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Abstract

Images are a powerful and immediate vehicle to carry mislead-

ing or outright false messages, yet identifying image-based

misinformation at scale poses unique challenges. In this paper,

we present PIXELMOD, a system that leverages perceptual

hashes, vector databases, and optical character recognition

(OCR) to efficiently identify images that are candidates to

receive soft moderation labels on Twitter. We show that PIX-

ELMOD outperforms existing image similarity approaches

when applied to soft moderation, with negligible performance

overhead. We then test PIXELMOD on a dataset of tweets

surrounding the 2020 US Presidential Election, and find that

it is able to identify visually misleading images that are can-

didates for soft moderation with 0.99% false detection and

2.06% false negatives.

1 Introduction

Online users are constantly bombarded with false and mis-

leading information, whether it is inaccurate and shared with-

out malice (i.e., misinformation), or deliberately crafted to

achieve a malicious goal, for example by state actors (i.e.,

disinformation) [71, 76]. To help their users better distinguish

between accurate and misleading or false information, on-

line platforms like Twitter have introduced soft moderation

measures, where they add labels to posts that include inaccu-

rate information, with the goal of providing better context to

these claims. Unfortunately, little is known about how these

moderation decisions are made by the platforms, and recent

work found glaring issues with Twitter’s soft moderation ap-

proach [15, 91].

While previous work on automated soft moderation [61]

builds a solid foundation for the soft moderation of textual

content, false information is not only spread through text, but

images are commonly used to convey false and misleading

narratives [28, 54, 88, 93]. While Twitter applies soft moder-

ation decisions to posts containing images, the way in which

this is done is not publicly known, and a preliminary analysis

that we conducted shows that these labels are not applied

uniformly and pervasively. For example, in Figure 1, we show

three tweets that contain identical images discussing the same

debunked electoral map claiming Trump’s landslide victory

with 410 votes after elections servers were seized in Germany

by the U.S military [16].The first tweet (Figure 1a) received a

warning label, while the other two tweets containing the same

image (Figures 1b and 1c) did not receive any intervention,

despite discussing the same misleading narrative.

These observations highlight the need for effective auto-

mated approaches to identify image content that should re-

ceive soft moderation. Moderating images, however, poses

unique challenges. First, the sheer amount of data published

on social media makes this a particularly challenging task, es-

pecially on platforms like Twitter, where 50 million tweets are

posted every day [72]. Previous work has dealt with this prob-

lem by adapting perceptual hashing algorithms [28, 89, 93].

These algorithms identify visually similar images by leverag-

ing syntactic embeddings, which are lightweight to calculate.

Even if the calculation of hashes is relatively cheap, compar-

ing an image against a large number of potential candidates

is inefficient and does not scale. In addition to the compu-

tational costs of comparing images, previous research has

shown that image-based false information is highly contex-

tual and that similar images can be misinformation, satire,

or even completely benign based on the context in which

they are used [88, 89]. Existing approaches using perceptual

hashing lack the nuance to determine this context, making

them prone to false positives and unfit for the misinformation

moderation use case.

Technical Roadmap. In this paper, we aim to address the

limitations of previous approaches and develop a scalable, per-

formant, and effective system able to analyze images posted

on social media and identify candidates for soft moderation.

We present PIXELMOD, an image search system designed to

assist platform moderators by flagging visual content that is

similar to the content they have previously applied moderation

labels. PIXELMOD takes as seed input a list of images initially

moderated by Twitter and encodes the images using percep-
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Figure 1: Three tweets discussing a false electoral vote map

showing Trump landslide victory based on false reports of

seized election servers in Germany. Twitter added a warning

label only to the first tweet.

tual hashing [24, 57]. To allow efficient hash comparisons,

PIXELMOD leverages Milvus [85], a vector database that is

optimized for searching among millions of hash records. After

finding visually similar images, PIXELMOD leverages OCR

to identify the context in which an image is used, allowing it

to rule out false positives.

PIXELMOD successfully identifies both tweets in Fig-

ures 1b and 1c when queried with the image in Figure 1a.

Additionally, PIXELMOD not only identifies images identical

to the seed images but also visual variants of the images such

as memes and fauxtography, which are commonly used for

spreading misleading information [29, 89, 92].

Main Contributions & Findings. PIXELMOD addresses the

limitations of previous image-based moderation approaches

proposed in the academic literature, is platform-independent,

and only requires a single misleading image already inter-

vened by human moderators. With the ability to identify thou-

sands of posts spreading misleading images, we show that

an image search system like PIXELMOD can be used as a

foundation for a large-scale soft moderation intervention sys-

tem for images. While a large amount of research has been

conducted on perceptual hashing and OCR, the novelty of our

work lies in combining and tuning the two into a working

end-to-end soft moderation system which achieves a much

larger coverage than perceptual hashing alone. Besides con-

tent moderation, the takeaways offered by our work can be

helpful for researchers and practitioners in building image

similarity search systems for related security problems like

phishing [47] and CSAM detection [22, 33].

We compare PIXELMOD with alternative approaches to as-

sess visual similarity, showing that PIXELMOD outperforms

them in terms of F1-score. In particular, the use of OCR to

determine the context of false images allows PIXELMOD

to operate using a higher similarity threshold than existing

approaches only based on perceptual hashing, increasing re-

call while keeping precision high as well, suffering only a

negligible runtime performance hit in return.

We then test PIXELMOD on Twitter data discussing the

2020 US Presidential Election. Starting from a seed set of

959 tweets containing misleading images, we use PIXELMOD

to retrieve 40,244 tweets in the wild that are candidates for

moderation. Performing a thorough manual analysis, we find

PIXELMOD has a false negative rate of 2.06% and a false

detection rate of 0.99%. These findings are a positive step to-

wards building automated systems that complement Twitter’s

existing systems to moderate misleading images and improve

the state of content moderation.

To better understand how soft moderation was adopted by

Twitter during that period, we perform a qualitative measure-

ment study of the content flagged by PIXELMOD, comparing

it to tweets that received soft moderation labels from Twitter.

We categorize the images identified by PIXELMOD based

on Twitter’s Platform Policy, finding that although different

types of platform policies were moderated at different rates by

Twitter, none of the policy violations exceeded a moderation

rate of 5.96%.

2 Overview of PIXELMOD

PIXELMOD takes a query image that a platform wants to in-

vestigate for further moderation actions and retrieves images

that are both visually and contextually similar. This allows

a platform to quickly identify a large, high-certainty candi-

date list of posts for moderation. PIXELMOD has four stages,

as illustrated by Figure 2: i) generating image embeddings,

ii) indexing image embeddings, iii) retrieving visually simi-

lar images through approximate nearest neighbor search, and

iv) refining contextually matching images via Optical Charac-

ter Recognition (OCR).

We demonstrate PIXELMOD in the context of Twitter, iden-

tifying visually misleading information related to the 2020 US

Presidential Election. However, PIXELMOD’s architecture is

designed to be portable to any social media platform.

2.1 Background

Identifying visually similar images given a query image is a

reverse image search problem, which falls under the broader

research area of Content-Based Image Retrieval systems [35].

The goal is to efficiently collect, index, and search for vi-

sually similar images over an index of millions of images,

and there are several publicly available solutions (e.g., Tin-

Eye [81], Google Vision AI [32]). We conducted a preliminary

exploration of these systems and identified two major limita-

tions: 1) they require a paid subscription for programmatic

access, and 2) they perform poorly for returning images from

Twitter, Facebook, and other social media platforms because

of platform restrictions on their crawlers. To address these
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Figure 2: Overview of our image analysis pipeline.

limitations, we built a custom image search system focused

exclusively on social media that collects images, generates

syntactic embeddings (pHash and PDQHash), and indexes

them (using the Milvus [85] vector database).

