On the Perils of Leaking Referrers in
Online Collaboration Services

Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

Boston University
{bkaleli,megele,gian}@bu.edu

Abstract. Online collaboration services (OCS) are appealing since they
provide ease of access to resources and the ability to collaborate on shared
files. Documents on these services are frequently shared via secret links,
which allows easy collaboration between different users. The security of
this secret link approach relies on the fact that only those who know
the location of the secret resource (i.e., its URL) can access it. In this
paper, we show that the secret location of OCS files can be leaked by
the improper handling of links embedded in these files. Specifically, if a
user clicks on a link embedded into a file hosted on an OCS, the HTTP
Referer contained in the resulting HT'TP request might leak the secret
URL. We present a study of 21 online collaboration services and show
that seven of them are vulnerable to this kind of secret information
disclosure caused by the improper handling of embedded links and HTTP
Referers. We identify two root causes of these issues, both having to do
with an incorrect application of the Referrer Policy, a countermeasure
designed to restrict how HTTP Referers are shared with third parties.
In the first case, six services leak their referrers because they do not
implement a strict enough and up-to-date policy. In the second case, one
service correctly implements an appropriate Referrer Policy, but some
web browsers do not obey it, causing links clicked through them to leak
their HTTP Referers. To fix this problem, we discuss how services can
apply the Referrer Policy correctly to avoid these incidents, as well as
other server and client side countermeasures.

Keywords: Web Security - Online Collaboration Services - Referrer
Leaking - File Sharing.

1 Introduction

Collaboratively editing and sharing documents, presentations, and spreadsheets
online have become an increasingly popular aspect of the modern-day work-
flow. To facilitate this, so-called online collaboration services (OCS) emerged
and allow users to simultaneously create, edit, and share documents through
their web browsers. A characteristic feature of many of these services is the
capability to share access to a specific document via a secret URL. The security
and secrecy of the content maintained in the shared resource hinges on the

2 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

secret URL to only be known by authorized collaborators. That is, should the
secret URL be disclosed to unauthorized entities, the secrecy of the collaborative
content is compromised.

In this paper, we show that the secret location of an OCS document is frequently
leaked through HTTP Referers, even in situations where the OCS platform ex-
plicitly tries to restrict such leakage. The problem arises from how modern web
browsers handle HTML hyperlinks (or links). By default, any link the user clicks
on will trigger an HTTP request to the target of the link. Furthermore, this
HTTP request includes an HTTP header field (the HTTP_REFERER), that indi-
cates the URL of the document that contained the link that was clicked. By
default, if the shared content is hosted under the secret URL and an authorized
user clicks a link embedded in the shared document, the browser will leak the
secret URL as the value of the HTTP_REFERER header to the target of the link (i.e.,
an unauthorized entity). With knowledge of the secret URL, the unauthorized
entity can now access, and potentially modify, the content hosted on the OCS
platform. Since OCS platforms are widely-used by both individuals and compa-
nies, uploaded documents may contain a variety of sensitive information, making
this threat even more serious. As referrers can include sensitive information, three
readily available countermeasures exist that allow web site operators to control
how and whether browsers send HTTP Referer headers. First, as specified by
RFC2616[19] in 1999, browsers have always stripped referrer headers when tran-
sitioning from content served via HT'TPS to content served via HTTP. Second,
if a link includes the noreferrer relation (i.e., rel="noreferrer"), the browser
will also omit the referrer header in any request triggered by following the respec-
tive link. Third, and most recently, the W3C published the Referrer Policy [3]
Candidate Recommendation in 2017. While the first two options categorically
remove referrer request headers, the Referrer Policy allows web site operators
to control, in a more fine-grained manner, whether and how browsers should
include information on the referrer in HT'TP requests. Correctly implemented
and deployed, the Referrer Policy can prevent the leakage of sensitive informa-
tion through HTTP Referer headers. Unfortunately, as this paper shows, the
incomplete implementation of the policy in browsers and the sub-optimal choice
of policy server-side both can lead to catastrophic disclosure of the secret URL
on popular OCS.

Previous studies focused on services that allow users to share resources [18] and
downloading content [25] via URLs. These papers show that secret URLs are of-
ten used to share resources, for example in the case of illegal movie streaming [18]
or other illegal content [25]. Other papers discussed usage patterns of file-sharing
services [13], the security and privacy of services providing secret URLs [15], and
HTTP referrer leaks in referrer anonymizing services [30]. Antoniades et al. [13]
presented a detailed study of one-click hosters traffic and services but did not
focus on the security perspective. Hutchinson et al. [15] studied the security of
secret URLs generated on file hosting services, but they did not investigate the
possibility of leaking these URLs. Referrer leaks are studied by Nikiforakis et

On the Perils of Leaking Referrers in Online Collaboration Services

al. [30] without associating them with online collaboration services. Moreover,
Nikiforakis et al. [30] predate the release of the W3C Referrer Policy Candidate
Recommendation by five years and hence the impact of the policy or its incor-
rect implementation in browsers was not studied in that work. To the best of
our knowledge, we are first to study the security implications of referrer leaks to
the users of online collaboration services.

To study the extent of the problem, we present a methodology to identify whether
a given OCS is vulnerable to the HT'TP Referer leak sketched above. We per-
form an extensive study on 21 different online collaborative services and find
that seven of them are vulnerable. As a correct enforcement of Referrer Policy
requires the correct choice of policy (server-side) and its correct implementation
(client-side), we evaluate all services with 6 different web browsers. Through this
assessment, we identify two root causes that lead to the leakage of secret URLs
from popular OCSs. Both causes are related to the incorrect application of the
Referrer Policy. In the first case, we find that six services do not set a Referrer
Policy at all. This results in web browsers implementing the overly permissive
policy that only strips referrers from requests that transition from HTTPS to
HTTP. In the second case, we find that one service (Overleaf) sets the Refer-
rer Policy correctly, but the incomplete support of the Referrer Policy in two
web browsers we tested(Edge and i0S Safari) results in the leakage of the se-
cret URL. While a comprehensive solution to prevent the leaking of sensitive
information through HTTP Referers, is most realistic by having browsers im-
plement the W3C Referrer Policy, this paper also discusses additional effective
countermeasures that can be deployed in the meantime.

