
PraxiPaaS: A Decomposable Machine Learning
System for Efficient Container Package Discovery

Zongshun Zhang*, Rohan Kumar*, Jason Li*, Lisa Korver*,
Anthony Byrne**, Gianluca Stringhini*, Ibrahim Matta*, Ayse Coskun*

Boston University*, Red Hat, Inc.**

Abstract—Due to the increasing complexity of cloud architec-
tures, automatically tracking and inspecting container packages in
Platform-as-a-Service (PaaS) clusters are challenging tasks. This
introspection capability, however, is critical to identify vulnerable
packages and compile an accurate Software Bill of Materials
(SBOM). Motivated by introspection frameworks focusing on
virtual machine (VM) settings and ML methods for software
discovery, we design PraxiPaaS as a framework to inspect PaaS
container images with a highly scalable ML inference pipeline
by scanning file changes during package installations. Our ML
pipeline includes a structured collection of word2vec encoders
and a corresponding structured ML model to achieve short
incremental training time for incorporating additional packages
while maintaining a high F1-score in generating the SBOM. Our
evaluation shows that our structured ML pipeline provides an
exponential drop in incremental training time from 2.8 hours
to 8.6s with 32 CPU cores, while maintaining an F1-score of
0.82, compared to the traditional monolithic model design. We
deploy a prototype of PraxiPaaS in the New England Research
Cloud (NERC) OpenShift cluster and evaluate the inference time
comparing structured versus monolithic model design1.

Index Terms—cloud computing, machine learning, model
decomposition, PaaS, software discovery, SBOM

I. INTRODUCTION

Platform-as-a-Service (PaaS) clusters, such as Kubernetes
and OpenShift, have gained significant attention owing to the
widespread adoption of microservices [1], [2]. However, as
more users pull container images into a cluster, container
image management has become increasingly labor-intensive and
time-consuming. Developers often do not build their software
stacks from scratch, resulting in open-source software projects
that rely on many other existing projects [3]. Furthermore,
software components may be introduced, modified, or removed
at different frequencies. Such dynamic behavior adds substantial
operational overhead when keeping track of vulnerabilities,
performance, or compliance for software stacks. Cluster admin-
istrators may wish to monitor the Software Bill of Materials
(SBOM) [3], [4] of service containers so that they can promptly
react to “anomalies”, ideally without depending on information
provided by tenants. For example, especially in academic
clusters such as the New England Research Cloud (NERC) [5],
outdated or vulnerable packages might be present because
tenants focus more on efficiency or quick delivery of their
implementation due to the pioneering nature of their work.

1The work has been partially funded by the Boston University Red Hat
Collaboratory

To ensure that only vulnerability-free and compliant packages
are running on a cluster and also to provide a container package
log to help analyze potential anomalies or failures in the
future, a naı̈ve method is to maintain a list of all dependencies.
However, such a list is fragile and difficult to maintain due to
daily changes in software. Thus, automating such steps and
developing a framework to track and log software packages in
PaaS containers have become urgent needs as today’s software
projects scale up quickly [6].

Some software discovery methods create predefined rules
with expert inputs. For example, when the python package
“fiona” got upgraded from version “1.9.4” to “1.9.5”, it
updated its library “libcurl-750590ea.so.4.7.0” to “libcurl-fiona-
4ac9f96f.so.4.8.0” in order to fix a critical vulnerability in
“libcurl” [7]. Cluster administrators can create a specific rule
to distinguish versions of “fiona”, and alert users to update the
package or proactively upgrade the package for the users. Such
alerts can be particularly valuable for packages like “fiona”,
mainly used by data scientists working with geographic data,
as users may not prioritize patching security vulnerabilities.
However, maintaining the rule generation pipeline is laborious
and fragile. Some other tools query the package management
installation database, e.g., dpkg [8], but these methods have
shortcomings. Developers might not use package managers to
install packages, e.g., when building with CMake or from a
repository. Package managers are also vulnerable to attacks,
e.g., man-in-the-middle attacks [9], which can compromise the
integrity of installation database records.

Instead of relying on predefined rules with expert input
or package installation DBs, recent efforts [10]–[12] use ML
techniques to discover packages using fingerprints extracted
from file system changes during installation, i.e., discovery
by example [10]. Notably, these earlier methods raise training
efficiency challenges, especially when incrementally adding
new package (labels), due to their monolithic ML model
design. In DeltaSherlock [11], the authors consider traditional
word2vec [13] methods, which, when introducing new labels,
require retraining the full word2vec encoder and model. When
training an XGBoost model to discover 3, 000 packages using
32 CPU cores, DeltaSherlock requires approximately 2.56 hours
of training time ($6.26 using AWS c6a.16xlarge instance in
Fig. 2). This extremely long training time is unacceptable
for popular (albeit possibly vulnerable) packages, as a large
number of users may have downloaded them during that time.
For example, considering only PyPI packages, the 8, 000th

8 16 18 25 37 167 188
Number of Package for Discovery after Incremental Training

0.0

0.5

1.0
F

1
S

co
re

no data replay

with data replay

Fig. 1: During incremental training rounds (shown by the x-
axis when adding new labels), Praxi requires model calibration
(data replay) to maintain F1-score.

most downloaded package got downloaded 41, 167 times just
in Jan. 2024 [14]. Furthermore, each package can have tens of
versions and can get updated daily in a continuous integration
and continuous delivery (CI/CD) pipeline [15].

Generally, the training cost of a monolithic model design
increases quickly. Similar scalability issues are also observed
in Praxi [12], which builds ensemble models using Vowpal
Wabbit [16] for incremental training. For single package
prediction tasks, Praxi proactively builds surplus classifiers
for future package labels. When incrementally adding a new
label, they fit an unassigned classifier to output high confidence
for the new class and others to output low confidence. However,
training unassigned classifiers wastes computation resources,
and it requires retraining the complete model and adding new
classifiers when the number of labels is above the number
of classifiers. For multi-package prediction tasks, Praxi fits
new classifiers for new labels, which requires full model
retraining to calibrate classifiers [17] introduced in different
incremental training rounds. In Fig. 1, we show the F1-score for
predicting multiple packages from each installation fingerprint
after incrementally adding packages for discovery in Praxi.
Without model calibration (no data replay), the F1-score drops
quickly. And with historical data replay, the F1-score can be
maintained. Essentially, the training paradigm of Praxi is close
to that of a monolithic model.

In this paper, we present PraxiPaaS, a framework for
container package discovery based on package installation
changes using a decomposable structured ML model design.
Similar to Praxi and DeltaSherlock, we leverage the file changes
during package installations as installation fingerprints and feed
this information into our structured word2vec ML inference
pipeline to predict the package(s) installed. In contrast to
Praxi and DeltaSherlock, we solve key challenges in practical
deployment and model scalability by loading installation
fingerprints from container layers and introducing a structured
word2vec ML method, motivated by Mixture of Expert ML
systems [18], [19], to achieve high F1-score while mitigating
the scalability drawbacks in the PaaS setting. Our structured
model decomposes the traditional monolithic model along
package labels. Each submodel in the structured model focuses
on a subset of similar packages from the training dataset
measured by pairwise cosine similarity in tokenized path names
of files changed during installations.

