as part of the infected app
are: com.dotc.ime.ad.service.AdService or
mobi.wifi.adlibrary.AdPreloadingService. To
avoid detection and hinder static analysis, samples in this
family obfuscate certain core components of the embedded
library. For instance, the library unpacks configuration
parameters from an encrypted asset-file called ‘cleandata’
as shown in Figure 9 (method-345). These parameters are
later used to decrypt additional content fetched from the
Internet. Method-4670 contains the decryption routine that
uses standard AES decryption in CBC mode and with PKCS5
Padding. The routines displayed in this figure have been
reverse-engineered and method names (e.g., make_md5)
have been renamed to better illustrate the behavior of
this method. Finally, we can also observe in this family
methods that provide support to run Text Executables. When
running a dynamic analysis of one of the samples5, we could
corroborate that the APIs seen attempted to invoke several
processes (e.g., /proc/*/cmdline) to run the executables.

Apart from leaking personal info., both families also use
reflection to dynamically load new functionality.

C. First Seen 2017Q1

We now present the case of a family called HIDDENAP that
was first seen in early 2017 and soon after accounted for 83

5We have used a dynamic analysis system called CopperDroid [42].

11

Method-345: Seen in 6 apps (out of 7)
Class Name: Lrk; Method name: a
Behaviors: {NET}; Routine:
stream = pContext.getAssets().open("cleandata");
a = new JSONObject(rg.a("hwiHQwgVw2I", stream));

Method-4670: Seen in 7 apps (out of 7)
Class Name: Lrg; Method name: a
Behaviors: {CRYPTO}; Routine:
String a(String key, InputStream param){

Cipher c = Cipher.getInstance("AES/CBC/PKCS5");
byte[] md5 = make_md5(key.getBytes("UTF-8"));
c.init(2, new SecretKeySpec(md5, "AES"), IV);
CipherInputStream is;
is = new CipherInputStream(param, c);
[Calls to CipherInputStream byte by byte]}

Fig. 9: Excerpt of riders for LOCKAD.

Method-7:
Seen in: 83 apps (out of 83)
Method name: checkX86
Behaviors: {ANDROID, CONTENT, IO}

Method-17:
Seen in: 83 apps (out of 70)
Method name: checkUpdate
Behaviors: {ANDROID, CONTENT, IO}

Fig. 10: Excerpt of common methods for HIDDENAP.

samples in our dataset. HIDDENAP is one of the largest families
seen in 20176. Apps in this family are mainly distributed
through alternative markets and all samples in our dataset
have been obtained from one of the largest Chinese alternative
market (i.e., the Anzhi market). This family is fairly basic and
it only has 17 methods common to all apps. These methods
exhibit behaviors mainly related to IO operations together with
other standard actions from the Android framework such as the
content provider.

Once the device is infected, the malware
runs an update attack in a method called
com.secneo.guard.Util.checkUpdate() (method-
17 in Figure 10). It then attempts to drop additional apps
and install them with the support of some native libraries
called libsecexe.so, libsecpreload.so, and
SmartRuler.so that are embedded into the app. The last
two libraries have been seen together with apps that are
packed using a known service called Bangcle7 [43]. The third
library most likely contain an exploit that would grant root
privileges to the malware. All native libraries are compiled
both for x86 and ARM processors. Before loading the library,
the malware first checks which is the right architecture of the
device with Lcom/secneo/guard/Util.checkX86()
(method-7) using standard API call such as File.exists() or
System.getProperty().

Even though this family is using a packer to obfuscate parts
of the code, the hook inserted in the Java part has meaningful
method names that convey very accurately what the malware
does. Considering that the app is obfuscated using an online

6Together with a family called GGSOT.
7https://www.bangcle.com/ (in Chinese).

packer, we can conclude that this miscreant had a limited
technical background.

VII. DISCUSSION

In this section, we first discuss a number of limitations
of our study. We then highlight the most important findings
observed and discuss their implications for future research.

A. Limitations

A sensible goal for a malware developer is to obfuscate the
rider or offload it remotely. We next discuss the challenges
behind these threats and the main limitation.

a) Obfuscation: Our study inherits the limitations of
static analysis and thus can unavoidably miss obfuscated
riders. In fact, we have observed that the use of cryptographic
APIs has increased significantly over the years. This problem
is the scope of our future work as we explain next. Even when
specimens rely on obfuscation, due to the nature Android
they nonetheless require a trigger that would deobfuscate
the payload. We can isolate these triggers using differential
analysis as done in this work. This can aid dynamic analysis
techniques to fuzz only those classes (and methods) where
the hook to the obfuscated payload rests. Dynamic behaviors
emanating from those payloads can then be used to extend the
set of behaviors seen statically.