In summary, the contributions of this paper are as follows:

— We present a security vulnerability arising from the improper handling of
HTTP Referer information in files shared on OCSs. The vulnerability man-
ifests in a third party learning the secret URL which provides access to a
perceived securely-shared document.

— We systematically identify and evaluate 21 online collaboration services with
six different web browsers and identify OCS and browsers that are vulnerable
to this kind of information disclosure.

— Our analysis shows that seven of the analyzed Online Collaboration Services
are vulnerable to the identified information leak. Six services are vulnerable
due to the overly permissive default policy, and one is vulnerable because
browsers incorrectly implement the Referrer Policy as specified by the W3C.

— We discuss how existing server and client side mitigations can be used to
correctly deal with the HTTP Referer leak problem.

4 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

2 Background

In this section, we provide the pertinent background information that the re-
mainder of the paper relies upon.

2.1 Online Services Allowing File Sharing

A number of services allow users to share files, for example, file hosting providers
and instant messaging services. Most services also provide tools to edit these files
online. In some cases, given the proper permissions, multiple people may work on
the same document at the same time. These permissions can be given through
sharing options (e.g., read only, write).

Some of these services allow users to share access to the file by means of a
unique and perceived secret URL. By selecting the appropriate option, the service
generates a unique link that can then be shared with other users. URLs can have
permission associated with them (i.e., write or read-only), and the knowledge of
the URL grants access to the resource. For example, when a permission is set to
editable, anyone who has that URL can edit the document but if the permission
is set to read-only, the link only provides read access to that file. The editable
and read-only links have different unique identifiers. Some services also let the
user set an expiration date or time limit to those links which are an extra layer
of security. These secret URLs generally have the following form:

https://www.service-name.com/files/<UniqueIdentifier>

In the above example, the “Uniqueldentifier” part refers to the specific file, thus,
it is different for each file that is shared. The generation of that unique identifier
can be random or sequential for each time a user shares a file. The identifier
may contain the file name and the length of that identifier varies by service [29].
Ideally, this identifier should not be guessable to prevent an adversary to access
the resource.

2.2 HTTP Referer

HTTP requests and responses begin with HT'TP headers, and requests contain,
among other headers, a HTTP Referer field. The HTTP Referer identifies the
URI from which the request originated. When a user clicks on a link in her web
browser, that request is sent to the destination webpage. The HTTP Referer
field in the request holds the URI from which the user clicked on the hyperlink.
If HTTP Referer fields are logged by the visited web server, the administrators
can identify the webpage from which the user is visiting their website. The
information that resides in HTTP Referer can be used to personalize the website
such as providing specific help, suggesting relevant pages to targeted users [24],
generating special offers, webpage analytics (ex: analyzing where most of the

On the Perils of Leaking Referrers in Online Collaboration Services

traffic is coming from) [35] or to block visitors from specific domains. As pervasive
use of the HT'TP Referer raises privacy and security concerns, the way browsers
treat the HTTP Referer is configurable.

2.3 Existing Mitigations

IHTTP Referer ‘Referrer Structure

No Referrer
ASCII Serialized |https://www.service-name.com/

Full Referrer https://www.service-name.com/files/Uniqueldentifier
Table 1. HTTP Referer structures for files in online collaboration services.

Two main mitigations were proposed to prevent referrer leaks: the Referrer Policy
and specifying “noreferrer” as an HTML link type. In the following, we describe
these two approaches in detail.

Referrer Policy. The Referrer Policy governs which information should be in-
cluded in the HTTP Referer header when fetching sub-resources, prefetching,
or performing navigation [3]. The W3C currently specifies nine specific of refer-
rer policies that affect browser behavior with respect to HTTP Referer headers.
Those behaviors mostly differ between same-origin and cross-origin requests. If a
request’s origin is not the same as the request’s current URL’s origin, the request
is called cross-origin. Referrer policies are defined in such a way that the potential
trustworthiness of the source and destination websites are considered. For exam-
ple, the "strict-origin", "no-referrer-when-downgrade", "no-referrer"
and "strict-origin-when-cross-origin" policies specifically state that if a
request is sent from a TLS-protected environment to a non-potentially trustwor-
thy URL the referrer header will be completely omitted. The assessment tech-
nique for a URL’s trustworthiness can also be found on the W3C website [3]. The
Referrer Policies currently defined by W3C can simply be explained as follows.

— "no-referrer": Referrer header is omitted entirely for requests to any ori-
gin.

— "no-referrer-when-downgrade": Full referrer is sent in requests from a
TLS protected environment to a potentially trustworthy URL and also from
a non-TLS protected environment to any origin. Conversely, referrer header
is omitted in requests from a TLS protected environment to a non-potentially
trustworthy URL.

— "same-origin": A full URL, stripped for use as a referrer (the algorithm to
strip URLs is defined in [8]), is sent within requests to same-origin. However,
the referrer header is omitted in cross-origin requests.

6 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

— "origin": Along with both same-origin and cross-origin requests, an ASCII
serialization of the referrer is sent. An example of this serialization result is
given in Table 1.

— "strict-origin": ASCII serialization of the referrer is sent along with re-
quests from a TLS protected environment to a potentially trustworthy URL
and from a non-TLS protected environment to any origin. Whereas, no re-
ferrer is sent from a TLS-protected environment to a non-potentially trust-
worthy URL.

— "origin-when-cross-origin": A full URL, stripped for use as a referrer, is
sent within requests to same-origin. ASCII serialization of the origin of the
request is sent within requests to cross-origin.

— "strict-origin-when-cross-origin": A full URL, stripped for use as a
referrer, is sent within requests to same-origin. For the cross-origin requests,
the same schema is applied as "strict-origin".

— "unsafe-url": A full URL, stripped for use as a referrer, is sent within both
same-origin and cross-origin requests.