60 120 300 3000
DeltaSherlock

Number of Labels per Submodel

0

2

4

6

R
es

ou
rc

e
C

os
t

($
)

0.045 0.082 0.187

2.128

0.131 0.241
0.549

6.262

NERC VM ($)

AWS EC2 ($)

Fig. 2: A structured model is more cost-efficient than a mono-
lithic model for SBOM generation as it enables incremental
training. The costs are based on training time using a 32 CPU
cores VM in NERC or a c6a.16xlarge instance in AWS.

Model decomposition allows for incrementally training and
adding submodels, which minimizes redundant training and
inference costs for similar packages, thereby overcoming the
scalability issue of previous works. In Fig. 2, with 3, 000
packages, training costs per submodel drop exponentially as the
number of package labels per submodel decreases. We evaluate
training time in Sec. IV-C and inference time in Sec. IV-F.

Meanwhile, a structured model also introduces false positives.
To maintain high precision and F1-score against previous works,
PraxiPaaS proposes a package similarity-based submodeling
approach (Submodel Routing). For example, the Python package
“vine==5.0.0” dropped support for Python 3.4 and earlier, and
removed the “backports” module compared to “vine==1.3.0”.
Since most file path names remain unchanged, naı̈vely assigning
the two versions to different submodels can make it hard
to classify the versions. Neither submodel can realize that
the “backports” module can distinguish the two versions.
Furthermore, the effort to train such submodels is redundant
and wasted. Instead, retraining a submodel to add “vine==5.0.0”
alongside with other similar packages ensures the model
efficiently learns the differences in the “backports” module. In
Sec. III-B, we detail our package similarity analysis and show
that our structured model gives high precision after tuning a
similarity threshold for submodel building.

Our main contributions are summarized as follows:

1) We design PraxiPaaS, a cloud operation pipeline to
discover container software for vulnerability detection in
PaaS clusters based on file changes during installations.

2) We design a highly scalable word2vec-based decompos-
able structured ML inference pipeline with our cosine
similarity-based Submodel Routing. It adapts Mixture of
Experts modeling [18], [19] to save resource cost.

3) We formulate an optimization problem to trade F1-score
and training time, given input dimensions, labels per
submodel, samples per label, package similarity threshold,
and a filter for duplicate tokens among packages.

4) We deploy a prototype of PraxiPaaS in the NERC
OpenShift cluster to generate container SBOMs using
Red Hat OpenShift AI Pipelines [20] and Red Hat
Advanced Cluster Management (ACM) [21].

Combining model decomposition and Submodel Routing,
our structured model is more scalable than monolithic models.
PraxiPaaS provides 8.6 seconds per incremental training step
and 0.82 F1-score. Meanwhile, model retraining takes 10, 052
(110, 681) seconds in DeltaSherlock (Praxi). By invoking a
subset of submodels during inference, PraxiPaaS achieves
0.03s model inference time versus 14.63s for DeltaSherlock
(192 images in a batch). We believe our contributions in
building a decomposable ML system for the cloud will inspire
other efficient, accurate, and scalable implementations of ML
pipelines in the cloud.

The paper’s organization is as follows. Section II presents
the background and related work. We then introduce PraxiPaaS
design in Section III. In Section IV, we evaluate the system
scalability with respect to F1-score, training and inference time.
Section V concludes the paper with a summary of contributions,
possible extensions, and future work.

II. RELATED WORK

We review previous works related to software discovery
methods and frameworks, and compare them with our proposed
system. We also discuss highly scalable ML models and system
designs that motivate our ML-based framework.

A. Package Discovery Methods

Previous works propose several package discovery methods.
Rule-based methods [22], [23] generate rules to match package
with expert inputs, e.g., checking the existence of dependent
libraries or executables with hashes, which is not scalable
given continuous integration and continuous delivery (CI/CD)
practices with frequent software updates. Other tools [8],
[24]–[28] leverage installation DBs of package management
systems, e.g., dpkg. However, they miss cases when users
install packages with CMake or from a remote repository.

Praxi [12] and DeltaSherlock [10], [11] use ML models
to automatically predict the labels of the packages installed,
leveraging file system changes during installations as input
features. However, Praxi, when predicting multiple packages
from each installation fingerprint using Cost-Sensitive One
Against All (CSOAA) reduction in Vowpal Wabbit, suffers from
un-calibrated classifiers for each label after incremental training.
The classifiers for new labels introduced during incremental
training do not train with the historical data. Remedies include
retraining all classifiers by replaying historical data or classifier
re-weighting methods [17], [29], [30]. This drawback leads
to limited scalability, and the training paradigm is more
akin to a monolithic model design similar to DeltaSherlock,
requiring complete model retraining. We instead propose to
build independent submodels for different package labels so
that we only calibrate classifiers inside each submodel, e.g.,
an ensemble model, and avoid calibration across submodels.

B. Package Discovery Frameworks

Orthogonal to package discovery methods, prior works also
design practical frameworks to enable the deployment of soft-
ware discovery services in large-scale clusters. Some works let

users submitting images to an introspection service [31], [32] or
the service proactively inspects a snapshot of the VM’s remote
disks [33] harnessing diskless provisioning methods [34], [35].
Our work, instead, is an automated introspection pipeline for
containers in PaaS. PraxiPaaS automatically identifies container
images used in the cluster through cluster observability, i.e.,
Red Hat Advance Cluster Management. Then, we pull image
layers and generate the SBOM.

C. High Scalability Word2Vec ML Pipelines

Text summation methods [13], e.g., word2vec [36], map
split texts, i.e., tokens, to a numeric space for measuring
the distances between samples and classifications. We apply
this idea to predict packages installed by measuring distances
between an observed package installation fingerprint and
packages in the training data. Previous work [11] uses a similar
method. However, their method is not scalable when new
features and new packages are added to the software discovery
task, as they have to retrain the embedding mapping dictionary
in word2vec and the inference model from scratch. To mitigate
such overhead, we design a structured word2vec encoder and
classifier method to enable incrementally adding or retraining
individual submodels dedicated to discovering new packages.

D. High Scalability ML System Designs

Previous works focus on reducing redundant computa-
tions for ML models to enable large-scale training and
inference while minimizing monetary resource cost. Model
distillation [37], Deep Learning (DL) model hidden variable
compression [38]–[40], and weights pruning [41]–[43] and
skipping [44]–[47] are popular DL system adaptation methods
for reducing memory, storage, and computation overheads.
Within the domain of building a structured model, with
constituent submodels focusing on sub-tasks, SplitNet [44]
and other Mixture of Experts models [18], [19] split labels
semantically among multiple DL models. For example, if we
are already confident that a photo includes an animal, only the
classifiers for different animals should be used downstream. We
apply a similar concept and analysis based on the distribution
of our installation fingerprint data.

We design a structured model with a collection of XGBoost
submodels, where each submodel handles a unique subset
of packages with high pairwise cosine similarities between
installation fingerprints. In contrast to previous work, we
partition labels and incrementally add packages for SBOM
generation while preserving high scalability by leveraging the
installation fingerprint data distribution.