Motivating the need for multi-modality in visual similarity

search. Prior works have discussed that incorporating contex-

tual information within images is important when identify-

ing when they have been manipulated or miscaptioned [89].

Zanettou et al. [92] discuss similar existing shortcomings

of image similarity systems and the need to incorporate se-

mantic components like OCR in image detection pipelines

to effectively identify image memes. Another work studying

misinformation images on WhatsApp in India [29] used se-

mantic features like OCR from Google Cloud Vision to iden-

tify differences between different types of misinformation

images (images taken out of context, photoshopped images,

and memes) after retrieving images visually similar to fact-

checked images. However, no existing work uses contextual

information as a part of the detection system or pipeline itself.

Existing detection systems can identify images that are

very similar to misleading images upon querying, but are un-

able to verify if the identified images are used in the same

misleading context as the query image. We illustrate this case

with an example in Figure 3. When we query existing image

similarity systems with Figure 3a, they will typically return

Figure 3b, and Figure 3c as matching results with strong con-

fidence. However, Figure 3b, and Figure 3c are not related to

the query image under question, which contains the text of

“Fraud. The Biggest Disgrace In Our History”, despite being

visually similar to the query. Figure 3b is an image used in

a different context, with no connotation to the narrative of

“Election Fraud” during the 2020 Elections, whereas Figure 3c

is used in another context: Fox News projecting a win for Joe

Biden. Thus, the results returned are used in entirely differ-

ent context than the query image, lacking the connotation of

“Election Fraud” which makes the query image misleading.

A similar problem occurs when dealing with fauxtography,

where images are manipulated with the inclusion of visual

(a) Query image

(b) Visually similar

match #1

(c) Visually similar

match #2

Figure 3: Example query image and results retrieved.

changes, overlay text, or are used out of context to mislead the

user [89]. This highlights the need for incorporating context

when using image similarity systems to improve misinforma-

tion detection systems.

To address this issue, PIXELMOD analyzes the overlay

text included in images by using optical character recogni-

tion (OCR) to better capture the context in which an image

is used and then incorporate this context as a part of our

image similarity pipeline. Including this context also helps

overcome existing limitations of prior work using percep-

tual hashes that have to rely on lower similarity thresholds for

matching [29, 89]. Incorporating context allows us to increase

image similarity thresholds while at the same time achieving

better recall without hurting precision.

2.2 Generating image embeddings

There are two types of embeddings we can extract from im-

ages for retrieval purposes. The first, syntactic embeddings,

are fingerprints of an image’s visual features, computed such

that two visually similar images will have identical, or very

similar fingerprints. The second, semantic embeddings, cap-

ture features within the images (for example, if a given image

is a chart or a portrait), and match images that are visually

dissimilar, but still have similar meanings.

For our purposes, syntactic embeddings are more useful

for two reasons. First, images identified through them are

minor variations of the query image, making them easy to in-



terpret and take action on. Second, semantic embeddings use

complex deep learning architectures [37, 73], while syntactic

embeddings are relatively fast and cheap to train and use. This

means we can scale to millions of images with relatively few

resources (e.g., PIXELMOD does not require a GPU.)

We generate our syntactic embeddings via perceptual hash-

ing. We make use of two different perceptual hashing embed-

dings: i) pHash [57], and ii) PDQHash [24]. pHash encodes

images as 64-bit vectors by extracting geometry-preserving

feature points using Discrete Cosine Transform (DCT). The

resulting vectors are invariant to simple image transforma-

tions and minor coloring differences. PDQHash is an improve-

ment over pHash, encoding images as 256-bit vectors. Prior

work studying the spread of misleading images in social me-

dia has used both pHash and PDQHash [41, 44, 66, 89, 93].

We evaluate pHash and PDQHash with respect to precision,

and recall, as well as the time taken to generate an embedding,

index it, and eventually query the index.

2.3 Indexing image embeddings

The most similar image to a query is the one whose embed-

ding is the shortest distance from the query image’s embed-

ding. While we could perform a pairwise comparison with

the query image and all candidate images, this is intractable at

the scale at which social media platforms operate. To address

this, there are specialized vector databases that can be used to

perform queries over embeddings. For PIXELMOD, we chose

to use Milvus [85] a purpose-built vector management system.

Milvus abstracts away lower-level details (e.g., index creation

and item insertion) via a higher-level API and Facebook’s

Faiss [43] library for efficient dense vector similarity search.

Milvus has two types of indexes: i) BIN_FLAT and

ii) BIN_IVF_FLAT. BIN_FLAT guarantees a 100% recall rate

by exhaustively searching for matches to a query embedding.

BIN_IVF_FLAT is quantization-based, dividing embeddings

into multiple cluster units and comparing the query embed-

ding to the center of each cluster. BIN_IVF_FLAT is faster

than BIN_FLAT but requires tuning hyperparameters to find

an optimal recall rate. Milvus recommends using BIN_FLAT

for datasets in the order of a few million vectors, which fits

the datasets we use to evaluate PIXELMOD

2.4 Retrieving visually similar images

Vector databases like Milvus scale by leveraging approximate

nearest neighbor search across their indices. Milvus deter-

mines the nearest neighbors by scoring candidates with a

similarity metric. We use Hamming distance, leaving us with

the next challenge of choosing an appropriate threshold to

treat as “visually similar.” We select Hamming distance over

cosine similarity as prior works on perceptual hashing have

predominantly used this metric to assess visual similarity on

both PHash and PDQHash ( e.g. baseline systems [89] and

[92]). Additionally, we index the perceptual hashes on Milvus

as binary hashes, and using Hamming distance as the similar-

ity metric allows us to efficiently compare the binary repre-

sentations of images. Previous works using pHash to study

misinformation on a variety of social media platforms have

recommended a Hamming distance of six [89], and eight [92].

The developers of PDQhash suggest a distance of 32, which

has been used to study misinformation on WhatsApp [44, 66].

Other work using PDQHash has used a threshold of 40 to

study the spread of COVID-19-related media in Pakistan over

WhatsApp [41]. Ultimately, choosing a threshold depends on

the dataset used and the particulars of how “visual similarity”

is defined. In Section 4, we experimentally evaluate the choice

of the visual similarity threshold (θvisual) by optimizing over

both precision and recall.

2.5 Refining matched images using OCR

The final component of PIXELMOD involves processing the

results retrieved as “visually similar” to the query image by

comparing text extracted via an Optical Character Recogni-

tion (OCR) engine. For the rest of the paper, we refer to the

output text from an image extracted from an OCR engine

as OCR label. The advantages of applying this OCR-driven

post-processing to the matched results are two-fold: i) it elim-

inates the limitations of underlying perceptual hashing algo-

rithms by filtering out their false positives and ii) it allows

us to explore relatively larger distance thresholds for visual

similarity matching, thus allowing us to minimize false nega-

tives. Prior applications of perceptual hashing algorithms for

identifying visually similar images have used conservative

thresholds [41, 44, 89] to minimize false positives. In contrast,

we aim to exploit larger thresholds to increase our recall as

well as have a more tuneable mechanism with respect to pre-

cision trade-offs. In Section 4, we first validate the choice of

Google Cloud Vision API as the underlying OCR engine [32],

and experimentally evaluate the calibration of the similarity

metric for the extracted OCR labels as our OCR engine) and

corresponding threshold for similarity (θtextual).

3 Datasets

We use three different datasets to evaluate PIXELMOD (sum-

marized in Table 1). Our first dataset, D1, contains 7.6M

tweets collected via the Twitter Streaming API using a set of

2020 US Election hashtags (e.g., #ballotfraud, #voterfraud,

#electionfraud, #stopthesteal) curated by Abilov et al. [4]. To

comply with Twitter’s terms of service, this dataset only pro-

vides tweet IDs, therefore, we need to retrieve the full tweet

content from the Twitter API through a process called hydra-

tion. Out of the 4,017,259 tweets we were able to rehydrate,

about 218K have at least one “media” entity: either an image

or a video (tweets with videos also contain a thumbnail image,

which we include in our dataset).