Without any declared referrer-policy attribute, a HTML <a> element’s referrer
policy is the empty string. Thus, navigation requests initiated by clicking on that
<a> element will be sent with the referrer policy of the <a> element’s node docu-
ment. If that document has the empty string as its referrer policy, the algorithm
will treat the empty string the same as "no-referrer-when-downgrade".

The Referrer Policy is a useful mechanism that a web service has to signal to
the web browser how it should deal with referrers on its service. To be effective,
however, the web browser needs to implement the Referrer Policy correctly, and
in particular deal with all the possible policies listed above. In this paper, we
show that this is not always the case, resulting in some OCSs leaking referrers
on certain browsers, despite using the Referrer Policy correctly.

HTML Link Type. The HTMLS5 standard added support for the noreferrer
relation attribute for links (i.e., rel="noreferrer"). Referrer headers will be
suppressed for links that have the noreferrer relation attribute set [3]. Hence,
no referrer information will be leaked when following such a link [9].

The behavior of the referrer header in an HTTP request is adjustable on both
the client and server side. If these optional HTTP Referer fields are not adjusted
properly by the online service or the user, this will cause a potential leak of the
location (i.e., URL) of the secret resource. Since access to the resource is only
determined by the knowledge of such a URL, this can have security repercussions.
This vulnerability is the main concern of this paper.

On the Perils of Leaking Referrers in Online Collaboration Services

Alice Bob

ocs

Fig. 1. A Simple Attack Scenario: 1.Alice uploads a file, file has a link to Eve’s website
evil.com, 2. Generates the secret URL, 3. Alice shares file with Bob, 4. Bob opens
resource, sends HTTP Request to Eve’s website evil.com, 5. Eve gets access to the
resource through referrer

2.4 Threat Model

Online Collaboration Services are popular among individuals and companies
alike. Therefore, a significant number of files are uploaded and shared through
those services. Because of the ease of sharing documents that these services
provide, companies use them to collaborate on documents. Therefore, these doc-
uments are likely to contain confidential information. For example, personal in-
formation of customers can be kept in a document where authorized employees
constantly add new customer information such as social security numbers, phone
numbers, email addresses, etc. If such a document got leaked, miscreants could
use this information to perform identity theft or other malicious activity [27]. In
the case of individual users, people can store any kind of sensitive data in OCS
such as bank account details, passwords, photos, payment details, real estate
information, etc.

Knowing the secret URL of a resource allows anyone to access it (and possibly
edit it). The reason for generating such URLs is to easily share a resource. Only
owners and users that the owners shared the resource with should know the secret
URL. These URLs are mostly generated uniquely and in a non-guessable fashion
because of security concerns. However, these secret links grant direct access to
a resource therefore if they got leaked, simply visiting that URL would provide
the attacker access to the secret resource. According to the permissions of that
link (editable or read-only), an attacker can steal the confidential information
on that secret resource or modify/delete it.

Figure 1 provides an example attack scenario for the type of vulnerability studied
in this paper. First, Alice uploads a file to an Online Collaboration Service, and
the file contains a link to evil.com (Step 1). The online service then generates

8 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

a secret URL (Step 2) and Alice shares the secret URL with Bob (Step 3). After
that, Bob opens the resource and clicks the link in it (Step 4). By clicking the
link in the file, an HTTP Request is made to evil.com. That request contains
HTTP Referer field which reveals the unique URL to the specific file. This URL
is not supposed to be known by people other than the owner and ones that the
owner shared at the first place which is Alice and Bob. Assuming that no client
or server side mechanism had omitted or trimmed the HT'TP Referer part of the
request and Eve, the owner of evil.com logs the HTTP Referers of requests,
which is often the case on the Web [12], then the specific file becomes vulnerable
to attacks because the unique URL of the file is recorded in evil.com’s server
(Step 5). Eve becomes capable of compromising this information to read and
possibly edit the specific file, depending on the permissions set by Alice.

3 Methodology

As discussed, in this paper we aim to quantify how prominent the referrer leak
problem is in online collaboration services. To this end, we analyzed 21 different
online collaboration services. Our study consists of the following four phases:

1. Defining relevant services
2. Creating files

3. Sharing files

4. Examining the referrer

In the rest of this section, we describe these four phases in detail.

3.1 Defining Relevant Services

Our main concerns while selecting a set of services to study were threefold:
(i) each online service should allow creating or uploading a file, (ii) links em-
bedded in that file should be clickable, and (iii) access to the file can be dele-
gated by sharing a URL. First, we investigated the most popular online services
through Google queries and Alexa top lists [1]. For Google queries we searched
for keywords such as: online file sharing, online collaboration tools, file storage
and sharing services etc. We implemented a crawler to crawl Alexa categories on
February 13, 2019. We searched categories that contain popular online collabora-
tion services found from Google queries (such as docs.google.com, dropbox.com
etc.). Then, we manually tested all the services that belong to these categories
to see if they were suitable for our experiment. We found that most Online Col-
laboration Services offer the three functionalities outlined above. We found a
total of 67 online services as part of our investigation. In order to understand
whether those services comply with our criteria, first we set up an account on

On the Perils of Leaking Referrers in Online Collaboration Services

each of them. Then, with this account, we tried uploading a supposedly secret
document with an embedded URL that points to a server under our control. Af-
ter uploading, we checked if the embedded link was clickable. Finally, we tested
the share option for the resource to see if the service allows users to share files
via a unique URL. The above procedure eliminated 46 services ' because of the
following reasons: only video meetings can be shared with URL, share option is
unavailable in free version, link in a document is not clickable, no free version,
sign up needs credit card information, documents are only shared via email, files
can only be downloaded, open option only downloads the file, site cannot be
reached, or account confirmation email is not sent by website.

After eliminating these 46 services, we were left with 21 services, consisting of
a mix of file hosting services and instant messaging services. A full list of the
services used in this study is available in Table 2.

3.2 Creating Files

As mentioned before, some providers only allow a file to be shared among users
who have accounts on that service. Therefore, for examining online collaboration
services, we created two different accounts on each service. One account was
responsible for uploading a file and getting the unique link that belongs to that
file, whereas the other account was used to open the shared file online by using
the unique URL and clicking the link in the file.