Overall, we consider the existing spectrum of container
package inspection methods and frameworks to be either not
scalable to track rapidly growing software project dependencies
or inefficient with container package discovery. So we develop
PraxiPaaS, our container package discovery method using ML
for PaaS clusters, motivated by previous word2vec methods
and scalable ML system designs.

Persistent
Volume

Installation
fingerprints
generation
from image

layers

Tokenization
and

Structured
Word2vec

Structured
Model For
Prediction

Openshift AI Pipelines Runtime

Image
Registry

Persistent
Volume

Observability:
Containers

Images

Pull images
periodically

Prediction
Bucket

Model
Bucket

1 2 3

Fig. 3: System Architecture of PraxiPaaS: It employs three
steps using OpenShift AI Pipelines: (1) Pull container images
based on cluster observability (Red Hat Advance Cluster
Management) from an image registry (Docker Hub) and read
file changes in image layers. (2) Tokenize the pathnames of
files changed. (3) A structured model with XGBoost submodels
tailored to package token distribution infers packages installed.

III. PraxiPaaS

PraxiPaaS is a container package discovery framework for
PaaS clusters using ML techniques. As shown in Fig. 3, it
has three components prototyped with Red Hat OpenShift
AI Pipelines in the New England Research Cloud (NERC)
cluster. The OpenShift AI Pipelines runtime provisions a
pod for each component and several persistent volumes for
communications between components. The first component
retrieves the container image of interest from Docker Hub by
reading the container images used in NERC from Red Hat
Advanced Cluster Management (Prometheus & Grafana). It
also loads the file change log of each container layer as the
fingerprint of the package(s) installed. The second component
uses a word2vec ML pipeline to tokenize the fingerprints and
vectorizes the tokens of each sample using the token-frequency
table encoding, popular in information extraction tasks [48].
The third one downloads a pre-trained structured model using
XGBoost submodels from a storage, e.g., AWS S3, to predict
the packages installed and writes the predictions to another
storage unit. In the rest of this section, we discuss our design
decisions and insights to configure the ML inference pipeline.

A. PraxiPaaS Architecture

We discuss installation logs retrieval in PaaS clusters
(Sec. III-A1), structured word2vec encoder design (Sec. III-A2),
and structured model design (Sec. III-A3), as outlined in Fig. 3.

1) File Changes Logs Extraction: PraxiPaaS leverages file
changes during package installations to discover packages.
In PaaS clusters, we monitor new container launches through
various k8s, OpenShift, and RH Advanced Cluster Management
metrics for a target namespace, e.g., kube pod container info.
Then we pull the container images from Docker Hub or other
registries and read file changes by layers [49].

Similar to Praxi’s changeset generation [12], we generate a
fingerprint for each package installation using path names of
modified files in each container layer. In this way, we never
execute containers, which reduces resource demand and does
not expose container security vulnerabilities during inspection.

Tokens Packages
“ init .” “res” “Tiff” boto3 pillow

13 45 0 1 0
3 0 6 0 1

TABLE I: A partial token-frequency table from the training
dataset with two sample rows after vectorization: The first
sample has tokens extracted from boto3 installations, and
the second has pillow. “ init .” can be found in many
Python package installations, which can lead to false positive
predictions by submodels. “Tiff” and “res” are the more
distinguishable features to classify boto3 and pillow.

2) Structured Word2Vec: To achieve optimal precision, F1-
score and training efficiency, we design a structured word2vec
embedding method. We tokenize the pathnames in each
container image layer by adapting Columbus [50] used in
Praxi’s tagset generation [12]. Other alternative encoding
methods [13], [36], [51] are also applicable. Then, we build a
token-frequency table (Table I) for tokens and package labels.
Each row represents a layer, where each entry shows the count
of a token or the one-hot-encoding of a label.

Our structured word2vec ML pipeline includes many
word2vec encoders focusing on distinct sets of similar packages
and installation fingerprints. Package similarity is defined as
cosine similarity using token-frequency vectors of different
packages in the trainset. Then, as in Fig. 4a, we cluster similar
packages above a similarity threshold and assign one or more
clusters to each encoder (Submodel Routing). Next, we generate
a feature embedding dictionary for each word2vec encoder.
This method allows adding packages to existing or new clusters
incrementally. Furthermore, different assignments of clusters,
i.e. combining clusters to one encoder, can balance submodel
training / inference budget and precision / F1-score target.

Clustering similar packages is necessary to enable high
precision and F1-score for our structured model, where we pair
each encoder with a submodel to make predictions (Sec. III-A3).
However, duplicate tokens across various fingerprints could
lead to false positives from different submodels, unable
to distinguish unique packages from duplicate tokens, e.g.,
“vine==5.0.0” vs. “vine==1.3.0” mentioned in the introduction.
We detail this challenge in Sec. III-B.

3) Structured Model based on Data Distribution: We build a
structured model comprising multiple XGBoost [52] submodels
to predict installed packages. We chose XGBoost for its high
F1-score and explainability for our task. As shown in Fig. 4a,
for each word2vec encoder, we train an XGBoost submodel
for similar package labels, using corresponding tokens and
samples. During inference, as shown in Fig. 4b, sample tokens
are processed by a subset of encoders, with each encoder
transforming recognized tokens into feature embeddings within
its output space. Corresponding XGBoost submodels then infer
package labels based on the embeddings. Next, we union
outputs from all submodels as the final predictions.

Our structured model also enables invoking a subset of
submodels during inference and saves resource costs. For

(a) Submodel Routing (b) Inference pipeline

Fig. 4: Fig. 4a illustrates how we cluster package labels with
pairwise cosine similarity of package tokens and then assign
clusters of labels to submodels. In Fig. 4b, each encoder maps
its known tokens from a sample to feature embeddings, and
the corresponding XGBoost submodel makes inferences.

3 1 6 2 9 12
Number of Packages

0

25

50

75

%
 o

f t
ok

en
s

85.77

4.84 3.98 1.97 1.09 0.48

Fig. 5: % of duplicate tokens present in different numbers of
package file changes: We focus on the top 6 most duplicated
tokens. Most tokens duplicate in three packages, as we include
three versions of each package in the dataset. Only less than
5% of tokens can uniquely identify some packages.

example, considering “fiona==1.9.5” and “vine==5.0.0” with
low cosine similarity, the same tokens are from common
Python package file pathnames, e.g., “cache”, “METADATA”,
and “WHEEL” which the classifier would likely assign zero
importance during training. Thus, with the encoder mapping
table, we can identify tokens with corresponding submodel
features with non-zero importance. During inference, we check
if any important tokens are present in the installation fingerprint
and invoke the corresponding word2vec encoder and submodel.

By focusing on similar packages, each submodel pays
more attention to distinctive features and minimizes tree-
splitting operations. The following section details the model
decomposition, similarity analysis, and performance.

B. Structured Model Motivated by Data Distribution

This section analyzes the training time efficiency and high F1-
score of structured XGBoost models given XGBoost internals
and installation fingerprint distribution. Then, we formulate an
optimization problem balancing training time and F1-score and
use an iterative solution to configure our structured model.