Dataset # Tweets with Images

VoterFraud Dataset (D1 ) 217,868

1% Twitter Stream (D2 ) 12,560,319

Twitter Context Annotations (D3 ) 6,952,300

Table 1: Overview of our dataset.

Our second dataset, D2, consists of 13M tweets with media

collected via the 1% Twitter stream from November 1 to

December 31, 2020. Unlike D1, we do not filter any keywords,

therefore D2 is a uniform 1% sample of Twitter.

Finally, we collect D3 via Twitter’s Academic Research

full-archive search endpoint in late 2022, by querying context

annotations [62] associated with the 2020 US Elections. Twit-

ter annotates tweets with context annotations by semantically

analyzing their content and metadata, categorizing them into

a nested structure of domains and entity labels. The more than

80 domains cover things like politics and TV shows, while

the nearly 145K entities cover details of the domains ranging

from elections to festivals, to politics and media personalities.

We identify two context annotations related to the 2020

election by retrieving the context annotations of all tweets

from D1: 1) “2020 US Election Day” and 2) “2020 US Presi-

dential Election,” both in the Events domain. We also found

other context annotations from the tweets, but they were asso-

ciated with “Political figures” and “Politics” in general, not

the 2020 elections specifically. To minimize the noise that

can be introduced when using such a broad context, we do

not include those annotations when building D3. In the end,

D3 consists of the 6.9M tweets that we retrieve using the

“2020 US Election Day” and “2020 US Presidential Election”

context annotations and limiting our search to November 1st,

2020 to December 31st, 2020.

Index building. We build two different Milvus indices for

pHash and PDQHash embeddings, using all the images in

our datasets. The index size for both types of embeddings is

19.7M, after combining all the tweets from D1, D2, and D3.

4 System Validation

In this section, we present the validation strategy for PIX-

ELMOD. First, we discuss how we build a ground truth dataset.

Then, we describe our experimental setting to determine the

best hashing mechanism, and the best string similarity algo-

rithm for the OCR labels, and the corresponding θvisual and

θtextual to use with the hashing algorithms and string simi-

larity algorithms. The goal is to experimentally determine

the best operating values for PIXELMOD by optimizing both

precision and recall for the overall system.

Building ground truth. First, we randomly sample 50 im-

ages from D1. For each of these 50 images, we query both the

pHash and PDQHash indexes for similar images, limiting the

results to the maximum threshold for each algorithm (10 and

90). We select 90 as the maximum threshold for PDQHash as

its developers experimentally verified it as the upper bound

for images that are known to be different. For pHash, we

select 10 as the maximum threshold because previous work

has found that higher thresholds produce results that are too

noisy [92]. This results in 11,825 unique images retrieved as

similar across both indices for the same set of 50 query im-

ages. Then we manually annotate the results using a pairwise

image annotation tool developed by [26]. Note that the goal

of this annotation was to verify that images were visually and

contextually similar to the original one (i.e., their overlay text

contained similar words). For this reason, we did not need to

build a codebook and have multiple annotators agree on the

results as we did for more subjective experiments later in the

paper. In the end, we find 9,785 images that are similar to our

50 source images. We refer to these 9,785 images as GTviz.

Determining θvisual . Next, we use the images in GTviz to

determine the accuracy of the results returned by the two

hashing algorithms when using different thresholds for θvisual .

Our Milvus indexes return the closest set of embeddings

for a query image, scored by the Hamming distance to the

candidate image. For pHash, we experiment with a range

of Hamming distance thresholds from 4 to 10, which is

in line with previous works that found an optimal thresh-

old between 6 [89] and 8 [92]. For PDQhash, on the other

hand, it is recommended to use a range of pairwise distances

for identifying similar images [24]. Therefore, we test mul-

tiple threshold ranges, some used by previous work using

PDQHash [41, 44, 66] (32, 48) as well as three additional

ranges to take us up to the maximum possible threshold (64,

80, and 90).

Validating Google Cloud Vision API for OCR. To validate

the ability of Google Cloud Vision API to correctly extract

the OCR labels in a query image, we sample 50 images from

GTviz and create a ground truth of the text contained in the

images. These are examples of images occurring “in the wild,”

which contain text in specialized fonts, small text in lower

quality images, or text in artistic fonts, and are therefore a

good test for the OCR component of PIXELMOD. On this

dataset, the median Jaccard similarity of the ground truth text

and the one extracted by Cloud Vision OCR is 1.0, and the

mean is 0.95. This validates that Google Cloud Vision API can

be successfully used as the underlying engine for identifying

the contextual text contained in the images of PIXELMOD.

Upon doing some error analysis of the OCR text, we find that

the output of the Cloud Vision API is not missing any text

present in the images, but is sometimes parsed in a different

order than the ground truth. This is an artifact of how the OCR

engine works on different regions of the image. We argue that

this would not pose a problem when using the system for

PIXELMOD as the method will work consistently across all

the source images and the potential matches retrieved through

perceptual hashing.



Determining θtextual . After validating that Cloud Vision API

can be successfully used to extract the contextual text con-

tained in images, we aim to determine the appropriate text

similarity metric and corresponding similarity threshold to

compare the OCR labels of the retrieved visual matches with

the query images. We first check if the query image contains

any OCR label, which we call labelquery, using Google Cloud

Vision API. If labelquery is not empty, then, for each visually

matching image, we compute the corresponding OCR labels

(labelmatch) using the same API endpoint. We experiment

with multiple text similarity metrics, and multiple similar-

ity thresholds to assess if labelmatch is similar to labelquery.

The similarity metrics we experiment with are: i) Normalized

Levenshtein similarity, ii) Jaro-Winkler similarity, iii) similar-

ity metric based on Longest Common Subsequence (Metric

LCS), and iv) Jaccard-index similarity. For each similarity

metric, we measure F1 scores on the similarity threshold range

of 0,0.05,0.1,0.15, . . . ,0.75,0.8 Note that, for Jaccard index,

we experiment with values of n-grams ranging from 1 to 5

as this algorithm converts strings into a set of n-grams when

computing the similarity.

Grid search setup for θvisual and θtextual to determine the

best operating values for PIXELMOD. To identify the best

set of components for PIXELMOD, we experimentally deter-

mine the best hashing method, the corresponding distance

threshold for that hash, the similarity metric for the OCR la-

bel, and accordingly the similarity threshold for comparing

labelquery and labelmatch. We perform a grid search over these

four different components of PIXELMOD, scoring the combi-

nations of the components by their corresponding F1-score,

evaluated on GTviz. We present the results of the grid-search

experiment in Figure 4. For space reasons, we only present

the best-performing text similarity method for each θvisual and

the two hashing methods. We analyze how the F1 score of the

embeddings with θvisual changes as we increase the θtextual .

We can see that the combination of PDQHash with θvisual

of 90, and the OCR component using Jaccard similarity

(ngram = 4) with θtextual of 0.05 produces the best F1 score

of 0.980. This setting yields a precision of 0.990 and a re-

call score of 0.979. The next best performing metrics are

PDQHash with θvisual of 80 and pHash with θvisual of 10

using normalized Levenshtein similarities. We observe the

immediate returns of expanding the θvisual to the maximum

bound to retrieve as many relevant results as possible, without

compromising on the false positives. We will further evaluate

this configuration with previous state-of-the-art image detec-

tion methods in Section 5.1. We also note that we can improve

the performance of pHash embedding by using a wider θvisual

of 10, compared to the thresholds of 6 and 8 used in the prior

works.