The underlying technique that we use to compute differen-
tial analysis assumes that piggybacked classes respect the mor-
phology of their code (in terms of CFG). There are advanced
obfuscation techniques such as polymorphic and metamorphic
malware that could alter the structure of the code (including
the CFG of their methods). Furthermore, recent work shows
that it is feasible to use stegomalware to systematically add
dynamic code [39]. This would render differential analysis
useless. However, to the best of our knowledge, there is no
evidence in the wild that would indicate that this type of
obfuscation is used in Android malware at large.

b) Update Attacks: In update attacks, the rider is loaded
at runtime [31]. Typically, the payload is stored in a remote
host and retrieved after the app is executed [32]. Unless the
rider is stored in plain text within the resources of an app,
our study is vulnerable to this attack. We could overcome this
limitation in a similar way as in the case of obfuscation—using
dynamic analysis. For local update attacks, we recursively
inspect every resource to find incognito apps. We append the
methods of those apps to the methods of the main executable
before running our differential analysis system.

c) Notion of Family: The way in which differential anal-
ysis is used in this paper requires a precise accounting of the
members in a family. To do so, we rely on Euphony [15] which
in turn leverages threat intelligence shared from multiple AV
vendors. Unifying diversified AV labels is a challenging pro-
cess that might be subject to misclassifications. This is because
Euphony is forced to make decisions based on information
given by AVs, whose family definitions might disagree with
each other. Unifying labels is thus prone to error (especially
with very recent families). Furthermore, the morphing nature

12

of malware renders the notion of family incomplete and makes
differential analysis dependent on the variants.

In our work, we overcome these challenges by introducing
a relaxed cutoff that can flexibly be configured. For the case
of API-based behaviors (§IV), we set the threshold to 90%
rather than 100% to minimize the impact of potential mis-
classifications in Euphony. The selection of this threshold was
motivated by the performance reported in [15]. In this paper,
we showed that grouping samples chronologically provides a
more granular way to understand how variants behave and,
ultimately, how families evolve.

The cutoff chosen can cover a wide range of variants when
combined with a chronological grouping. In any case, one
could set even lower thresholds to fine-tune the granularity of
the variants observed. However, this could risk the inclusion
of code fragments coming from the carriers. This is because
different goodware can import the same libraries as discussed
in [44]. One option could be to ‘white-list’ those libraries
and remove known software components before applying
differential analysis. Along these lines, Google has recently
proposed the use of what they call functional peers to set as
‘normal’ behaviors that are often seen in known goodware
of the same category (peers) [45]. However, in our work we
choose not to do this. The main reason behind this is that
legitimate libraries can also be used with a malicious intent
(see for example the case study described in §VI-A) For our
purposes, we consider that keeping a threshold relatively high
(i.e., above 90%) is enough to avoid including code fragments
from the carriers.

In this work we assume that if a method appears in a large
portion of samples in a family, it can be considered harmful
or it could potentially be used maliciously by most of the
members of a family. As part of our future work, we are
planning to taint all common methods that appear frequently
in top ranked apps in Google Play. This way, we could study
how common libraries are invoked by malware. We also want
to leverage on existing knowledge about piggybacked pairs
of raiders and carriers to also taint methods that appear to
be common [17], [13]. In this case, common methods would
reveal those software fragments that belong to the carrier as
opposed to what we do in our paper. Tainted methods could
also be used to elaborate on the aforementioned concept of
functional peers to provide stronger guarantees of the software
provenance in repackaged malware. This information can help
to provide a notion of risk, where behaviors that appear mostly
in riders and are never seen in goodware should be considered
highly risky and vice versa.

d) Studied APIs: In this paper we reported our findings
after analyzing the most frequent set of APIs used by riders
as well as those considered to be the most indicative of
maliciousness as described in §IV-B. We acknowledge that
the set of API calls falling into one of the generic categories
can change over time. However, we note that these APIs are
categorized based on the package name (see §IV-A). Thus,
when a new API call is added, for instance, to the TELE-
PHONY category, we can guarantee that the API call is related
to the Telephony module of the Android OS. When looking at
APIs individually, we have carefully investigated the official

documentation of every single API call relevant to our study.
We have observed that all API calls discussed in this paper
were introduced as part of the foundations of the Android OS
framework (between API level 1 and 48) and have not been
deprecated at time of writing. We have observed in our static
traces, however, one API call (i.e., ActivityManager.-
getRunningServices()) that has been eventually used
by riders and that was deprecated in API level 26 (Oreo 8-
0, August 2017). As part of our future work, we would like
to explore the implications that deprecated API calls have for
malware developers.