Fig. 6: The volume of grey blocks indicates the splitting
operation to train XGBoost models in the structured model,
given the number of labels (vertical axis), input dimensions
(horizontal axis), and number of samples (depth axis). The
upper left single grey block represents one model, and each of
the lower figures includes two submodels. From lower left to
right, we tune τ and lower λ to minimize duplicate features
between submodels, which minimizes false positives.

1) Training Times: The tree split finding operations in the
XGBoost greedy exact search [52]2 iterate through each input
feature (d) of each sample (n) of each label (t) to identify the
optimal split [52]. Thus, given constant t

′
trees per label and

boosting trees with height 1, splitting operations (Ops(0)), as
shown by the volume of grey brick in the top left of Fig. 6, is

Ops(0) = (n log n+ n)d t t
′

2Note that the alternative approximate greedy algorithm focusing on
bucketing samples to reduce split finding operations in XGBoost [52] is
orthogonal to our discussion.

0.6 0.7 0.8 0.9 0.98

Cosine Similarity Threshold τ

0.7

0.8

M
od

el
M

et
ri

cs

Metric

F1-Score

Precision

5

10

15
%

% of Shared Features

Fig. 7: Prediction metric (left y-axis) and duplicate features in
more than one submodel (right y-axis) vs Cosine Similarity
threshold to cluster package labels. Setting τ too high leads to
too few labels in a cluster, which would lead to more duplcate
features among submodels. While setting τ too low, assigning
all labels into one cluster, leads to high prediction metrics but
also long incremental training time for the large clusters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sub-Models

0

2500

5000
T

ra
in

in
g

T
im

e
(s

)
Training Time

τ = 0.6

τ = 0.7

0

1000

2000

N
um

b
er

of
L

ab
el

s

Num Labels

τ = 0.6

τ = 0.7

Fig. 8: Training time of each submodel and the number of
package labels assigned to submodels in an illustrative example.
With higher τ , some clusters include the majority of package
labels, which leads to long training time for certain submodels
and diminishes the benefit of model decomposition.

Then, decomposing the model provides an exponential drop in
training time. For example, halving the number of labels per
submodel (t) also halves samples to train each submodel (n)
and reduces the input dimensions of each submodel, which
drops the split-finding operations of all submodels quadratically.
In the lower left of Fig. 6, the total operations (Ops) becomes

Ops = (
n

2
log

n

2
+

n

2
)d0

t

2
t
′
+ (

n

2
log

n

2
+

n

2
)d1

t

2
t
′
,

where d0 and d1 are input dimensions for each submodel which
depend on the number of duplicate features. Thus,

1

4
(n log

n

2
+ n)d t t

′ ≤ Ops <
1

2
Ops(0)

d ≤ d0 + d1 ≤ 2d, d0 > 0, d1 > 0.

2) F1 Scores: We now analyze whether the structured
model design can preserve accuracy compared to the traditional
monolithic model design used in DeltaSherlock [11]. For our
training dataset in Fig. 5, about 95.16% (100% − 4.84%) of
tokens are present in installation fingerprints of more than
one package. This distribution implies if we randomly assign
packages to submodels, there will be many duplicate input
features among submodels (lower left of Fig. 6). During
inference, if any of the features are assigned a higher weight
for prediction, the structured model would suffer from false
positive software discoveries and low precision. To evaluate
the relationship between precision and the number of duplicate
features, we train a structured model using a training dataset
of 1, 000 packages, with 3 versions and 24 fingerprints per
version. Then we test the model performance using a test dataset
incorporating 47, 274 combinations of 2 different packages with
varied versions. As shown in Fig. 7, with 16% of the features
duplicated in more than one submodel, the structured model’s
precision drops to about 0.68, but with less than 5% duplicate
features, the precision improves to 0.85. With more features
duplicated in more than one submodel, the structured model
tends to have worse prediction results. Next, we introduce our
remedies to preserve model precision.

3) Structured Model Improvements: As shown in the lower
right of Fig. 6, we propose two methods to minimize duplicate
features. Submodel Routing optimizes package similarity (based
on cosine similarity of package installation fingerprints or

considering package versions as a similarity heuristic) and
filter duplicate tokens among package installation fingerprints.

Cosine Similarity based Submodel Routing. Assigning sim-
ilar packages to different submodels results in more duplicate
features, negatively affecting structured model precision. Thus,
following Sec. III-A2, we design a package similarity threshold
(τ ∈ [0, 1]) to cluster similar packages and distribute these
clusters randomly across submodels. This approach allows
incrementally adding new packages to existing clusters and
retraining the particular submodel or forming new clusters
and submodels. However, tuning τ is non-trivial. We train a
structured model with 1, 000 packages with 3 versions per
package and 24 installation fingerprints per package/version.
Then, we evaluate the model performance given different τ with
a test dataset, including 47, 274 combinations of 2 packages
with different versions. A high τ creates too many clusters
and causes low precision caused by many duplicate features
after random assignment to submodels (τ = 0.9 in Fig. 7).
A low τ clusters most packages into a few clusters, which
diminishes the training time benefit of the structured model
compared to existing work with the monolithic model. In Fig. 8,
setting τ = 0.6 assigns the majority of the labels (2, 265 out
of 3, 000) to one submodel and the training time for that
submodel is 5, 924.64s (2, 544.9 times that of the average of
other submodels). This skewness issue causes the structured
model to suffer from frequently retraining the large submodel
when introducing new labels.

Package Version based Submodel Routing. We relax τ
given the longest submodel training time satisfies a service level
objective. Such tuning steps require extensive experimentation,
which wastes computation resources. Instead, we propose
clustering versions of each package as a heuristic solution,
which balances the number of clusters and cluster sizes as a
regularizer. This clustering method works well, as shown in
our evaluation (Sec. IV). Versions with minor changes tend
to have high cosine similarity. Versions of one package with
significant changes still tend to have low cosine similarity with
other packages, so false positives remain minimized.

Filter for Duplicate Tokens. We apply feature selection to
tokens during structured model initialization and new submodel
additions to minimize duplicate features across submodels,
satisfying a service level objective of prediction precision
(ASLO). We decrease a threshold (λ ∈ [0, ∥Packages∥]) for
the maximum number of occurrences of duplicate tokens among
observed packages to reduce false positives for previously
trained package labels. However, lower λ removes more tokens,
which can cause low recalls, i.e., the model always has low
confidence for some labels. Also, we might eventually need to
retrain the existing submodels with filtered package fingerprints
for optimal precision. Thus, tuning this feature selection tool
is non-trivial, and it improves the most precision with minimal
training overhead when initializing the structured model.

Correctly optimizing τ and λ minimizes duplicate features
between submodels, which minimizes split-finding operations
and maintains high F1-score. Next, we propose our hyper-
parameter tuning method for our structured model.