In the rest of the paper, we set PIXELMOD to use an image

embedding of PDQHash with a θvisual of 90 and an OCR

post-processing component of Jaccard similarity (ngram = 4)

with θtextual of 0.05.
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Figure 4: F1 score of different grid search components.

5 Evaluation

In this section, we first compare PIXELMOD with various

other image similarity systems as baselines, showing that

PIXELMOD is the best-performing approach for content mod-

eration. Next, we use PIXELMOD to identify misleading im-

ages during the 2020 US Presidential Election in the wild and

compare its effectiveness with the existing moderation system

of Twitter. Finally, we perform a qualitative characterization

of the misleading images by analyzing the images through

the lens of Twitter’s platform policies in detail.

5.1 PIXELMOD vs. baselines

We compare the performance of PIXELMOD against vari-

ous image similarity systems as a baseline for evaluation.

We use four different families of image similarity systems

for comparison. First, we compare PIXELMOD against se-

mantic embeddings that use Deep Neural Networks (DNNs)

based methods. These include features extracted from final

layers of DNN architectures specializing in image classifica-

tion such as Inception-v3 [79] and ResNet [37]. The features

extracted from these methods have been shown to be useful

for visual search and similarity tasks [7, 74]. The next family

of methods that we compare PIXELMOD against is image

descriptors, which can be considered as “deeper syntactic

hashes” [24]. This set of methods is popular in computer vi-

sion tasks such as object recognition, scene recognition, and

work by extracting a large number of keypoints in an image.

Matatov et al. [53] use ORB descriptors for identifying the

spread of visual misinformation to assist journalists. We use

ORB [70], SIFT [51], and DAISY [82] as image descriptors.

Another family of methods we compare PIXELMOD with

is the list of prior works that have used perceptual hashing

algorithms for identifying images spreading misinformation.

These include Phash and PDQHash with multiple distance

thresholds [41, 44, 89, 92].

Finally, we evaluate the performance of PIXELMOD with



multi-modal embeddings. While there is a rich body of work

and systems existing in the vision-language literature, the

majority of these works are trained with an objective of ex-

plaining the visual concept contained in the image [50]. On

the other hand, OCR texts occur as semantic context to the im-

age itself and can be much longer, noisy, and nuanced. Thus

it is not possible to directly adapt models such as Univer-

sal Image Text Representation Learning (UNITER) [18], or

Visual-BERT [49] that have been trained on vision-language

tasks for our problem, in the same way adapting Inception-v3

or ResNet is possible. However, to assess the potential of a

multi-modal embedding that leverages text from an OCR en-

gine, or text from the accompanying tweet with DNN-based

features, we experiment with “concatenated” vision-language

embeddings. First, we concatenate the embeddings obtained

from Inception-V3 (a 2048-dimensional vector) and Sentence-

BERT [65] (a 768-dimensional vector) to create a joint em-

bedding from the two modalities.

We experimented with two different techniques for unifying

the embeddings: i) concatenating, and ii) stacking, further re-

porting the best results. While much more sophisticated mech-

anisms of combining embeddings such as attention mecha-

nisms exist, the dataset size of GTviz limits us in evaluating

methods that combine embeddings or modalities. Fully lever-

aging multimodal embeddings requires an end-to-end deep

learning training setup, and accordingly, large-scale datasets

designed for the problem of soft moderation, which currently

does not exist.

In the same way, we also combine textual and visual em-

beddings using the CLIP model from Open AI [64]. CLIP

consists of a text and an image encoder which encodes textual

and visual information into a multimodal embedding space

by using contrastive learning. The model is trained on various

text/image pairs from Web sources, and has demonstrated

impressive zero-shot capabilities for classification purposes

and has been used to detect hateful content on social me-

dia [31, 63]. Alongside the OCR text, we also experiment

with using the tweet text as part of the multi-modal embed-

ding to evaluate if using the tweet text as further context can

improve model performance for image retrieval. To this end,

we concatenate the visual information encoded through the

image encoder with three different variants of textual infor-

mation: i) tweet text, ii) tweet text + OCR text, and iii) OCR

text. After extracting the joint embeddings using CLIP, we

further normalize the multi-modal embeddings for evaluation.

For the neural network-based image embeddings

(Inception-v3, ResNet-50, ResNet-101, and ResNet-152)

we experiment with multiple resolutions of input (1x, 2x,

etc.), reporting the best performing F1 score for each method.

Similarly, for the neural network-based image embeddings

and the multi-modal embeddings, we experiment with multi-

ple similarity thresholds (0,0.05,0.1,0.15, . . . ,0.75,0.8) and

report the best performing score for each method (except for

the methods that use perceptual hashes with pre-determined

Method Prec. Rec. F1 Runtime

Inception v3 [79] 0.679 0.878 0.766 0.031s

ResNet-50 [37] 0.518 0.938 0.667 0.027s

ResNet-101 [37] 0.617 0.932 0.742 0.030s

ResNet-152 [37] 0.440 0.962 0.604 0.034s

ORB descriptors [70] 0.491 0.535 0.512 0.040s

SIFT descriptors [51] 0.935 0.0136 0.026 0.253s

DAISY descriptors [82] 0.484 0.431 0.456 0.257s

PDQHash (thr. 32) [44] 0.992 0.798 0.885 0.020s

PDQHash (thr. 40) [41] 0.975 0.838 0.901 0.020s

Phash (thr. 6) [89] 0.995 0.596 0.746 0.017s

Phash (thr. 8) [92] 0.991 0.707 0.826 0.017s

Inception v3 [79] +

SentenceBERT [65] 0.711 0.972 0.820 0.076s

CLIP (tweet text) [64] 0.814 0.787 0.800 0.149s

CLIP (tweet text + OCR) [64] 0.862 0.810 0.835 0.149s

CLIP (OCR) [64] 0.883 0.828 0.855 0.149s

PIXELMOD 0.990 0.979 0.980 0.223s

Table 2: Comparison of PIXELMOD with baselines.

similarity thresholds). For the image descriptors, we experi-

ment with a different number of features (30, 60, 90, and 120)

and report the best-performing F1 score for each method. We

compare these methods on GTviz.

The results of the comparison of PIXELMOD with the base-

lines are presented in Table 2. Image descriptor methods

perform poorly when used for soft moderation. This is be-

cause these approaches are designed for higher-level tasks

like object and scene recognition. Deep neural network ap-

proaches work well in identifying the subjects of moderated

images (e.g., Donald Trump or Joe Biden) and therefore report

a high recall. At the same time, however, their precision is

low, because they flag any image containing the same subjects

as similar. We find that leveraging multimodal embeddings

slightly improves the performance over DNN-based meth-

ods, but still has a very low precision (0.711) for Inception-

v3+SentenceBERT. In the same way, using concatenated em-

beddings from Open AI’s CLIP significantly increases the

precision over single-modality DNN methods, but has a very

low recall (0.828). Among the three different variants of CLIP

embeddings leveraging different channels of modalities, we

find that encoding the simplest channel, i.e. CLIP (OCR) has

the best performance. Surprisingly, encoding tweet text along-

side the OCR text, i.e., both CLIP (tweet text) and CLIP (tweet

text + OCR) does not improve the performance of the CLIP

model. This can be attributed to how state-of-the-art multi-

modal embeddings like CLIP are designed to match image

and caption pairs, and therefore fail to capture the nuances of

text and media co-usage in social media. Perceptual hashing

approaches, on the other hand, identify visually similar im-

ages and therefore report a high precision. At the same time,

the need to exclude images that are visually similar but con-

tain text that is contextually different forces these approaches

to use low similarity thresholds, which limits their recall.

PIXELMOD overcomes the limitations of all three types

of approaches. The use of perceptual hashing allows our ap-



proach to have better precision than neural network-based

ones. At the same time, the use of OCR to determine the

context of an image allows PIXELMOD to operate at a higher

threshold than existing systems based on perceptual hash-

ing, addressing the low recall reported by these methods.