Services allow different types of files to be uploaded or created. As part of our
study, we created multiple types of files on each of the 21 services. These file
types were selected among those that are frequently used in a collaborative en-
vironment, for example “.doc”, “.docx”, “.pdf”, “.xls”, “.xlsx”, “.ppt”, “.pptx”,
or “.note” files. For file hosting providers and instant messaging services that
offer the feature, files were uploaded under the first testing account.

We embedded a link referring to our servers in all the files we uploaded to the
services. For our experimental purposes, uploaded files contained nothing but
the URL to our webpage. In a real-world scenario, and in general, this link
would be a third-party website and the file would have some other data than the

! Ruled out services are: prezi.com, uploaded.net, 4shared.com, 1fichier.com,
filerio.io, filefactory.com, bibsonomy.org, adrive.com, drivehq.com,
clickability.com, filesanywhere.com, livedrive.com, smartfile.com,
elephantdrive.com, mydocsonline.com, jungledisk.com, kontainer.com,
mozy.com, exavault.com, thinkfree.com, cryptoheaven.com, powerfolder.com,
filesave.me, crocko.com, cloudsafe.com, trueshare.com, diino.com,
filehostname.com, file-works.com, wonderfile.net, classlink.com,
signiant.com, fileflow.com, bluejeans.com, dropsend.com, hightail.com,
justcloud.com, sugarsync.com, idrive.com, sharepoint.com, transfernow.com,
deliveryslip.com, mango.com, ionos.com, mediafire.com, tresorit.com,
sync.com.

10 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

link. The embedded URL refers to a PHP script which simply logs all HTTP
Header information (including HTTP_REFERER) of each incoming HTTP request.
This way we were able to easily understand if the HTTP Referer is leaked by
each OCS.

3.3 Sharing the Files

Following the threat model presented in Section 2.4, we only considered OCSs
that allowed users to share content via a unique secret URL. A unique URL is
created by providers when we click on the share via link option. Some services
provide different URLSs to the same file that have varied privileges such as non-
editable and editable. In order to span all possibilities, we created both types
of links to each file. Then we shared these links with the second account that
we set up. Note that not every online service requires a valid account to view
the file through a shared unique link. However, some of the instant messaging
services did not allow uploading files. For this situation, we sent the created files
directly to a chat between our first and second testing account.

3.4 Examining the HTTP Referer

To assess whether a given OCS leaks the secret URL via referrer headers, we
visited the shared document and clicked on the link. As the browser implemen-
tation might affect how referrers are treated, we visited each shared document
(and included link) with six different browsers. For this experiment we specif-
ically used the latest stable versions (at the time of writing) of the following
browsers: Google Chrome (version 72), Mozilla Firefox (version 65), Microsoft
Edge (version 42), Safari (version 12), Mobile Chrome (version 71), and iOS Sa-
fari (version 12). By following the unique links, the original shared file is opened
in each browser. Some providers required the user that tries to open the unique
link to have an account on that service. In this case, we used the second account
we set up to display the original file. On some instant messaging services the file
is opened just by clicking on it in the chat. After loading the file, we clicked on
the embedded link that refers to our PHP script. In our experiment, the PHP
script that was the destination of the link displayed the HTTP Header infor-
mation. In a real scenario, after this click, the user would get redirected to the
third party webpage that is the target of the link.

As part of the HT'TP headers, we also recorded the HTTP Referer. HI'TP Ref-
erers can be divided into three categories: completely omitted ("no-referrer"),
ASCII Serialized to show only the website name, and contains full URL infor-
mation. The possible referrer structures are shown in Table 1.

Different web browsers gave different output for the same unique URLs. This is
due to the fact that browsers have different settings for handling HT'TP Referers.

On the Perils of Leaking Referrers in Online Collaboration Services

The secret links generated by online services are opened with six different web
browsers. Then, the link to our servers inside the documents are clicked and
output of our PHP script is observed. Available Referrer-Policies handle referrers
as threefold as shown in Table 1. The original resource can only be accessed if
the leaked referrer is a full referrer and the same as the secret URL. Therefore,
the outputs that show no HTTP Referer and only show an ASCII serialized
referrer which contains only the host part of the unique link are recorded as not
vulnerable. The remaining HTTP Referers which contain full URLs are cause
for suspicion and opened with each web browser. The cases where the resulting
page shows the original document are recorded as vulnerable. If instead the
secret file cannot be accessed by using the referrer link the service is recorded
as not vulnerable.

4 Evaluation

We evaluated the approach discussed above on 21 different online collaboration
services. This evaluation identified that seven out of 21 services are vulnerable
and leaked the HTTP Referer to unauthorized third parties. A service is con-
sidered vulnerable if visiting the leaked referrer results in opening the original
resource. After analyzing the leaked HTTP Referers for all services, we found
the following seven services for which our attack succeeded: Google Docs, One-
hub, Overleaf, Box, Flock, Evernote, and Linkedin Slideshare. For six services
we identify the source of the vulnerability in the service not implementing the
Referrer Policy correctly, while for one service the issue lies in the fact that
some web browsers do not react correctly to the Referrer Policy declared by the
website. Table 2 reports a summary of the vulnerabilities that we encountered
in our study. In the following, we discuss the issues discovered for each of the
services in detail.

4.1 Google Docs

Our initial investigations found that Google Docs leaked referrers to third-party
entities. Google acknowledged our findings, promptly fixed the underlying prob-
lem (via rel="noreferrer"). However, their prompt action prevented us from
testing all browsers against their services. Thus, in table 2, browsers that could
not be tested with Google Docs are assigned yellow squares which imply that
the test was not applicable.