A Weighted Precision across labels
R Weighted Recall across labels
T Training time per submodel

Tworst Slowest training time among submodels
ndat Total number of samples in trainset

T 0,t0,d0,n0,A0,R0 Last observed/simulated values
τ Threshold for pairwise cosine similarity
λ Threshold for tokens across packages

L, tokens Clusters of labels and corresponding tokens

TABLE II: Symbols in Alg. 1

4) Configuring Structured Models: We construct a multi-
objective optimization formulation to minimize training time
per submodel (T (.)) while maximizing structured model
precision (A(.)) in Eq. 1.

min
t,d,n

(T (t, d, n)−A(t, d, n))

s.t. A(Cdup token(τ, λ, t, d)) ≥ ASLO

T (t, d, n) = T 0 (n log n+ n)d t

(n0 log n0 + n0)d0 t0

(1)

We optimize for a “sweet spot” for both training time
per submodel and model precision. For XGBoost submodels,
training time depends on split-finding operation counts given
the parameters d, t, and n. We can estimate training time (T)
with corresponding d, t and n, given training time observation
(T 0) and corresponding d0, t0 and n0. Meanwhile, the weighted
precision of all packages drops when the duplicate features
among submodels (Cdup token(.)) increases, which yields extra
false positives. Thus, we bound model precision with a Service
Level Objective (ASLO). We can minimize the duplicate
features by tuning the threshold of pairwise cosine similarity
(τ) for tokens of packages when forming clusters and filter
tokens present in installation fingerprints of multiple packages
(λ). We detail the optimization steps with Alg. 1 and Table. II.

The first loop tunes submodel size by additively decreasing
t to meet the incremental training time Service Level Objective
(TSLO) with estimation (line 6). We define two profile functions
profd(t) and profn(t) that return the largest dimension and
sample size for any t packages from the trainset. The second
loop evaluates the precision of the structured model by
clustering labels and corresponding tokens (L, tokens) given
τ ∈ [0, 1] or heuristically clustering versions of each package.
We evenly assign clusters to submodels. If we still violate
ASLO, we perform the third loop, which decreases λ to filter
out more duplicate tokens. This loop halts when we observe
the weighted recall for all labels (R) drops.

IV. EVALUATION

We assess the scalability of our structured model by
comparing training time and F1-score against existing systems
using Chameleon Cloud [53] nodes. We also present the
inference time of our PraxiPaaS NERC deployment. The
evaluation uses Package Version based Submodel Routing. We
evaluate against DeltaSherlock [11] and Praxi [12], which
use the monolithic word2vec ML pipeline. DeltaSherlock is

Algorithm 1 Hyper-Parameter Tuning for Submodels Init

Require: T 0, t0, d0, n0, profd, profn, TSLO, ASLO

Ensure: t, d, n, τbest, λbest

1: λbest = λ = ∥packages∥
2: τbest = τ = 1
3: T, t = T 0, t0

4: while T ≥ TSLO do
5: t = t− 1
6: T = T 0 (profn(t) log(profn(t))+profn(t))profd(t,λ) t

(n0 logn0+n0)d0 t0

7: end while
8: A,A0, Tworst = 0,−1, T
9: while A ≤ ASLO and A0 < A and Tworst ≤ TSLO and

τ ≥ 0 do
10: τbest, A

0 = τ,A
11: L, tokens = clustering(tokens per package, τ)
12: τ = τ − 0.1
13: A, Tworst = eval(t, profd(t, λbest), profn(t), L, tokens)
14: end while
15: L, tokens = clustering(tokens per package, τbest)
16: R,R0, A = 0,−1, A0

17: while R0 ≤ R and A ≤ ASLO do
18: λbest, R

0 = λ,R
19: λ = λ− 1
20: A,R = eval(t, profd(t, λbest), profn(t), L, tokens)
21: end while

implemented as a special case of the structured model by
training a single submodel for all package labels. For Praxi,
we use their open-source implementation with Vowpal Wabbit
and proactive classifier initialization and training to study the
model calibration costs.

A. System Setup & Implementation

We provision Chameleon Cloud nodes with 128 cores and
256 GB memory for the model evaluations. For our NERC
deployed PraxiPaaS (Fig. 3), we configure each component
to have 4 cores and 4GB of memory in the NERC Openshift
AI Pipeline. To evaluate inference latency, we sample images
with 7 layers each and test with different image batch sizes.
We configure 32 threads for data loading and XGBoost model
training for the best training speed. And we use 100 boosting
trees per label to preserve F1-score to extensively evaluate
non-linear feature correlations, as we need more trees to fit
the potential composite features (illustrated in Fig. 5). Other
parameters are shown in our repo [54].

B. Datasets

We construct a list of the most frequently downloaded
Python packages from PyPI [14] and GitHub trending Python
repos [55]. The list includes 3, 000 labels, i.e., 1, 000 packages
and each with 3 different versions.

We collect the installation file changes by building container
images and read the file changes by layers. The single-label
dataset has 24 fingerprints per label by reading the file changes
when installing a version of a package in a unique base

3 6 60
(Decomposed Structured Model)

120 300
0

50

100

150
T

im
e

S
p

en
t

(s
)

8.6
1.8

15.3
3.4

42.8

15.6

54.7

30.8

134.5
129.0

3000
(DeltaSherlock)

3
(Praxi)

3000
(Praxi)

0.0

0.5

1.0

×105

10052.4
11477.1

106.6
94.2

110681.8
98143.5

Number of Package Labels per Incremental Training Step

Training (Filter=25)

Preprocessing (Filter=25)

Training (No Filter)

Preprocessing (No Filter)

Fig. 9: Training and data preprocessing times (y-axis) versus
numbers of packages per submodel (x-axis), DeltaSherlock
(single submodel for all labels), and Praxi adding 3 packages
or retraining the complete model. Preprocessing includes
word2vec encoder building (for structured model and DeltaSh-
erlock) and duplicate token filtering (for all methods). Training
of PraxiPaaS is more scalable than DeltaSherlock or Praxi.

container image with all dependencies installed. Similarly, the
multi-label dataset includes installation file changes of choosing
any 2 labels from the 3, 000 labels, filtering the combinations of
the same packages but different versions. We then sub-sample
to 47, 274 installation file changes.

We perform a 4-fold cross-validation for single-label finger-
prints, and we also randomize the package clusters attributed
to each submodel in the structured model 10 times to evaluate
the stability of training and inference. Next, we test the trained
models in the previous steps with the multi-label fingerprints.
We show the 95% confidence intervals in our plots.

C. Scalability Analysis: Training Time

We compare the incremental training times of our structured
model, given different numbers of labels per submodel, and
perform 4-fold cross-validation over the single-label dataset.

We evaluate Package Version based Submodel Routing
and filter tokens with certain occurrences in the dataset. As
Sec. III-B3 discusses, versions of the same package tend to
have high pairwise cosine similarity, which enhances training
time and model precision by minimizing features per submodel
and duplicate features across submodels. Meanwhile, those
versions with low cosine similarity tend to have a few duplicate
features compared with other packages. So assigning it to
the same cluster with other versions of the same package
saves computation resources for finding similar packages and
minimizes duplicate features across submodels.