While PIXELMOD’s precision is slightly lower than the best-

performing perceptual hash method (0.990 vs. 0.995), its re-

call is the highest among all tested approaches. As a result of

this, PIXELMOD reports the best F1-score among the tested

approaches, balancing false negatives and false positives bet-

ter than previous work.

We also compare the runtime of different systems in Ta-

ble 2. For each method, we report the combined time of gener-

ating the image embeddings and indexing those embeddings

on Milvus, averaging over 5 independent runs on identical

system load. The time for retrieving visually similar images

from Milvus is not considered as Milvus optimizes the re-

trieval time across all embeddings of different sizes (average

of 0.27 seconds) for all of the systems. We can observe that

the runtime of PIXELMOD is around 8 times slower than

DNN-based methods, and about 10 times slower than per-

ceptual hashing-based methods. Computing the OCR label

of an image is the most time-consuming operation of PIX-

ELMOD compared with other methods as it takes an average

of 0.223 seconds per image. While this is a large overhead

incurred by PIXELMOD, we need to keep in mind that its

OCR component is only triggered when a similar image to

a seed one is identified within the threshold of θvisual , which

only occurs for 0.973% of the images in GTviz. When there

is no match, the time overhead of PIXELMOD is the same

as PDQHash. Therefore, we argue that this slowdown of 0.2

seconds every 100 images on average is an acceptable trade-

off, allowing PIXELMOD to improve its F1-score by 8% over

the second best performing algorithm and allowing for more

comprehensive soft moderation.

To further check the impact of the OCR component of PIX-

ELMOD, we examine how the latency of OCR changes with

increasing amount of text in the images. We characterize the

amount of text by using the percentage of image area cov-

ered by it. Figure 5 shows a scatter plot of the OCR runtime

against the percentage of image covered by text in GTviz. The

Pearson’s correlation coefficient (r) between the percentage of

image covered by text and runtime is 0.401, suggesting a mod-

erate positive correlation between runtime and the amount of

text contained in an image. This moderate correlation indi-

cates that the fraction of image covered by text plays a role in

the OCR runtime.

5.2 Detecting Visual Misleading Information

on Twitter using PIXELMOD

In this section, we evaluate PIXELMOD in the wild to further

identify images that, while spreading false information, were

not moderated by Twitter. This showcases the utility of our
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Figure 5: Latency of OCR by changing the percentage of text

covering images in GTviz.

approach while also highlighting the serious need for scal-

able and automated techniques to identify visually misleading

information. We first build a set of seed images spreading

misleading information, using the 2020 US Presidential Elec-

tion as a case study. We then apply PIXELMOD to find more

images that are similar to the seeds that should have been

moderated but were not. Finally, we perform a thorough qual-

itative analysis of the types of images detected, providing a

characterization of image-based misinformation in the con-

text of the 2020 US Presidential Election and how they align

with Twitter’s platform policies.

5.2.1 Identifying and Filtering 2020 US Presidential

Election misleading images

In this section, we first describe how we select a dataset of

images that received soft moderation from Twitter in the con-

text of the 2020 US Presidential Election. We then present the

results reported by PIXELMOD when looking for similar im-

ages in the wild and compare these results with the coverage

of the moderation applied by Twitter.

Building a seed set of misleading images. To build a seed

set of misleading images contained in tweets that were mod-

erated by Twitter, we use datasets D1 and D3. Following the

methodology of [91], we check the moderation status of all

tweets in D1 during late 2022 and find 1,133 tweets that were

moderated by Twitter. Unfortunately, D3 is too large (6.9M

tweets) for us to check the moderation status of each tweet,

given the limitations imposed by the Twitter API. Therefore,

we only check for the tweets containing an image that oc-

curred more than 5 times in D3, based on their PDQhash,

resulting in 542,700 candidate tweets. From these, we identi-

fied a further 3,134 tweets with images that were moderated.

Combining the moderated tweets from these two sources, we



(a) Comfy Pepe meme used as

media on a tweet.

(b) A cartoon illustration used as

media on a tweet.

Figure 6: Moderated images irrelevant to the 2020 election.

end up with a final seed set of 4,267 images.

An issue that we face at this stage is that our dataset con-

tains tweets that were moderated by Twitter, but we do not

know if the moderation decision was made based on the im-

age included in the tweet or based on the text. In fact, it is

rather common for social media users to include generic im-

ages (e.g., memes or GIFs) in their posts that do not contain

false information themselves. Two examples of these types of

tweets are presented in Figure 6. Neither image conveys false

information, but the text is clearly supporting false claims of

election fraud. If we kept these images in our seed dataset,

PIXELMOD would flag many unrelated tweets that just hap-

pen to include them, greatly reducing its effectiveness.

To avoid this issue, we manually annotate the 4,267 tweets

with images that were moderated by Twitter, discarding those

not directly related to false claims about the 2020 US Presi-

dential Election. We first sample 200 images from the 4,267

seed images and have two annotators independently label

them as being relevant or not. The annotators then discuss

their results, finding that 186 out of 200 images were relevant

with nearly perfect agreement (Cohen’s Kappa score of κ =

0.9177 [55]). This indicates that an image’s relevance to the

2020 US Election is clearly understood between the two anno-

tators. We then split the remaining 4,067 seed images between

them and wind up with a total of 959 relevant images.

Detecting misinformation images using PIXELMOD. Fi-

nally, we use PIXELMOD to retrieve more tweets from the

index that contain similar images to the seed misleading im-

ages. To this end, we initially retrieve 50,439 images visu-

ally similar to the 959 seed misleading images, out of which

40,244 are further filtered to be contextually similar to the

query images, and hence candidates for moderation.

To check for the accuracy of these moderation candidates

identified by PIXELMOD, we perform a false positive and

false negative analysis. First, we randomly sample 50 query

images from the 959 seed misleading images. Since the 50

query images are already manually verified to contain mislead-

ing images related to the 2020 US Presidential Election, we

can assume that visually and contextually similar images to

the images will be misleading images as well. We retrieve and

annotate all the images from our index visually similar to the

50 query images following the similar methodology used to

build GTviz in Section 4, resulting in a reference set of 10,387

images. Upon querying PIXELMOD with the same 50 query

images, it retrieves 10,172 images both visually and contex-

tually similar to the query images as moderation candidates.

We find that 96 of these detected images are both visually and

contextually dissimilar to the corresponding query images,

resulting in a false detection rate of 0.99%. This is due to the

well-known limitations of perceptual hashing algorithms [92],

for example when dealing with images where a solid color

background dominates. On the other hand, we find that PIX-

ELMOD has a false negative rate of 2.06% as it could only

successfully detect 10,172 images out of the possible 10,387

images. Based on these results, PIXELMOD performs a lot

better than Twitter’s internal soft moderation approach, which

moderated only 521 of those 10,387 images (94.98% false

negatives).

Finally, we check if the candidate tweets containing the

images identified by PIXELMOD were also moderated by

Twitter. Following the methodology in [91], we extract the

relevant metadata related to soft moderation interventions for

the tweet. Out of the 40,244 tweets checked, we find that only

2,950 tweets received soft moderation interventions by Twit-

ter. We were unable to check the intervention-related metadata

for 2,479 tweets as they were inaccessible during the time

we conducted the study. This analysis indicates that Twitter’s

soft moderation approach is inadequate, with a large propor-

tion of tweets (92.66%) containing misleading images left

without moderation, and it showcases the utility of automated

approaches like PIXELMOD.

5.2.2 Characterizing misleading images about the 2020

Presidential Election on Twitter

In this section, we perform an in-depth analysis of the images

identified by PIXELMOD. To aid human annotation, we first

group visually similar images into Image Stories. We then

code the extracted Image Stories according to Twitter’s plat-

form content policies [83, 84], with the goal of understanding

how the detection performed by PIXELMOD aligns with the

platform’s existing moderation guidelines. Finally, we inves-

tigate whether misleading images violating different types of

content policies get moderated differently by Twitter.