4.2 Overleaf

Overleaf is a collaborative writing and publishing service which is widely used
for producing academic papers. Overleaf offers templates for different types of

11

12 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

Microsoft Mozilla
Edge Firefox

Service
Name

Google
Chrome

Apple Android
Safari Chrome

i0S Safari

Google
Docs

NN
A

Office365

Zoho Cliq

Dropbox

ShareFile

SeaFile

Box

[
-
[
[
S
w

QO 0000 0HOOOOONNOOO0O0

Onehub

IS
IS
~
IS
'S
IS

pCloud

Overleaf

N
w
M)

OpenDrive

Fleep

QOO OOwWwO 11000

Slack

Hangouts

Flock

M)

Mega.nz

Egnyte

Nomadesk

Evernote

M)

Linkedin
Slideshare

IS

JumpShare

QO O000Q0 11GOOO OO OOO0

QO OO0QOO 1O HOWNOWNNOOOOO

OO0 O0OOO0OOWNOwWNOOOOO0

QOO0 0 1H1GOOOONNO 11OOO

OO0 OG

Table 2. Summary of the discovered vulnerabilities. Green circles indicate that the
service was not found to be vulnerable, blue lines indicate that an HTTP Referer was
leaked, but that this was not the direct link to the shared resource, while black lightning
bolts indicate that those services were found to be vulnerable to the attack described
in this paper. Yellow squares indicate that the service could not be tested because the
test was not applicable. Browsers that have green background supports the current
Referrer-Policy mentioned in [8] and the ones have red background supports an older
draft [3].

! Bookmark

> PDF

®DOC

4 Any file which can contain a link

® Fixed vulnerability in response to our vulnerability disclosure. Hence, these
services are, at the time of writing, no longer vulnerable.

On the Perils of Leaking Referrers in Online Collaboration Services

documents such as Resume, Book, Academic Journal, Presentation, Poster, etc.
All of these mentioned documents are created and rendered as a PDF. The
results of our experiments on Overleaf show that it leaks the referrer if the file
type is PDF (which is how all compiled LaTeX files are displayed on this service)
and the secret URL is opened in Microsoft Edge or iOS Safari.

From [3], it can be seen that Edge and Mobile Safari only support an older draft
of Referrer-Policy where there are four types as: "never", "always", "origin"
and "default". Further investigation showed that Overleaf sets its Referrer
Policy to "origin-when-cross-origin". However, this value is not supported
by the older draft and hence by Edge and Mobile Safari. The specific policy
that they use sends a full URL, stripped for use as referrer [8], when a same-
origin request is made but sends an ASCII serialized referrer when making cross-
origin requests. Therefore, Overleaf is not vulnerable to the attack scenario we
proposed for browsers which support current Referrer-Policy. However, Edge and
Mobile Safari do not understand Overleaf’s specific policy and this causes a secret
URL leak. After we informed Overleaf about their security issue, they changed
their policy as "no-referrer" and added rel="noreferrer noopener" to the
link tags. Edge and iOS Safari support rel="noreferrer" [2]. Therefore, this
technique fixed Overleaf’s security issue for the browsers in question.

4.3 Onehub

Onehub allows a user to create or upload files of types “document”, “presenta-
tion”, “spreadsheet”, and “drawing”. Among these file formats, only the drawing
type does not accept embedding a link in it. By applying our approach to One-
hub, we observed that it leaked referrers for all file formats that can contain a
clickable link on all of the browsers that we tested.

By using developer tools of Google Chrome, we found that Onehub does not set
the Referrer-Policy, which therefore reverts to "no-referrer-when-downgrade"
which is the default fallback policy if Referrer-Policy is not set according to the
W3C standards. This specific policy sends the full referrer from a TLS-protected
environment to another TLS-protected environment(potentially trustworthy) re-
gardless of the origin. Since our embedded URL is also a potentially trustworthy
URL, Onehub sent the referrer pointing to the secret URL. For this case, we con-
clude that the provider is not aware of this vulnerability since it is not considered
or mitigated in any way.

4.4 Box

Box is another collaboration service that offers “create” or “upload” operations
for “note”, “bookmark”, “word document”, “presentation”, “excel document”
etc. Bookmarks in Box are nothing but URLs that can also be shared via a secret

13

14 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

link. Box only leaked referrers for bookmark type on Chrome, Edge, Firefox and
Mac Safari. However, for iOS Safari and Android Chrome, it leaked the refer-
rer for “bookmarks”, “pdfs”, and “docs”. The reason that mobile browsers and
desktop browsers differ in behavior on Box is that Box uses Mozilla’s PDF.js li-
brary [5] to render content on desktop browsers, whereas it relies on native PDF
capabilities on mobile systems. PDF.js seems to remove referrers when generat-
ing requests whereas the mobile-native embedded PDF viewers do not. Doc file
type is also displayed with JavaScript on a desktop browser so their referrers
are not leaked either. Bookmarks are not rendered by Box. Thus, only book-
mark type leaks referrers for desktop browsers. While the leak of a bookmark
might not have severe security impacts, the leak nonetheless conforms to our
threat model. However, on mobile browsers “pdf” and “doc” type files are not
displayed by using JavaScript so the referrers are not trimmed by JavaScript.
Box embraces "no-referrer-when-downgrade" as Referrer-Policy. Without the
JavaScript trimming the referrer, the referrer gets leaked due to the unsafe na-
ture of this specific policy. Therefore, shared content on Box is vulnerable when
visited with iOS Safari and Android Chrome.

4.5 Linkedin Slideshare

Linkedin Slideshare is a platform to share presentations and infographics. Slideshare
allows users to upload any type of document. We tested our attack scenario by
uploading “.pdf” and “.doc” type files. Slideshare also does not set a Referrer
Policy and hence browsers fall back to enforcing "no-referrer-when-downgrade".
However, Slideshare renders all uploaded files as a jpeg on desktop browsers
regardless of the file type uploaded. Therefore, we could not click the embed-
ded links on Google Chrome, Microsoft Edge, Mozilla Firefox and Apple Safari.
On mobile browsers, on the other hand. the documents were natively rendered,
making the links clickable for mobile browsers. Our attack scenario succeeded
for both document types on i0S Safari and Android Chrome since the Referrer-
Policy that is used by Slideshare allows the referrer to be leaked.