Fig. 9 shows data preprocessing time for word2vec encoder
building (for Structured Model and DeltaSherlock) and dupli-
cate token filtering (for all methods) and training time given
different numbers of labels per incremental training step. Our
dataset contains 3 versions of each package, so we selectively
present the training time given 1, 2, 20, 60, and 100 cluster(s)
per submodel (i.e., 3, 6, 60, 120 and 300 package labels per
submodel). We implement DeltaSherlock as a special case in the
structured model and measure the training time of one submodel
trained for all 3, 000 labels. Praxi uses OAA reduction in
Vowpal Wabbit and proactively builds 3, 000 classifiers for all
3, 000 package labels with the open-sourced Praxi. We show

3 60 3000
(DeltaSherlock XGBoost)

3000
(Praxi VW)

Package Labels per Incremental Training Step

0.95

1.00

M
od

el
M

et
ri

cs

Metric

F1-Score

Precision
7.0

7.2

7.4

F
ea

tu
re

%

% of Duplicate Features

Fig. 10: The weighted prediction quality metrics (left y-axis)
and % of duplicate features among submodels (right y-axis)
by number of labels per submodel: By clustering the different
versions of each packages, our structured model can maintain
high precision compared to DeltaSherlock (XGBoost) and Praxi
(Vowpal Wabbit with proactive classifier building).

3 6 60 120 300 3000(DeltaSherlock)

Package Labels per Sub-Models

0.75

0.80

0.85

M
od

el
M

et
ri

cs

Metric

F1-Score

Precision 7.0

7.2

7.4

F
ea

tu
re

%

% of Duplicate Features

Fig. 11: The weighted prediction quality metrics (left y-axis)
and duplicate features % (right y-axis) by number of labels per
submodel: Overall, by clustering the different versions of each
package, our structured model can maintain high precision
compared to DeltaSherlock.

incremental training time for 3 packages when trained labels
are less than the proactively built classifiers. Then, we also
show the complete model retraining time with all 3, 000 labels.
The incremental training time drops quadratically as the number
of labels per submodel reduces. Preprocessing time can exceed
training time when there are only a few labels per submodel,
given parallelization implementation and data size. Overall,
our structured model design is more scalable than monolithic
models (Deltasherlock with XGBoost and Praxi with proactive
classifier building in VW) for incremental training steps.

D. Scalability Analysis: Single-Label Prediction

We study the software discovery prediction with 4-fold
cross-validation over our single-label dataset. We include
our Structured Model with 1 or 20 package cluster(s) per
submodel (i.e., 3 or 60 package labels per model), as well as
DeltaSherlock and Praxi.

In Fig. 10, single-label predictions achieve above 0.925 F1-
score for all methods. While considering the training time
presented in the previous section, the structured model is still
the most scalable, compared to Deltasherlock with XGBoost
and Praxi using proactive classifier building.

E. Scalability Analysis: Multi-Label Prediction

In this section, we evaluate the prediction quality of our
Structured Model with 1 or 20 package cluster(s) per submodel
(i.e., 3 or 60 package labels per model) and monolithic models
(DeltaSherlock) using our multi-label dataset, where each
installation fingerprint contains 2 package installations. We use

3 6 60 120 300 3000(DeltaSherlock)

Package Labels per Sub-Models

0.80

0.85

M
od

el
M

et
ri

cs

Metric

F1-Score

Precision
6.25

6.50

6.75

7.00

F
ea

tu
re

%

% of Duplicate Features

Fig. 12: The weighted prediction quality metrics (left y-axis)
and duplicate features % (right y-axis) by number of labels
per submodel and filter tokens present in file changes of more
than 25 packages: We see similar behavior as in Fig. 11, but
overall higher precision with filter.

3 3000(DeltaSherlock)
Number of Packages per Model

0

10

In
fe

r
T

im
e

(9
6

Im
gs

)

3 3000(DeltaSherlock)
Number of Packages per Model

In
fe

r
T

im
e

(1
92

Im
gs

)

Encode: Load Feat-Idx Mapping

Encode: Subset Pos Weight Feats

Encode: Sample-Encoder Feat Intersect

Encode: Mat Builder

Encode: List to Mat

Inference

Decode

Fig. 13: Structured versus Monolithic Model inference time
in NERC includes word2vec encoding, prediction generating,
and word2vec decoding. We show the model inference times
of 96 or 192 container images in a batch.

our models trained during cross-validation using the single-label
trainset. However, Praxi is designed to train with a multi-label
dataset first and then tested with multi-label data [12], which
is not scalable since the number of package combinations
exponentially increases when adding new packages to the
model. Thus, we do not show Praxi results to save space.

As shown in Fig. 11, the multi-label prediction quality of
our structured model is maintained similarly to our implemen-
tation of DeltaSherlock using the XGBoost model. And after
filtering duplicate tokens that are present in file changes of
more than 25 packages, structured model precision can be
close to DeltaSherlock (Fig. 12), but we potentially tradeoff
recall (Sec. III-B3). Notice that recalls are about 0.98 for all
our evaluations. These results show that we can achieve a
good balance between fast training time and high F1-score
by tuning package labels per submodel, clustering versions of
each package, and filtering duplicate tokens.

F. NERC Deployment Inference Latency Tradeoffs

This section shows the inference latencies of PraxiPaaS
(Fig. 3) using the structured model versus the monolithic model
(our implementation of DeltaSherlock using XGBoost). The
end-to-end latency of our ML pipeline includes identifying
running containers using cluster observability, pulling im-
ages, package installation fingerprint generation, tokenization,
word2vec encoding (Encode), making predictions (Inference),
and decoding the predictions into package names with versions
(Decode). We focus on the last three steps as others are the
same in structured and monolithic models.

Our structured ML pipeline only encodes and infers finger-
prints with positive feature importances according to submodels.
Fig. 13 presents the stages of model inference time of 96 or
192 container images in a batch using the structured model
with 3 packages per submodel or a monolithic model trained
for all 3, 000 labels. For Encode step, we highlight substeps
including #1 Loading feature to matrix column index mapping
for each word2vec encoder (Load Feat-Idx Mapping), #2
Identifying positive feature importance (Subset Pos Weight
Feats), #3 Finding intersection between fingerprint tokens
and encoder features (Sample-Encoder Feat Intersect), #4
Vectorizing tokens (Mat Builder), and 5) Converting vectors to a
matrix for inference (List to Mat). Substep #3 minimizes tokens
for vectorization, reducing inference times of structured and
monolithic models. Meanwhile, since each pair of encoder and
submodel focuses on a small subset of labels and corresponding
tokens, this step also determines the minimal subset of
submodels to make inferences. However, a monolithic model
requires vectorizing all input tokens. Thus, the structured model
saves model inference time over monolithic model designs
(Fig. 13: 0.027s (0.032s) for PraxiPaaS and 7.45s (14.63s) for
DeltaSherlock with container image batch size 96 (192).)

G. Discussion

Overall, PraxiPaaS achieves fast incremental training and
high F1-score with a decomposable structured model design.
The empirical hyper-parameter tuning in Alg. 1 can be
costly. However, the package version-based submodel routing
method provides a resource-efficient approximation for package
similarity measurements. Other parameters, including the labels
per model, features, and samples, can be determined given
a tolerance of incremental training time. We will explore
an accurate and cheap model performance estimator in our
future work. Also, model and resource provisioning for
submodels introduce challenges to achieving low latency and
cost efficiency. Existing methods [56], [57] can be applied to
submodels serving.