Aggregating misleading images into Image Stories. To help

manually code the images detected by PIXELMOD, we ag-

gregate them into Image Stories. We define an “Image story”

as a set of similar images that convey the same misleading

message in the same context. For example, the three images



included in three different tweets in Figure 1 are visually sim-

ilar and should be grouped together. To this end, we follow a

grouping approach similar to the one adopted by Zannettou

et al. when studying image memes [92].

First, we apply clustering to the PDQhash embeddings of

the images detected by PIXELMOD to group visually similar

images by using the DBSCAN clustering algorithm [27]. To

use the DBSCAN clustering algorithm, we need to select pa-

rameters for two parts of the process: i) distance threshold for

assessing similarity, and ii) minimum number of elements in

a cluster. Through the experimental validation performed in

Section 4, we have already established that using PDQhash as

the syntactic embedding, with a θvisual of 90 is best suited for

identifying visually similar images. We use this empirically

informed distance threshold as the Hamming distance differ-

ence threshold for the first clustering parameter and set the

minimum number of elements in a cluster to be 1, to allow

for misleading images that occur in isolation, without visual

variants. Upon using the DBSCAN algorithm to cluster the

40,244 images detected by PIXELMOD, we obtain 258 clus-

ters of images. These image clusters represent the misleading

images aggregated into visually similar claims conveying the

same misleading message.

Analyzing misleading images through the lens of Twit-

ter’s Platform Policies. We present our codebook, which

guides our annotation process for characterizing Image Sto-

ries used during the 2020 Presidential Election. We develop

the codebook such that it aligns with the platform policies

of Twitter [83, 84]. We use two different policies outlined

in Twitter’s Platform Integrity and Authenticity resources:

i) Synthetic and manipulated media policy [83] and ii) Civic

Integrity Policy [84]. Each policy contains multiple categories

of violations, and each category is broken down into multiple

rules. The Civic Integrity Policy outlines how “Twitter should

not be used for the purpose of manipulating or interfering in

elections or other civic processes such as refereed, censuses.”

We include 3 different categories from the Civic Integrity

Policy out of the four available, which we discuss in further

detail. The fourth category, “False or misleading affiliation”

is related to the use of fake and parody accounts, and thus not

related to misleading images. Similarly, we include the “Syn-

thetic and Manipulated Media Policy” as this policy covers

the usage of media on Twitter, which is the major modality of

content in our study. The details of the individual rules and

categories are listed in Appendix A.

To begin the process, we first randomly sample 100 Image

Stories out of the 258 extracted to guide us in developing the

codebook. First, we take each of the 16 different rules of Twit-

ter’s Civic Integrity Policy [84], divided into four major cate-

gories as the draft of our initial codebook. Two annotators in-

dependently code the sampled images, considering additional

contextual information learned from fact-checking articles

associated with them. We discussed these codes, repeating the

process three times until the final codebook reached a point

(a) Participation in civic pro-

cesses.

(b) Intimidate people from civic

processes.

(c) Outcomes of civic processes.

(d) Synthetic and Manipulated

Media.

Figure 7: Example images violating four major categories of

Twitter’s Civic Integrity Policy.

where further iterations would not improve it. Note that we use

the 16 different rules to help us identify the closest violation

of Twitter’s platform policy by the images while annotating

the Image stories with the granularity corresponding to the

four categories associated with the rules. We reach a nearly

perfect agreement (Cohen’s Kappa score of κ = 0.9 [55]).

Positioning the extracted Image Stories alongside the plat-

form policies of Twitter helps us re-evaluate the content mod-

eration decision based on Twitter implementations and poli-

cies. We present an example image violating each of the four

categories discussed in Figure 7. In the rest of this section, we

describe the four categories in our codebook in detail, along

with their definitions and our evaluation for matching images

with the corresponding category.

1. Misleading information about how to participate in

civic processes: This category refers to images that mislead

people about “election participation procedures and require-

ments, cause confusion about officials, or discuss threats to

voting locations.” Note that we did not find any images related

to threats at voting locations in the extracted image stories. For

election participation procedures and requirements, mislead-

ing images aim to spread false claims about the irregularity of

the criteria by which votes are being cast. For example, dead

people are casting votes; votes are cast multiple times; votes

are being cast after the closing of polls. Misleading images

may also claim that mail-in ballots are insecure, illegal, and a



source of voter fraud. Figure 7a aims to intimidate voters from

voting by mail, casting doubts over the security of mail-in

ballots despite mail-in ballots proven to be safe to use [1].

2. Misleading information intended to intimidate peo-

ple from civic processes: This category contains images that

mislead people about “how votes are being counted (or not

counted), problems with ballot equipment, disruption at vot-

ing locations, and the closing of polls”. Misleading images

in this category aim to make claims about legitimately cast

ballots getting invalidated, malfunction of voting machines,

switching of votes between candidates, and deleting of votes

on the machines. We find images spreading misleading claims

about disruptions at voting locations like poll workers filling

ballots, poll workers forcing voters to use Sharpies, and ballot

observers not being allowed to observe the counting process.

The example in Figure 7b is spreading false claims about

ballots using Sharpies in Arizona being invalidated and poll

workers forcing people to use Sharpies [75].

3. Misleading information about the outcomes of civic

processes: This category refers to the images that mislead peo-

ple about “election rigging, ballot tampering, vote tallying,

declaration of premature victory, casting doubt on the out-

come of civic processes, calling for interference with the im-

plementation of election results, and undermining public con-

fidence in the methods and results of the election.” Misleading

images in this category aim to make claims about the illegal

processing and handling of ballots, which include alteration,

manipulation, destruction, forging, counterfeiting, stealing,

and pre-filling ballots. We also find false claims about voter

registration and turnout, and visual and statistical anomalies

in patterns of vote counting. By casting doubt on the outcome

of civic processes, misleading information aims to question

the integrity of the election process, discredit different stages

of election processes, and call for interference with the im-

plementation of election results using slogans such as “Stop

the Steal,” “Fraud.” The misleading image in Figure 7c casts

doubt over bipartisan vote tallying process, suggesting that

Trump ballots were discarded in garbage bags [1].

4. Synthetic and Manipulated Media: This category refers

to images that are “significantly and deceptively altered, ma-

nipulated, or fabricated, and images shared with deliberate

intent to deceive people”. For this category, included images

are significantly and deceptively altered, manipulated, or fabri-

cated. On the other hand, images shared with malicious intent

include out-of-context tweets sharing the media. For exam-

ple, adding quotations shared in the past that are taken out

of context to spread election misinformation or images from

the past that are re-used in the present context, like discarded

ballots from the 2018 election being repurposed to say ballots

are being tampered with in the 2020 election. Figure 7d is

a doctored image in connection to the “Bush-Gore Florida

recount” during the presidential race in 2000 [9], shared by

a Trump campaign spokesman.The Washington Times later

confirmed that they never published such a story [69].

We assign each Image Story to one category. There are

some observations from our annotation process: We notice

that the use of memes is common in spreading misleading

information. They are designed for people to add text to them

to make a variation. During the annotation process, we first

assess the overlay text on the memes to see if it falls into

any of the categories other than the fourth: Synthetic and

Manipulated Media. If it does not, we classify it as an image

altered to be shared with malicious intent.