4.6 Evernote

Evernote is essentially a note-taking application but it allows users to upload
several file types. By uploading multiple file types, we concluded that Evernote
only leaks the secret URL on iOS Safari for PDF file types. On four browsers
(Firefox, Chrome, Apple Safari, Android Chrome) Evernote directly downloads
the file and opens it with the system default PDF reader. Since this application
is separate from the Web browser, no referrer is included when a user clicks on
links in the document. We could not test Microsoft Edge since visiting Evernote
with this browser returns an error that the browser is not currently supported.
On i0S Safari, PDF's are displayed using a built-in PDF viewer. Since Evernote
does not set a Referrer Policy, the HTTP Referer is leaked on this browser.

On the Perils of Leaking Referrers in Online Collaboration Services

4.7 TFlock

Flock defines itself as a team communication and collaboration tool that offers
instant messaging, group chat, virtual meetings, productivity apps, etc. The
testing process for Flock was slightly different than other services. Different
types of files are sent through a chat between the first test user and second test
user. The recipient of the files then opened the file and clicked the embedded
link. On iOS Safari a referrer is leaked and visiting the leaked referrer gave the
original document. Thus, we concluded that Flock is vulnerable on iOS Safari.

4.8 Other Referrer Leaks

In this section, we describe the four services for which we observed full URLs
being leaked as HTTP Referers, but for which accessing the link contained in
the referrer did not provide access to the original resource. This shows that the
additional step of confirming the vulnerability is necessary, as the mere presence
of a referrer in an HTTP request is not a sufficient indicator of this kind of
vulnerability.

ShareFile is a file hosting provider which also leaks a suspicious referrer. However,
visiting the leaked URL does not give the resource file, it results in an error page
that says the file cannot be found. Since a supposed attacker would not be able
to open the resource file because the leaked referrer does not refer to the original
file, this case is considered not vulnerable.

Hangouts, Fleep, and Flock are instant messaging applications. From Table 2,
it can be observed that Hangouts leaks the referrer on three browsers, Flock
leaks on Edge, iOS Safari, Apple Safari and Firefox whereas Fleep only leaks in
Edge. The referrers leaked by the mentioned instant messaging services contained
suspicious links (ex: contains chat IDs) but visiting these referrers only displayed
the login page of the web service except Flock on iOS Safari. Since the referrer
is not enough to retrieve the original source, these cases are also not considered
vulnerable.

4.9 Responsible Disclosure

We informed the seven services about the issues that we found during our eval-
uation. We received feedback from Overleaf in which they said the issue is fixed.
In their communications, Overleaf stated that they added "rel=noreferrer
noopener" to the link tags. Edge supports "rel=noreferrer" [3], even though
it does not support the Referrer-Policy: "origin-when-cross-origin" header.
And the "noopener" is to prevent a separate issue for target _blank links [4].
From Onehub, we got an email claiming that they have filed an internal ticket
to address this issue during their next development cycle. Prior to our full eval-
uation, we also found Google Docs to be vulnerable. Google fixed the problem
via rel="noreferrer" and awarded us a bug bounty.

15

16 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

5 Countermeasures

To prevent the leaking of sensitive data through referrers, the problem can be
approached from both the user and the provider perspective. On the provider’s
side, a simple solution would be to trim path information in HT'TP Referers to
only display the hostname as Barth et al. [16] suggested. Alternatively, using
the "rel=noreferrer" relation for hyperlinks will strip referrers from HTTP
requests that result from following such links. This technique is already used by
some services (e.g., Google Docs).

If server and client-side cooperate correctly, then the W3C’s Referrer Policy can
provide thorough protection against leaking information through HTTP Refer-
ers. The current Candidate Recommendation [3] describes nine different policies
and their effects on HTTP Referer header values, as discussed in Section 2.3.
Six out of those nine policies would defend against the problems identified in
this work as they prevent the transmission of full URLs as referrers. While the
unsafe-url policy is explicitly unsafe, the default policy (no-referrer-when
-downgrade) is unfortunately not secure either. What complicates the use and
deployment of the Referrer Policy further is that it requires coordination be-
tween the server and the client side. That is, browsers need to implement the
necessary logic to understand and implement the Referrer Policy chosen by the
server. As our evaluation shows in consensus with online resources (e.g., [3]),
Referrer Policy support is unfortunately not thoroughly implemented in all pop-
ular web browsers. As such, until all web browsers implement full support for
the Referrer Policy, it seems prudent to combine this technique with the link
relation attribute discussed above. An alternative way to prevent referrer leaks
is deployed by Dropbox where all links in hosted documents are rewritten to go
through a sanitation step first. That is, when a link inside a document is clicked,
it is first redirected to a referrer sanitation URL 2 to handle the HTTP Referer
and then to the desired website.

On the client side, there are several solutions that can prevent referrer leaks. For
example, configuration options, such as network.http.sendRefererHeader, or
network.http.referer.defaultPolicy control whether referrer headers should
be included at all, or what default Referrer Policy should be applied. Clearly, dis-
abling all referrers would prevent the problems described in this paper, but might
be overly aggressive and entail unplanned consequences. Besides configuration
settings, browser extensions for Firefox [10] and Chrome [7,6] can conveniently
hide the referrer in HT'TP Requests. Furthermore, in a managed network setting,
such as in an enterprise network, protection techniques can also be applied in a
proxy server [23,22]. Finally, modern browsers offer private browsing modes.

For example, Firefox’ private browsing mode by default uses a more strin-
gent Referrer Policy (strict-origin-when-cross-origin) than the permissive

2 The endpoint for this sanitation has the representative name of https://www.
dropbox.com/referrer_cleansing_redirect

 https://www.dropbox.com/referrer_cleansing_redirect
 https://www.dropbox.com/referrer_cleansing_redirect

On the Perils of Leaking Referrers in Online Collaboration Services

no-referrer-when-downgrade policy used in regular mode. Hence, using Fire-
fox’ private browsing mode will prevent the attack scenario provided in this
paper. Unfortunately, private browsing modes for the other studied browsers do
not have such measure regarding Referrer Policy and will leak the referrers.