B. Key Findings

While our study presents the limitations as discussed above,
we observe a large number of apps displaying common, and
more importantly, sensitive behaviors. Our findings constitute
a large-scale longitudinal measurement of malice in the An-
droid ecosystem. We next summarize the key takeaways of
our work and discuss their implications to research.

a) Threat evolution: Our results show that certain threats
have evolved rapidly over the last years. For example,
premium-rate frauds that were seen in about 40% of the
families in 2013 and dropped to 10% in late 2016. On the
contrary, the use of native support has increased sharply from
15% in 2011 to 80% in 2017. We have also noted that that
looking at large families alone (without considering notion
of variants) can provide misleading interpretations of the
evolution of malware. We have further shown that the time
component is paramount to disambiguate the notion of variant.
Our findings show that works such as [46] are hard to deploy
in real-world settings.

This shows the importance of a time-line evaluation when
developing new malware detection approaches, together with
the need for research outcomes reporting results on samples
with features tailored to the type of threat faced in each period.
Recent work [8], [20] neither report time-lined results, nor
use features from native libraries. These two items should
constitute a guideline for future research in the area of malware
detection. Authors in [11] investigated the evolution of mal-
ware detection over time up until 2016, but did not look at how
samples change. Finally, more a recent work has studied ways
to eliminate experimental bias in malware detection [47]. Au-
thors have shown that models trained with machine-learning
algorithms should be aware of the temporal axis to provide
reliable results in real-world setting. In particular, authors
emphasize the importance of having a temporal goodware to
malware window consistency. However, this still remains an
open research question and concrete steps as of how to achieve
a window consistency are needed. The methodology used in
our paper can be used to better understand malware variants
in a temporal-manner to address this open issue.

b) Evidence of obfuscation: A large scale investigation
of the use of obfuscation in Google Play have recently shown
that only 24.9% of the apps are obfuscated [18]. In this work
we look at evidence of obfuscation among riders. In particular,
we study the usage of crypto libraries and three different forms

8Added between Android 1.0 in 2018 and Android Donut in 2009.

13

of dynamic code execution: native code, Dalvik load, and
script execution. We show that all forms of obfuscation are
increasingly more popular in malware, with the usage of cryp-
tography present in 90% of the families in 2017. When putting
this in perspective with respect to legitimate apps [18], [40],
we highlight a sharp increase in the use of these techniques.
Discussions about the attribution of certain behaviors such
as the use of obfuscation to repackaged malware have been
recurrent in literature over the last few years [10]. Our findings
suggest that malware developers are ahead of legitimate ones.

To the best of our knowledge, there are few malware
detection systems capable of dealing with these forms of
obfuscation. For the case of reflection, the authors of [48]
proposed HARVESTER, a system that can resolve the targets
of encoded reflective method calls. For the case of incognito
apps, authors in [20] look at inconsistencies left by this type
of obfuscated malware. While these approaches can deal with
certain types of obfuscated malware, they are vulnerable to
motivated adversaries. For instance, HARVESTER can not
deal with static backward slicing attacks.

Dynamic analysis constitutes the next line of defense against
obfuscation [42]. However, we have also observed that evasion
is not only becoming more popular, but also more diverse.
The research community has recently positioned that evasion
attacks can be addressed with static analysis [49]—triggers
can be first identified using symbolic execution and a smart
stimulation strategy can then be devised. One major challenge
here arises from the combination of obfuscation and evasion
attacks. For instance, an adversary can use opaque predicates
to hide the decryption routine of the malware to defeat both
static and dynamic analysis.

c) Standalone malware: We do not make claims about
the amount of standalone malware (i.e., malware that does not
take advantage of repackaging) in the wild but we can report
an estimate as depicted in our dataset. While we found that
25 families (542 samples) out of 1.2K+ families (1,282,022
million samples) could potentially be standalone malware, we
also discarded all families with less than 7 samples per family
from the original set of 3.2K+ families (1,299,109 samples).
This was due to the way differential analysis works, which
requires a critical mass of samples. Given that standalone
malware tends to have a small number of samples per family,
one could assume that most of the samples discarded are
standalone malware. If this holds true, a fair approximation
of the number of standalone malware would then be about 2K
families and 17K samples (62.5% of the families, but only
1.36% of the samples).