We also find that a large portion of images are used out of

context and could potentially be categorized into the fourth

category: Synthetic and Manipulated Media. However, out-of-

context information is widely used to push narratives related

to the other three themes. Thus, we take precedence of an-

notating the images into the first three categories if it suits

any. Otherwise, it is annotated as the fourth category. We

annotate these images according to their primary content to

expand and deepen the qualitative analysis of these moderated

images. For example, a screenshot of a video clip in which

ballot workers are transcribing ballots is used out of context

and spread with the misleading content of “ballot stuffing.” In

this example, the medium of spreading the misleading image

is taking it out of context. However, the primary content be-

ing spread is related to vote counting and ballot tampering,

which falls under the Twitter Civic Integrity Policy. Thus, we

annotate it as Category Three: Misleading information about

the outcomes of civic processes.

Moderation of misleading images by violation category.

After associating the misleading images with the correspond-

ing platform policy violations, we want to understand whether

Twitter is more likely to moderate images violating some of

them. Table 3 reports the breakdown of the rate of moderation

by Twitter of images belonging to the different categories

of violations, among the tweets identified by PIXELMOD. A

high-level overview of the breakdown by category suggests

that Twitter moderated specific types of misleading image

stories more aggressively, while the moderation rate on other

categories appears to be laxer. Misleading image stories of

the categories “Intimidation from Civic Processes” and “Par-

ticipation in Civic Processes” are moderated the most, with

5.96%, and 4.16% of the images getting moderated. Surpris-

ingly, the most popular category of content violation among

image Stories, “Misleading information about outcomes of

civic processes” has the lowest moderation rate of 1.77%.

Finally, images violating the category “Synthetic and Manip-

ulated Media” have a moderation rate of 2.76%. While we

can make overall observations that different types of platform

policy violations might have been disproportionately moder-

ated from Twitter’s end, we find concerning results of overall

moderation rate across the categories being very low.



Category # Image stories Moderation %

Participation in Civic Processes 57 4.16%

Intimidation from Civic Processes 78 5.96%

Outcomes of Civic Processes 81 1.77%

Synthetic and Manipulated Media 42 2.76%

Table 3: Moderation rate of images breakdown by category.

6 Related Work

Soft Moderation Approaches by Social Media. Social me-

dia platforms namely Facebook and Twitter have increas-

ingly shifted their approach towards warning labels as a

tool for content moderation, and additionally, provide sur-

rounding context to the users when interacting with poten-

tially false information. These platforms have applied warn-

ing labels on false information shared ranging from Covid-

19 pandemic [21, 23, 67, 68], 2020 US Presidential Elec-

tions [5, 14, 19, 34] to climate denial misinformation [17, 20].

Twitter has reported that approximately 74% of the tweet

viewership happened after the warning labels were applied

to the tweets and, warning labels were effective in decreas-

ing users quoting the misleading tweets by an estimated 29%.

Savvas Zannettou [91] performed empirical analysis on a sam-

ple of 2,244 tweets with warning labels related to the 2020 US

Presidential Elections. Paudel et al. proposed LAMBRETTA, a

system that aims to improve soft moderation of textual content

on Twitter by leveraging Learning to Rank [61]. To the best of

our knowledge, PIXELMOD is the first end-to-end approach

to perform soft-moderation of images on social media that

has been proposed by the research community.

Applications of Perceptual Hashing in Computer Secu-

rity. Perceptual hashing techniques have been widely used in

computer security, leveraging them to detect phishing web-

sites [47], scam websites [46, 56], fraudulent services [60],

and to identify impersonators on social media [30]. Perceptual

hashes have also been used for content authentication [6, 86],

and tamper detection on images [80, 94]. Alkhowaiter et

al. [8] evaluated six types of perceptual hashes on their ability

to detect image manipulation and transformation over two

major social media platforms: Facebook and Twitter. Histori-

cally, Microsoft developed PhotoDNA [40], a type of syntactic

embedding to identify and report the distribution of child ex-

ploitation material. Facebook currently uses PDQHash in the

“ThreatExchange” platform
1

to share “signals” of harmful

media on their platform.

Image-based misinformation in social networks. Several

studies are focusing on developing automated detection meth-

ods to identify images containing misinformation, either ma-

nipulated images [2, 12, 95], or images that are taken out of

context or misinterpreted on social media [3, 10, 25, 42, 96].

Most of the works on multi-modal misinformation tackle

1
https://developers.facebook.com/docs/threat-exchange/

classifying or detecting a single image as misinformation,

while very few works have focused on studying the spread,

and diffusion of misleading images within and across social

media. The closest work to PIXELMOD is a system called

DejaVu [53], which is designed to assist journalists in col-

laboratively addressing the spread of visual misinformation

by using ORB descriptors [70] (another type of syntactic em-

bedding) to encode the images, and FAISS [43] to index the

images. Additionally, other works study the spread of COVID-

19 media through WhatsApp in Pakistan [41], and other types

of visual misinformation in WhatsApp [44, 66]. On the other

hand, works by [59, 93] study the usage of images in state-

sponsored influence campaigns. Wang et al. [89] analyzed the

spread of Fauxography images on social media, which are

images that are presented in an incorrect or untruthful fashion,

by using ground truth fact-checked images from fact-checked

organization Snopes
2
. Similarly, Zannettou et al. used vi-

sual similarity (i.e., perceptual hashing) and images annotated

by the website KnowYourMeme to study the evolution and

diffusion of image memes posted on social media [92].

7 Discussion and Conclusion

In this paper, we presented PIXELMOD, a scalable system

able to identify images that are candidates for soft moderation

on Twitter. PIXELMOD overcomes the inability of perceptual

hashing to discern the context of an image by incorporating

OCR into the matching process. Our results show that PIX-

ELMOD outperforms three types of image-matching systems

based on perceptual hashing, image descriptors, and deep neu-

ral networks. With the highest F1-score among competitors,

PIXELMOD places itself as the state of the art in automated

image-based soft moderation.

We believe that PIXELMOD (which we make publicly avail-

able)
3

will be an inspiring foundation for researchers and

online platforms aiming to improve content moderation on

social media. In the rest of this section, we first discuss the

ethical considerations of our work and design implications

that online platforms should keep in mind when deploying

PIXELMOD. We then discuss the limitations of our approach

and some directions for future work.

Ethical Considerations. Our work only uses publicly avail-

able Twitter data that was collected from the official API

while it was still open to academic researchers, and we do not

interact with users. As such, this work is not considered hu-

man subject research by our institution. We also preserve the

privacy of Twitter users as we do not analyze any personally

identifiable information (e.g., location data, account names)

and blur the regions of example tweets used in the paper con-

taining identifiable (meta)data. Additionally, we take steps

to blur the example images used in the paper unless i) they

2
https://www.snopes.com/fact-check/

3
https://github.com/idramalab/pixelmod



are public figures, ii) they are an illustration, and iii) they

are stock images. As with any content moderation system,

PIXELMOD could be used for malicious purposes like cen-

sorship and surveillance. We advocate that the system should

be used with ethical principles in mind, following the respect

for public interest and beneficence principles from the Menlo

report [45].

Design implications. Our experiments found that Twitter

soft moderation misses most images that should be labeled.

This means that leveraging PIXELMOD would help Twitter’s

moderators cover more false information on their platform.

However, when deploying PIXELMOD, Twitter or other on-

line platforms should take several aspects into consideration.

First, while PIXELMOD’s detection performance exceeds that

of existing approaches, a false detection rate of 0.99% may

still be considered too high by online platforms to consider

its adoption as a fully automated soft-moderation system. We

envision PixelMod to be used by platform moderators as a

tool to identify a set of candidates for soft moderation with

limited false positives, which then receive manual vetting. The

ultimate decision on whether to apply the moderation labels,

however, should remain with the human operator. This is not

dissimilar from what online platforms are doing already, but

our approach would allow them to obtain a more comprehen-

sive view of misleading content on their network. Addition-

ally, PIXELMOD could help address the main pain points of

relying on human moderation, which is the latency in decision-

making and having limited moderator resources [11, 78].