6 Discussion

In this section, we first discuss the limitations of our study. We then talk about
possible directions for future work.

6.1 Limitations

The services that do not have a free sign up option could not be included in this
paper since they could not be analyzed. This study is conducted on six different
web browsers, therefore the discovered vulnerabilities might be a lower bound
of the ones that exist in the wild. We believe that we covered the most used
browsers, but it is possible that other, less popular ones also do not implement
the Referrer Policy properly.

6.2 Future Work

As for future work, trying different browsers and other services that are not
investigated in this paper can be considered. Investigating whether this vulner-
ability is known by attackers and how this vulnerability is exploited, could be
another further step of this paper. To this end, we could embed links to several
websites into our files and follow the same methodology described in this paper.
Getting a connection back from any of the websites will imply that someone is
exploiting this vulnerability in the wild.

The files can be filled with fake sensitive information and we could examine the
use of this information by attackers. Financial data, identity information and
online account information are possible intriguing input to be included, similarly
to what was done by previous work [27,31].

7 Related Work

Several studies have been conducted on the subject of security of file sharing
via a link and referrer leaks. However, this is the first paper looking at security
threats caused by HTTP Referer leaks on online collaboration services.

A number of papers studied sharing resources via URLs. Ibosiola et al. [18]
studied the streaming cyberlocker ecosystem by exploring the streaming links to

17

18 Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

video contents. Lauinger et al. [25] and Jelveh et al. [21] investigated copyright
infringing content available via unique download links. Antoniades et al. studied
service architectures and content of one-click host services [13]. Moreover, Niki-
forakis et al. [30] analyzed referrer anonymizing services and showed that RASs
leak referrer data to advertisement companies. Studies on security and privacy
of online services have been conducted by Balduzzi et al. [15] and Wondracek et
al. [33], who investigated the impact of social networks on the privacy of users.
The Referrer Policy is presented and explained thoroughly by Dolnak in [17].
Lavrenos and Melon examined popular websites according to Alexa’s top one
million list and found that the Referrer-Policy is scarcely implemented such that
only 0.05% of HTTP responses, and 0.33% of HTTPS responses, contain some
form of a valid Referrer-Policy [26]. Andersdotter and Jenden-Urstad analyzed
the websites of Swedish municipalities investigating data protection measures
according to a number of criteria including the Referrer-Policy [11]. Argyriou
et al. [14]. mentioned a possible attack scenario similar to the one we described
where the attacker manipulates the embedded URI while investigating OAuth
2.0 Framework. In their study of CSRF attacks Li et al. stated that setting Re-
ferrer Policy to accordingly, one can prevent user agents (UA) to suppress the
referrer header in HT'TP requests that originate from HTTPS domains, prevent-
ing the UA from omitting this header by default [28]. Using HTTP Referers are
also analysed as a cloaking technique in [20,32,34].

8 Conclusion

In this paper, we analyzed 21 different online collaboration services with up-
loading different types of documents containing a link referring to our servers.
The results show that while most of the providers did not leak referrers, the
ones that do have a high customer profile and are widely-used. We found seven
services that are vulnerable to referrer leaks, and that that referrer leaks can
be due to improper use of the Referrer Policy by online services, as well as to
limited support to such policy offered by web browsers. We then analyzed the
mitigations adopted by online services to prevent referrer leaks.

Acknowledgements

This work was partially funded by the Office of Naval Research under grants
N00014-17-1-2541 and N00014-17-1-2011. We would like to thank the anonymous
reviewers for their insightful feedback which helped us improve the final version
of our paper.

On the Perils of Leaking Referrers in Online Collaboration Services

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Alexa top lists. https://www.alexa.com/topsites/category/Top/Computers/

Internet/On_the_Web/Web_Applications/Storage. Accessed: 2019-02-09.

Can i use support tables for html5, css3, etc.

caniuse.com rel-noreferrer. https://caniuse.com/#feat=rel-noreferrer. Accessed:
2019-02-09.

mathiasbynens.github.io rel-noopener. https://mathiasbynens.github.io/
rel-noopener/. Accessed: 2019-02-09.

PDF.js. https://mozilla.github.io/pdf.js/. Accessed: 2019-02-09.

Referer control. https://chrome.google.com/webstore/detail /referer-control/
hnkefpeejkafeihlgbojoidoihckeiin, Accessed: 2019-02-09.
Scriptsafe. https://chrome.google.com/webstore/detail /scriptsafe/

oiighmnaadbkfbmpbfijlflahbdbdgdf. Accessed: 2019-02-09.

. W3C Candidate Recommendation referrer policy. https://www.w3.org/TR/

referrer-policy /. Accessed: 2019-02-09.

WHATWG link type. https://html.spec.whatwg.org/multipage/links.html#
link-type-noreferrer. Accessed: 2019-02-09.

Referer control by keepa.com. https://addons.mozilla.org/en-US /firefox/addon/
referercontrol/, Mar 2017. Accessed: 2019-02-09.

A. Andersdotter and A. Jensen-Urstad. Evaluating websites and their adherence
to data protection principles: Tools and experiences. Privacy and Identity Manage-
ment. Facing up to Next Steps IFIP Advances in Information and Communication
Technology, page 39-51, 2016.

I. Antonellis, H. Garcia-Molina, and J. Karim. Tagging with Queries: How
and Why? In ACM International Conference on Web Search and Data Mining
(WSDM), page 4, Barcelona, Spain, Feb. 2009.

D. Antoniades, E. P. Markatos, and C. Dovrolis. One-click hosting services: a file-
sharing hideout. In ACM SIGCOMM Internet measurement conference (IMC),
page 223, Chicago, Illinois, USA, 2009. ACM Press.

M. Argyriou, N. Dragoni, and A. Spognardi. Security flows in oauth 2.0 framework:
A case study. Lecture Notes in Computer Science Computer Safety, Reliability, and
Security, page 396—406, 2017.