V. CONCLUSION

We introduce PraxiPaaS, a scalable and cost-efficient
container package discovery framework in the PaaS cluster
using a decomposable ML method for SBOM generation
and vulnerable package detection. Recent ML frameworks
for package discovery have limited scalability in PaaS settings.

We evaluate the scalability tradeoffs of our structured
word2vec ML pipeline utilizing the data distribution of package
installation fingerprints in terms of incremental training time,
F1-score, and inference time. To configure our structured
model, we introduce an optimization formulation with an
algorithm to address it. Our results show that structured
ML pipeline achieves quick incremental training, high F1-
score, and low inference time compared to monolithic models.
Our next steps include evaluating other word2vec encoders,
building an F1-score estimator to save resource costs for
structured model configuration tuning, and studying model
and resource provisioning methods to maintain low latency
and cost-efficiency.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, Yoday, and
Tomorrow,” Present and ulterior software engineering, pp. 195–216,
2017.

[2] Redhat, “Red Hat Research Report: Cloud-native development
outlook,” 2021. [Online]. Available: https://www.redhat.com/en/resources/
cloud-native-development-outlook-whitepaper

[3] S. Carmody, A. Coravos, G. Fahs, A. Hatch, J. Medina, B. Woods, and
J. Corman, “Building resilient medical technology supply chains with a
software bill of materials,” npj Digital Medicine, vol. 4, no. 1, p. 34, Feb
2021. [Online]. Available: https://doi.org/10.1038/s41746-021-00403-w

[4] J. T. Stoddard, M. A. Cutshaw, T. Williams, A. Friedman, and J. Murphy,
“Software Bill of Materials (SBOM) Sharing Lifecycle Report,” Idaho
National Laboratory (INL), Idaho Falls, ID (United States), Tech. Rep.,
4 2023. [Online]. Available: https://www.osti.gov/biblio/1969133

[5] NERC, “NERC Technical Documentation,” 2023. [Online]. Available:
https://nerc-project.github.io/nerc-docs/

[6] Google, “Announcing OSV-Scanner: Vulnerability Scanner for Open
Source,” 2023. [Online]. Available: https://security.googleblog.com/2022/
12/announcing-osv-scanner-vulnerability.html

[7] D. Stenberg, “Severity HIGH Security Problem to Be Announced
with Curl 8.4.0 on Oct 11,” 2023. [Online]. Available: https:
//github.com/curl/curl/discussions/12026

[8] Google, “OSV-Scanner,” https://github.com/google/osv-scanner, 2023.
[9] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “SoK: Taxonomy

of Attacks on Open-Source Software Supply Chains,” in 2023 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2023, pp. 1509–1526. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179304

[10] H. Chen, S. S. Duri, V. Bala, N. T. Bila, C. Isci, and A. K. Coskun,
“Detecting and Identifying System Changes in the Cloud via Discovery
by Example,” in 2014 IEEE International Conference on Big Data (Big
Data), 2014, pp. 90–99.

[11] A. Turk, H. Chen, A. Byrne, J. Knollmeyer, S. S. Duri, C. Isci, and
A. K. Coskun, “Deltasherlock: Identifying Changes in the Cloud,” in
2016 IEEE International Conference on Big Data (Big Data). IEEE,
2016, pp. 763–772.

[12] A. Byrne, E. Ates, A. Turk, V. Pchelin, S. Duri, S. Nadgowda, C. Isci,
and A. K. Coskun, “Praxi: Cloud Software Discovery That Learns From
Practice,” IEEE Transactions on Cloud Computing, vol. 10, no. 2, pp.
872–884, 2022.

[13] W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed,
“Automatic Text Summarization: A Comprehensive Survey,” Expert
Systems with Applications, vol. 165, p. 113679, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417420305030

[14] H. van Kemenade, M. Thoma, R. Si, and Z. Dollenstein, “hugovk/top-
pypi-packages: Release 2023.10,” Oct. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.8396367

[15] Redhat, “Cloud-Native CI/CD with OpenShift Pipelines,”
2019. [Online]. Available: https://www.redhat.com/en/blog/
cloud-native-ci-cd-with-openshift-pipelines?extIdCarryOver=true&sc
cid=701f2000001OH7JAAW

[16] Z. Qin, V. Petricek, N. Karampatziakis, L. Li, and J. Langford,
“Efficient online bootstrapping for large scale learning,” arXiv preprint
arXiv:1312.5021, 2013.

[17] A. L. Suárez-Cetrulo, D. Quintana, and A. Cervantes, “A Survey on
Machine Learning for Recurring Concept Drifting Data Streams,” Expert
Systems with Applications, vol. 213, p. 118934, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422019522

[18] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and
J. Dean, “Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer,” in International Conference on Learning
Representations, 2017. [Online]. Available: https://openreview.net/forum?
id=B1ckMDqlg

[19] S. Gross, M. Ranzato, and A. Szlam, “Hard Mixtures of Experts for Large
Scale Weakly Supervised Vision,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6865–6873.

[20] Redhat, “Red Hat OpenShift Data Science,” 2023. [Online].
Available: https://www.redhat.com/en/technologies/cloud-computing/
openshift/openshift-data-science

[21] ——, “Red Hat Advanced Cluster Management for Kubernetes,”
2023. [Online]. Available: https://www.redhat.com/en/technologies/
management/advanced-cluster-management

[22] Microsoft, “SBOM-Tool,” 2024. [Online]. Available: https://github.com/
microsoft/sbom-tool

[23] L. Foundation, “System Package Data Exchange (SPDX),” 2023.
[Online]. Available: https://spdx.dev/

[24] IBM, “Agentless System Crawler,” https://github.com/cloudviz/
agentless-system-crawler, 2018.

[25] A. Zerouali, V. Cosentino, G. Robles, J. M. Gonzalez-Barahona, and
T. Mens, “ConPan: A Tool to Analyze Packages in Software Containers,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), 2019, pp. 592–596.

[26] Anchore, “Syft,” https://github.com/anchore/syft, 2023.
[27] ——, “Grype,” https://github.com/anchore/grype, 2023.
[28] Redhat, “Claircore,” https://github.com/quay/claircore, 2023.
[29] R. Elwell and R. Polikar, “Incremental Learning of Concept Drift in

Nonstationary Environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, 2011.

[30] G. Ditzler, “A Study of An Incremental Spectral Meta-Learner for
Nonstationary Environments,” in 2016 International Joint Conference
on Neural Networks (IJCNN), 2016, pp. 38–44.

[31] Anchore, “Anchore,” 2023. [Online]. Available: https://anchore.com/
[32] Redhat, “Clair,” https://github.com/quay/clair, 2023.
[33] A. Mohan, S. Nadgowda, B. Pipaliya, S. Varma, S. Suneja, C. Isci,

G. Cooperman, P. Desnoyers, O. Krieger, and A. Turk, “Towards Non-
Intrusive Software Introspection and Beyond,” in 2020 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2020, pp. 173–184.

[34] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,” in
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, ser. OSDI ’06. USA: USENIX Association, 2006, p.
307–320.