On the other hand, our dataset only contains samples that
have been labeled into families by Euphony [15]. Unlabeled
samples are known as Singletons, and there are about 200K
of these in the AndroZoo [9] dataset as of the day we queried
it. If we were to assume that all singletons are standalone
malware, we will then be looking at figures of approximately
13%.

While we estimate that standalone malware could range
between 1.36% and 13% of the total malware in the wild,
the authors of [50] report that 35% of the samples in their
study are standalone malware. They analyze roughly 405

samples, sampled from a larger dataset. Interestingly, some
of the families that are flagged as standalone contain a large
number of samples (e.g., LOTOOR and OPFAKE with 1.9K and
1.2K samples respectively), which seems unlikely.

VIII. RELATED WORK

A number of papers analyzed Android malware over the
last years [34], [10]. One of the key aspects to consider when
systematizing the analysis of malware is properly curating the
dataset to remove potential noise from samples. Works in the
area of malware network analysis have recently shown that
this process is of paramount importance [51]. In the Android
realm, this is especially challenging due to the proliferation of
repackaging. We tackle this challenge by using of differential
analysis, which is based on static analysis. Static analysis has
been used in the past to systematize the study of the Android
app ecosystem [52]. However, up until now this was not used
to study malware at large.

There have been several works looking at piggybacked
malware in the last few years [22], [12], [17], [32]. In the
case of MassVet [17], authors propose a similar methodology
than the one we propose to find commonality among apps.
However, their focus is on the detection of repackaging via
similarities in the GUI. In DroidNative [32], the authors look
at the CFG of native code to distinguish between goodware
and malware. Instead, we mine common code structures and
measure the prevalence of API-call usage. Furthermore, our
dataset of malware is about one order of magnitude larger than
the one used in MassVet and about three order of magnitude
larger than in DroidNative.

Li et al. [13] propose a system to detect piggybacked apps.
They also investigate behaviors seen in riders, however a
key difference with our work is that they compare pairs of
piggyback-original apps individually rather than providing a
per-family overview. The scope of their work is limited to
950 pairs as opposed to our work. The main advantage behind
a per-family longitudinal measurement is that findings here
provide a holistic overview of the prevalence and evolution of
malice.

Recent works in the area have proposed the use of common
libraries to both locate malicious packages in piggybacked
malware [53] and to create white-lists of Android libraries
used in goodware [44]. In these two approaches, they leverage
the library name to build a package dependency graph and
measure the similarity between package names. [13] also uses
package name matching to infer the ground truth. In our work
we choose not to rely on the package names as these can be
easily obfuscated. Instead, we look at the CFG of different
code units (methods). One major advantage of focusing on
the internal structures of code is that it provides an improved
resistance against obfuscation.

A recent paper by Wang et al. analyzes a 2017 snapshot
of the apps available on 16 Chinese Android markets [54].
They show that malware is relatively commonplace on these
platforms, and that repackaging is less common by what
we observed in our longitudinal measurement in this paper.
Finally, other more recent works have analyzed the evolution

14

of Android by looking at permission requests [55]. Similar
to the case of package names, the granularity obtained from
permissions is not as precise as API-annotated CFG.

IX. CONCLUSIONS

In this paper, we presented a systematic study of the evo-
lution of rider behaviors in the Android malware ecosystem.
We addressed the challenge of analyzing repackaged malware
by using differential analysis. Our study provides a cross-layer
perspective that inspects the prevalence of sensitive behaviors
in different executables, including native libraries. Our analysis
on over 1.2 million samples that span over a long period of
time showed that malware threats on Android have evolved
rapidly, and evidences the importance of developing anti-
malware systems that are resilient to such changes. This means
that automated approaches relying on machine-learning should
come together with a carefully crafted feature engineering pro-
cess, trained on datasets that are as recent as possible and well
balanced. We have further discussed what our findings mean
for Android malware detection research, highlighting other
areas that need special attention by the research community.