M. Balduzzi, C. Platzer, T. Holz, E. Kirda, D. Balzarotti, and C. Kruegel. Abusing
Social Networks for Automated User Profiling. In Recent Advances in Intrusion
Detection (RAID), volume 6307, pages 422441, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site request
forgery. In ACM conference on Computer and communications security (CCS),
page 75, Alexandria, Virginia, USA, 2008. ACM Press.

I. Dolnak. Implementation of referrer policy in order to control http referer header
privacy. 2017 15th International Conference on Emerging eLearning Technologies
and Applications (ICETA), 2017.

D. Ibosiola, B. Steer, A. Garcia-Recuero, G. Stringhini, S. Uhlig, and G. Tyson.
Movie Pirates of the Caribbean: Exploring Illegal Streaming Cyberlockers. In
International AAAI Conference on Web and Social Media (ICWSM), page 10,
Stanford, CA, 2018.

IETF Network Working Group. Hypertext transfer protocol — http/1.1. https:
//tools.ietf.org/html/rfc26164#page-140.

19

https://www.alexa.com/topsites/category/Top/Computers/Internet/On_the_Web/Web_Applications/Storage
https://www.alexa.com/topsites/category/Top/Computers/Internet/On_the_Web/Web_Applications/Storage
https://caniuse.com/#feat=rel-noreferrer
https://mathiasbynens.github.io/rel-noopener/
https://mathiasbynens.github.io/rel-noopener/
https://mozilla.github.io/pdf.js/
https://chrome.google.com/webstore/detail/referer-control/hnkcfpcejkafcihlgbojoidoihckciin
https://chrome.google.com/webstore/detail/referer-control/hnkcfpcejkafcihlgbojoidoihckciin
https://chrome.google.com/webstore/detail/scriptsafe/oiigbmnaadbkfbmpbfijlflahbdbdgdf
https://chrome.google.com/webstore/detail/scriptsafe/oiigbmnaadbkfbmpbfijlflahbdbdgdf
https://www.w3.org/TR/referrer-policy/
https://www.w3.org/TR/referrer-policy/
https://html.spec.whatwg.org/multipage/links.html#link-type-noreferrer
https://html.spec.whatwg.org/multipage/links.html#link-type-noreferrer
https://addons.mozilla.org/en-US/firefox/addon/referercontrol/
https://addons.mozilla.org/en-US/firefox/addon/referercontrol/
https://tools.ietf.org/html/rfc2616#page-140
https://tools.ietf.org/html/rfc2616#page-140

20

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Beliz Kaleli, Manuel Egele, and Gianluca Stringhini

L. Invernizzi, K. Thomas, A. Kapravelos, O. Comanescu, J.-M. Picod, and
E. Bursztein. Cloak of visibility: Detecting when machines browse a different web.
2016 IEEE Symposium on Security and Privacy (SP), 2016.

Z. Jelveh and K. Ross. Profiting from filesharing: A measurement study of eco-
nomic incentives in cyberlockers. In IEEFE International Conference on Peer-to-
Peer Computing (P2P), pages 57—62, Tarragona, Spain, Sept. 2012. IEEE.

B. Krishnamurthy and C. E. Wills. Cat and mouse: content delivery tradeoffs in
web access. In International conference on World Wide Web (WWW), page 337,
Edinburgh, Scotland, 2006. ACM Press.

B. Krishnamurthy and C. E. Wills. Generating a privacy footprint on the internet.
In ACM SIGCOMM on Internet measurement (IMC), page 65, Rio de Janeriro,
Brazil, 2006. ACM Press.

N. Kushmerick, J. Mckee, and F. Toolan. Towards zero-input personalization:
Referrer-based page prediction. Lecture Notes in Computer Science Adaptive Hy-
permedia and Adaptive Web-Based Systems, page 133—143, 2000.

T. Lauinger, K. Onarlioglu, A. Chaabane, E. Kirda, W. Robertson, and M. A. Kaa-
far. Holiday Pictures or Blockbuster Movies? Insights into Copyright Infringement
in User Uploads to One-Click File Hosters. In Research in Attacks, Intrusions, and
Defenses (RAID), volume 8145, pages 369-389, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

A. Lavrenovs and F. J. R. Melon. Http security headers analysis of top one million
websites. 2018 10th International Conference on Cyber Conflict (CyCon), 2018.
M. Lazarov, J. Onaolapo, and G. Stringhini. Honey Sheets: What Happens To
Leaked Google Spreadsheets? In Proceedings of the 9th USENIX Conference on
Cyber Security Experimentation and Test (CSET’16), page 8, Austin, TX, 2016.
W. Li, C. J. Mitchell, and T. Chen. Mitigating csrf attacks on oauth 2.0 systems.
2018 16th Annual Conference on Privacy, Security and Trust (PST), 2018.

N. Nikiforakis, M. Balduzzi, S. V. Acker, W. Joosen, and D. Balzarotti. Exposing
the Lack of Privacy in File Hosting Services. In USENIX conference on Large-scale
exploits and emergent threats, page 8, Mar. 2011.

N. Nikiforakis, S. Van Acker, F. Piessens, and W. Joosen. Exploring the Ecosys-
tem of Referrer-Anonymizing Services. In Proceedings of the 12th international
conference on Privacy Enhancing Technologies (PETS’12), volume 7384, pages
259-278, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

J. Onaolapo, M. Lazarov, and G. Stringhini. Master of Sheets: A Tale of Com-
promised Cloud Documents. In Proceedings of the Workshop on Attackers and
Cyber-Crime Operations (WACCO), Goteborg, Sweden, 2019.

D. Y. Wang, S. Savage, and G. M. Voelker. Cloak and dagger. Proceedings of the
18th ACM conference on Computer and communications security - CCS 11, 2011.
G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A Practical Attack to De-
anonymize Social Network Users. In IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 2010. IEEE.

B. Wu and B. D. Davison. Detecting semantic cloaking on the web. Proceedings
of the 15th international conference on World Wide Web - WWW 06, 2006.

G. Zheng and S. Peltsverger. Web analytics overview. Encyclopedia of Information
Science and Technology, Third Edition, page T674-7683.

	On the Perils of Leaking Referrers in Online Collaboration Services