[35] A. Mohan, A. Turk, R. S. Gudimetla, S. Tikale, J. Hennesey, U. Kaynar,
G. Cooperman, P. Desnoyers, and O. Krieger, “M2: Malleable Metal as a
Service,” in 2018 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 2018, pp. 61–71.

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” arXiv preprint arXiv:1301.3781,
2013.

[37] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A
Survey,” International Journal of Computer Vision, vol. 129, pp. 1789–
1819, 2021.

[38] J. Shao, Y. Mao, and J. Zhang, “Learning Task-Oriented Communication
for Edge Inference: An Information Bottleneck Approach,” IEEE J.Sel.
A. Commun., vol. 40, no. 1, p. 197–211, jan 2022. [Online]. Available:
https://doi.org/10.1109/JSAC.2021.3126087

[39] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher, “Deep
Compressive Offloading: Speeding up Neural Network Inference by
Trading Edge Computation for Network Latency,” in Proceedings of the
18th Conference on Embedded Networked Sensor Systems, ser. SenSys ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
476–488. [Online]. Available: https://doi.org/10.1145/3384419.3430898

[40] Y. Matsubara and M. Levorato, “Neural Compression and Filtering for
Edge-assisted Real-time Object Detection in Challenged Networks,” in
2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 2272–2279.

[41] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and Quantization for Deep Neural Network Acceleration: A Survey,”
Neurocomputing, vol. 461, pp. 370–403, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231221010894

[42] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 243–254.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.30

[43] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun,
“MetaPruning: Meta Learning for Automatic Neural Network Channel
Pruning,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 3296–3305.

[44] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “SplitNet: Learning to
Semantically Split Deep Networks for Parameter Reduction and Model
Parallelization,” in International Conference on Machine Learning.
PMLR, 2017, pp. 1866–1874.

https://www.redhat.com/en/resources/cloud-native-development-outlook-whitepaper
https://www.redhat.com/en/resources/cloud-native-development-outlook-whitepaper
https://doi.org/10.1038/s41746-021-00403-w
https://www.osti.gov/biblio/1969133
https://nerc-project.github.io/nerc-docs/
https://security.googleblog.com/2022/12/announcing-osv-scanner-vulnerability.html
https://security.googleblog.com/2022/12/announcing-osv-scanner-vulnerability.html
https://github.com/curl/curl/discussions/12026
https://github.com/curl/curl/discussions/12026
https://github.com/google/osv-scanner
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179304
https://www.sciencedirect.com/science/article/pii/S0957417420305030
https://doi.org/10.5281/zenodo.8396367
https://www.redhat.com/en/blog/cloud-native-ci-cd-with-openshift-pipelines?extIdCarryOver=true&sc_cid=701f2000001OH7JAAW
https://www.redhat.com/en/blog/cloud-native-ci-cd-with-openshift-pipelines?extIdCarryOver=true&sc_cid=701f2000001OH7JAAW
https://www.redhat.com/en/blog/cloud-native-ci-cd-with-openshift-pipelines?extIdCarryOver=true&sc_cid=701f2000001OH7JAAW
https://www.sciencedirect.com/science/article/pii/S0957417422019522
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-data-science
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-data-science
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://spdx.dev/
https://github.com/cloudviz/agentless-system-crawler
https://github.com/cloudviz/agentless-system-crawler
https://github.com/anchore/syft
https://github.com/anchore/grype
https://github.com/quay/claircore
https://anchore.com/
https://github.com/quay/clair
https://doi.org/10.1109/JSAC.2021.3126087
https://doi.org/10.1145/3384419.3430898
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://doi.org/10.1109/ISCA.2016.30

[45] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently Scaling Transformer
Inference,” Proceedings of Machine Learning and Systems, vol. 5, 2023.

[46] K. Huang and W. Gao, “Real-Time Neural Network Inference on
Extremely Weak Devices: Agile Offloading with Explainable AI,” in
Proceedings of the 28th Annual International Conference on Mobile
Computing And Networking, ser. MobiCom ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 200–213. [Online].
Available: https://doi.org/10.1145/3495243.3560551

[47] S. S. Ogden, X. Kong, and T. Guo, “PieSlicer: Dynamically
Improving Response Time for Cloud-Based CNN Inference,” in
Proceedings of the ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 249–256. [Online]. Available:
https://doi.org/10.1145/3427921.3450256

[48] D. Freitag, “Machine Learning for Information Extraction in Informal
Domains,” Machine Learning, vol. 39, no. 2, pp. 169–202, May 2000.
[Online]. Available: https://doi.org/10.1023/A:1007601113994

[49] Docker, “Images and layers,” https://docs.docker.com/storage/
storagedriver/#images-and-layers, 2023.

[50] S. Nadgowda, S. Duri, C. Isci, and V. Mann, “Columbus: Filesystem
Tree Introspection for Software Discovery,” in 2017 IEEE International
Conference on Cloud Engineering (IC2E), 2017, pp. 67–74.

[51] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[52] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 785–794.

[53] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons Learned from
the Chameleon Testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association, July
2020.

[54] “PraxiPaas,” https://github.com/ai4cloudops/Praxi-Pipeline, 2024.
[55] Github, “Github Trending,” 2023. [Online]. Available: https://github.

com/trending/python?since=monthly
[56] Z. Hong, J. Lin, S. Guo, S. Luo, W. Chen, R. Wattenhofer, and

Y. Yu, “Optimus: Warming Serverless ML Inference via Inter-Function
Model Transformation,” in Proceedings of the Nineteenth European
Conference on Computer Systems, ser. EuroSys ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 1039–1053.
[Online]. Available: https://doi.org/10.1145/3627703.3629567

[57] A. Raza, Z. Zhang, N. Akhtar, V. Isahagian, and I. Matta, “LIBRA: An
Economical Hybrid Approach for Cloud Applications with Strict SLAs,”
in 2021 IEEE International Conference on Cloud Engineering (IC2E),
2021, pp. 136–146.

https://doi.org/10.1145/3495243.3560551
https://doi.org/10.1145/3427921.3450256
https://doi.org/10.1023/A:1007601113994
https://docs.docker.com/storage/storagedriver/#images-and-layers
https://docs.docker.com/storage/storagedriver/#images-and-layers
http://is.muni.cz/publication/884893/en
https://github.com/ai4cloudops/Praxi-Pipeline
https://github.com/trending/python?since=monthly
https://github.com/trending/python?since=monthly
https://doi.org/10.1145/3627703.3629567

	Introduction
	Related Work
	Package Discovery Methods
	Package Discovery Frameworks
	High Scalability Word2Vec ML Pipelines
	High Scalability ML System Designs

	PraxiPaaS
	PraxiPaaS Architecture
	File Changes Logs Extraction
	Structured Word2Vec
	Structured Model based on Data Distribution

	Structured Model Motivated by Data Distribution
	Training Times
	F1 Scores
	Structured Model Improvements
	Configuring Structured Models

	Evaluation
	 System Setup & Implementation
	Datasets
	Scalability Analysis: Training Time
	Scalability Analysis: Single-Label Prediction
	Scalability Analysis: Multi-Label Prediction
	NERC Deployment Inference Latency Tradeoffs
	Discussion

	Conclusion
	References