ACKNOWLEDGMENTS

We thank the authors of Dendroid [16], Androzoo [9],
and Euphony [15] for releasing their work and letting use
their service for research. We would also like to thank the
anonymous reviewers for their comments.

REFERENCES

[1] AppBrain, “Number of available android applications,” http://www.
appbrain.com/stats/number-of-android-apps, 2018.

[2] Aptoide, “Evolution of aptoide malware detection system,” https://goo.
gl/twTNua, 2016.

[3] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps
removed from google play?: a large-scale empirical study,” in MSR.
ACM, 2018, pp. 231–242.

[4] Check-Point, “The judy malware: Possibly the largest malware campaign
found on google play,” https://goo.gl/qwmkcF, 2017.

[5] Google, “About virustotal,” https://www.virustotal.com/en/about/, 2018.
[6] Koodous, “Koodous,” koodous.com/, 2018.
[7] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization

and evolution,” in IEEE S&P, 2012.
[8] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck, “Drebin:

Effective and explainable detection of android malware in your pocket,”
NDSS, pp. 23–26, 2014.

[9] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
MSR, 2016.

[10] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. Van Der Veen, and C. Platzer, “Andrubis–1,000,000 apps later: A
view on current android malware behaviors,” in BADGERS, 2014.

[11] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” in NDSS, 2017.

[12] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of piggybacked mobile applications,” in CODASPY, 2013.

[13] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and
L. Cavallaro, “Understanding android app piggybacking: A systematic
study of malicious code grafting,” IEEE TIFS, 2017.

[14] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool
for massive malware labeling,” in Research in Attacks, Intrusions, and
Defenses (RAID), 2016.

[15] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. L.
Traon, J. Klein, and L. Cavallaro, “Euphony: harmonious unification
of cacophonous anti-virus vendor labels for android malware,” in MSR,
2017.

[16] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Den-
droid: A text mining approach to analyzing and classifying code struc-
tures in android malware families,” Expert Systems with Applications,
vol. 41, no. 4, pp. 1104–1117, 2014.

[17] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for
new threats at the google-play scale.” in USENIX Security, 2015, pp.
659–674.

[18] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl,
“A large scale investigation of obfuscation use in google play,” T.R.
arXiv:1801.02742, 2018.

[19] G. Suarez-Tangil and G. Stringhini, “Eight Years of Rider Measurement
in the Android Malware Ecosystem: Evolution and Lessons Learned
(Extended Version),” arXiv preprint 1801.08115, 2020.

[20] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, “Droidsieve: Fast and accurate classification of obfuscated
android malware,” in CODASPY, 2017.

[21] S. Cesare and Y. Xiang, “Classification of malware using structured
control flow,” in Proceedings of the Eighth Australasian Symposium on
Parallel and Distributed Computing, 2010.

[22] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in Data
and Application Security and Privacy, 2012.

[23] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,”
in Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2012.

[24] M. Graziano, D. Canali, L. Bilge, A. Lanzi, and D. Balzarotti, “Nee-
dles in a haystack: Mining information from public dynamic analysis
sandboxes for malware intelligence,” in USENIX Security, 2015.

[25] K. Zetter, “A google site meant to protect you is helping hackers at-
tack you,” https://www.wired.com/2014/09/how-hackers-use-virustotal/,
2014.

[26] M. Ruthven, K. Bodzak, and N. Mehta, “From chrysaor to lipizzan:
Blocking a new targeted spyware family,” https://security.googleblog.
com/2017/07/from-chrysaor-to-lipizzan-blocking-new.html, 2017.

[27] A. Deo, S. K. Dash, G. Suarez-Tangil, V. Vovk, and L. Cavallaro,
“Prescience: Probabilistic guidance on the retraining conundrum for
malware detection,” in Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security. ACM, 2016, pp. 71–82.

[28] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al., “Reviewer
integration and performance measurement for malware detection,” in
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016, pp. 122–141.

[29] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in USENIX Security, 2017.

[30] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, detection and analysis of malware for smart devices,” IEEE
Coms. Surveys & Tutorials, 2014.

[31] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! analyzing unsafe and malicious dynamic code loading
in android applications,” in NDSS, 2014.

[32] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, “Droidnative:
Automating and optimizing detection of android native code malware
variants,” Computers & Security, 2017.