Second, PIXELMOD is an inherently reactive system: it

requires a set of images already identified by the platform

as misleading. This process could be streamlined by using

example images that have been fact-checked by dedicated

organizations [89]. When curating the set of seed images in

Section 5.2.1, we found that querying images directly from a

list of moderated tweets can be tricky, since all of the moder-

ated images might not be of misleading nature. In such cases,

moderators using PIXELMOD should take an additional step

to ensure the query images are misleading in nature, rather

than ambiguous images not related to the events being studied,

to get the most relevant results as candidates for moderation.

Misleading images can spread across multiple social

media platforms, propagating with different contexts and

forms [39, 90]. Platforms can use PIXELMOD as a tool along-

side an industry-shared database of known misleading image

hashes for tracking the spread of misleading images on their

service and across other online communities. Platforms al-

ready use shared databases for tracking Child Sexual Abuse

Material (through the National Center for Misleading and Ex-

ploited Children) and terrorism content (through the Global

Internet Forum to Counter Terrorism) [22, 33, 58]. A tool like

PIXELMOD backed by a centralized database could easily

be added to major social media platform’s existing efforts to

combat fraud and misinformation [77].

Runtime implications. As discussed in Section 5.1, the in-

creased runtime overhead of PIXELMOD is due to the OCR

component, which only gets triggered for 0.973% of the im-

ages in GTviz. This rate is 1.450% among the 19.7M images

used in our ‘in-the-wild’ evaluation in Section 5.2.1. It is to

note that factors like image resolution, background, and font

complexity could also impact the runtime of the underlying

OCR engine. The overhead reported is an upper bound on

the runtime of PIXELMOD and the average runtime of our

system is in the same order as other baselines. This occa-

sional slowdown is a tradeoff we make for increased recall for

PIXELMOD, which allows us to achieve a much higher cover-

age of soft-moderation candidates than the ones achieved by

Twitter. However, PIXELMOD can be adapted according to

the content moderation budget of the platform. The initial set

of results retrieved by PIXELMOD (visual matches to query

images) can be sorted or filtered through metadata such as

the popularity of the account posting the images, or other

metadata aligning with specific content moderation strategies

of a platform, before passing through the contextual similarity

component.

Applying PIXELMOD to other platforms and topics. We

could not test PIXELMOD on other topics and platforms due to

the lack of reliable datasets across platforms and topics. First,

we are not able to test our system on other social media plat-

forms due to the lack of access to a uniform sample of posts

(like the 1% sample that forms our D2 dataset) While datasets

containing misleading images exist for other platforms like

WhatsApp and Telegram, these are not suited for our eval-

uation since they only contain a single instance of labeled

misleading images, making the visual similarity research pro-

cess that is at the center of PIXELMOD moot. Even though

Twitter applied warning labels on COVID-19 misinformation,

these were unreliable and inconsistent [48, 52], which we

independently confirmed in our preliminary analysis. Despite

the limitations on evaluation settings, we expect PIXELMOD

to generalize well across multiple platforms and topics. The

only requirement for a platform to apply PIXELMOD to a

new campaign is a set of seed images that are known to be

misleading, and the system should generalize well to other

platforms and topics, as the underlying image embeddings

are syntactic in nature, and do not incorporate any domain-

specific metadata (e.g. number of retweets, number of likes

available on tweets).

Limitations. Despite the promising performance of PIX-

ELMOD in identifying visually similar images at scale, the

embedding used by PIXELMOD (PDQHash) is vulnerable to

adversarial manipulations [36, 38]. An adversary could mod-

ify images to have a PDQhash that is very far from the one

of the corresponding seed image, generating a false detection

by PIXELMOD. This is a serious risk, and future research

should investigate defenses against these attacks. Some po-

tential avenues of defense are utilizing an ensemble of hashes:

combining results from both pHash and PDQHash [36], and

adversarial training of embeddings [87]. Using an ensem-



ble of hashes would force an attacker to jointly optimize the

adversarial attacks against an ensemble of hashing methods

as opposed to a single method, thus increasing the opera-

tion cost on the end of adversaries. Future works can also

look at incorporating the contextual information (OCR text)

contained in the images as part of generating the syntactic

embeddings themselves, making it difficult for adversaries

to modify the images without deviating from the contextual

messaging of the images. At the same time, the threat model

here assumes centralized coordination by an adversary. While

this is within reach when dealing with state-sponsored disin-

formation actors [59, 71], it is not applicable to content spread

autonomously and in good faith by regular users, for example

in the wake of the uncertainty surrounding the COVID-19

pandemic. In the case of crisis scenarios, misleading content

with significant risk factors might proliferate as many differ-

ent variants of the original content as a consequence of the

broad and diverse vector of sharing by people. This might

render the initial set of seed hashes and similarity threshold

being used ineffective in tracing the spread of the images.

One such example of this was the spreading of videos of the

Christchurch mosque shooting, where Facebook reported that

their systems were defeated by variants of the original videos

as bad actors started sharing it [58]. Platforms could use meth-

ods from online learning to update the seed set of hashes to

flag, and dynamically adjust the distance threshold in specific

crisis cases to better handle such events.

Apart from applying soft moderation warning labels, Twit-

ter outlines “reduced visibility” as a possible consequence

for tweets violating their Civic Integrity Policy [84]. This

means it is possible Twitter could have identified all of the

images subsequently identified by PIXELMOD, and chosen to

reduce visibility of tweets including them instead of applying

warning labels. However, we cannot analyze this phenomenon

due to the lack of any public metrics regarding the visibil-

ity of tweets. Due to the nature of the evaluation datasets,

images containing multi-lingual text could not be evaluated.

Therefore, future applications of the system in multi-lingual

settings might require further configuration of the underlying

OCR engine (e.g. specifying “languageHints” parameters

in Cloud Vision OCR engine with the intended language of

evaluation).

Future work. In the future, we plan to apply PIXELMOD to

other online platforms. The approach is platform-independent,

and this could give interesting insights on how misinforma-

tion spreads across different online communities, and which

communities are particularly influential in generating viral

image misinformation. For example, we believe quite strongly

that because of its low computational overhead and high per-

formance, it makes a good fit for deployment by decentralized

social networks (e.g., Mastodon), an environment where re-

cent work has shown the potential to actually help improve

PIXELMOD’s performance via federated model sharing [13].

Since our approach does not require any platform-specific

information, it is particularly interesting as a basis for further

research, especially at a time where academic research is be-

ing seriously threatened by the discontinuation of the Twitter

Academic API as we know it. Regardless of the specifics

of future work, our presentation of PIXELMOD provides a

roadmap for measuring, tuning, and benchmarking soft mod-

eration systems; critical for any moderation tool’s success.

We strongly believe that the computer security community

has a lot to say in this space, and hope that more researchers

will get into this space.
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A Twitter’s content policies and violations.

We list the four different categories of Twitter’s platform pol-

icy violations and the corresponding rules for each category

below.

noitemsep

• Misleading information about how to participate.

– Images misleading people about participation pro-

cedures and requirements.

– Images sowing confusion about officials and insti-

tutions.

– Images discussing threats on voting locations.

• Misleading information intended to intimidate people

from civic processes.

– Images about votes not being counted.

– Images about Equipment Problems.

– Images about disruptions at voting locations.

– Images about closing of polls.

• Misleading information about outcomes of civic pro-

cesses.

– Images undermining public confidence in methods

and results of election.

– Images with misleading claims about election rig-

ging.

– Images with misleading claims about ballot tam-

pering.

– Images with misleading claims about vote tallying.

– Images with declaration of premature victory.

– Images casting doubt on outcome of civic pro-

cesses.

– Images calling for interference with the implemen-

tation of election results.

• Synthetic and Manipulated Media.

– Images that are significantly and deceptively al-

tered, manipulated or fabricated.

– Images shared with malicious intent , including out

of context tweets sharing the media.
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