[33] O. Mirzaei, G. Suarez-Tangil, J. M. de Fuentes, J. Tapiador, and
G. Stringhini, “Andrensemble: Leveraging api ensembles to characterize
android malware families,” in Proceedings of the ACM on Asia Confer-
ence on Computer and Communications Security (AsiaCCS), 2019.

[34] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in Security and Privacy in
Communication Systems, 2013.

[35] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “Dapasa: detecting
android piggybacked apps through sensitive subgraph analysis,” IEEE
Transactions on Information Forensics and Security, 2017.

[36] J. Onaolapo, E. Mariconti, and G. Stringhini, “What happens after you
are pwnd: Understanding the use of leaked webmail credentials in the
wild,” in IMC, 2016.

[37] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting the
rise of dga-based malware.” in USENIX security, 2012.

[38] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
detecting fast-flux service networks.” in NDSS, 2008.

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
https://goo.gl/twTNua
https://goo.gl/twTNua
https://goo.gl/qwmkcF
https://www.virustotal.com/en/about/
koodous.com/
https://www.wired.com/2014/09/how-hackers-use-virustotal/
https://security.googleblog.com/2017/07/from-chrysaor-to-lipizzan-blocking-new.html
https://security.googleblog.com/2017/07/from-chrysaor-to-lipizzan-blocking-new.html

15

[39] G. Suarez-Tangil, J. E. Tapiador, and P. Peris-Lopez, “Stegomalware:
Playing hide and seek with malicious components in smartphone apps,”
in International Conference on Information Security and Cryptology.
Springer, 2014, pp. 496–515.

[40] G. Vigna and D. Balzarotti, “When malware is packin’ heat,” Enigma,
2018.

[41] J. Hamada, “Simplocker: First confirmed file-encrypting ransomware for
android,” https://goo.gl/nmqCW7, 2014, 2018-04-15.

[42] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of android malware and android analysis techniques,” ACM
Computing Surveys, 2017.

[43] Y. Zhang, X. Luo, and H. Yin, “Dexhunter: toward extracting hidden
code from packed android applications,” in European Symposium on
Research in Computer Security, 2015.

[44] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation
into the use of common libraries in android apps,” in Software Analysis,
Evolution, and Reengineering, 2016.

[45] M. Pelikan, G. Hogben, and U. Erlingsson, “Identifying intrusive mobile
apps using peer group analysis,” https://security.googleblog.com/2017/
07/identifying-intrusive-mobile-apps-using.html, 2017.

[46] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, “Android
malware familial classification and representative sample selection via
frequent subgraph analysis,” IEEE Transactions on Information Foren-
sics and Security, vol. 13, no. 8, pp. 1890–1905, 2018.

[47] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, L. Cavallaro, C. Rizzo,
D. Mitchell, L. T. van Binsbergen, B. Loring, J. Kinder et al., “Tesseract:
Eliminating experimental bias in malware classification across space and
time,” in USENIX Security, 2019.

[48] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting run-
time values in android applications that feature anti-analysis techniques.”
in NDSS, 2016.

[49] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in IEEE S&P, 2016, pp. 377–396.

[50] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current android malware,” in DIMVA. Springer, 2017, pp. 252–276.

[51] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A
lustrum of malware network communication: Evolution and insights,” in
IEEE S&P, 2017.

[52] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of
android application security.” in USENIX security, vol. 2, 2011, p. 2.

[53] L. Li, D. Li, T. F. Bissyandé, J. Klein, H. Cai, D. Lo, and Y. L. Traon,
“Automatically locating malicious packages in piggybacked android
apps,” in IEEE MSES, 2017.

[54] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale
comparative study of chinese android app markets,” in IMC, 2018.

[55] P. Calciati and A. Gorla, “How do apps evolve in their permission
requests?: a preliminary study,” in MSR, 2017.

https://goo.gl/nmqCW7
https://security.googleblog.com/2017/07/identifying-intrusive-mobile-apps-using.html
https://security.googleblog.com/2017/07/identifying-intrusive-mobile-apps-using.html

	Introduction
	Methodology
	Overview
	Differential Analysis

	The Android Malware Ecosystem
	Malware Family Landscape
	Common Methods in our Dataset
	Choice of a cutoff

	Analysis of Android Riders
	Rider Behaviors
	Evolution over Time

	Analysis of Resources
	Case Studies
	Ransomware
	Adware
	First Seen 2017Q1

	Discussion
	Limitations
	Key Findings

	Related Work
	Conclusions
	References

