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Abstract—Mobile phones enable the collection of a wealth
of private information, from unique identifiers (e.g., email
addresses), to a user’s location, to their text messages. This
information can be harvested by apps and sent to third parties,
which can use it for a variety of purposes. In this paper we
perform the largest study of private information collection (PIC)
on Android to date. Leveraging an anonymized dataset collected
from the customers of a popular mobile security product, we
analyze the flows of sensitive information generated by 2.1M
unique apps installed by 17.3M users over a period of 21 months
between 2018 and 2019. We find that 87.2% of all devices send
private information to at least five different domains, and that
actors active in different regions (e.g., Asia compared to Europe)
are interested in collecting different types of information. The
United States (62% of the total) and China (7% of total flows) are
the countries that collect most private information. Our findings
raise issues regarding data regulation, and would encourage
policymakers to further regulate how private information is used
by and shared among the companies and how accountability can
be truly guaranteed.

I. INTRODUCTION

Data has become the commodity that sustains much of
the Web. In recent years, the research community has raised
awareness on the threats linked to sensitive user data collection
by third parties. For example, specialized companies collect
information from Web users to uniquely identify them across
websites, potentially to provide them with more tailored ad-
vertisements [4], [32], [35], [46], [67]. In some cases, rogue
browser extensions collect information that is supposed to
remain private, such as a user’s browsing history [15], [81].
As mobile devices become more central in the computing
experience of users, the threats linked to private information
collection increase. Mobile devices can provide a wealth of
sensitive information [36], [53] that goes beyond identifiers
to uniquely fingerprint users [58], including location infor-
mation [22], [44], [77], call logs, text messages, and even
information on which applications are installed a device [90].
This information can be used by third parties to deliver targeted
advertisements [50] as well as for nefarious reasons, from
stalking a victim by monitoring her location [14] to defeating
two factor authentication by stealing text messages [34].

There exist insightful research efforts [12], [16], [17], [27],
[32], [33], [41], [58], [61], [65], [68], [76] to understand
the impact and the threats posed by information collection
on mobile devices. It remains however very challenging to
obtain a comprehensive view of the information collected
by mobile apps, given the wealth of potential information
collected, the software diversity of mobile platforms, and the

geographic diversity of mobile users and of the actors that they
interact with. To shed light on the problem, previous research
resorted to running apps in a sandbox environment [16] or
analyzing network traffic [12], [61], [65] to monitor the
information that they leaked. While this approach can be
useful to identify trackers, it has two limitations: first, by
running apps from a single vantage point it is challenging to
replicate the geographic diversity of real users; second, apps
could detect sandboxed environments and act in a different
way than they would on real devices (for example by not
leaking any sensitive information), and this could bias the
results [48], [62], [78]. Alternatively, previous work collected
network data from an ISP, looking for information leaks [32],
[33], [76]. While this approach solves the sandbox detection
problem, it still has a geographic bias, since different users
around the world might be using different apps and might
be subject to different types of sensitive data collection. As
a third approach, researchers recruited participants to install
an app on their mobile phones; the app would then monitor
the device for information leaks [58]. This approach solves
the issues mentioned above and offers insightful findings, but
it remains a challenging task to attract a population of users
that is large and diverse enough to represent worldwide trends
at scale. Additionally, previous research [58] either mainly
looked at information collections that can be used to identify
a device (e.g., IMEI numbers or SIM card information) or
considered limited types of sensitive information that can be
collected by third parties [36], [52], [61], such as birthday,
username/passwords, contacts, media files, etc.

In this paper, we provide the most comprehensive view of
private data collection by Android apps to date. To achieve
this, we tap into the analysis infrastructure of a popular
mobile security product. The company behind this product
runs Android apps in its backend infrastructure and identifies
dangerous information flows by performing static and dynamic
analysis. It then builds signatures of method calls that are
indicative of privacy invasive activity and pushes them to
the mobile devices that installed the security product, which
use them to identify privacy invasive and malicious apps that
have been installed. This infrastructure allows us to monitor
the information collected by apps for a population of 17.3M
devices daily for 21 months between 2018 and 2019. This
is three orders of magnitude more devices than what pre-
vious work analyzed [58]. Compared to previous work, we
go beyond tracking, contact, and credential information, and
trace 22 categories of private information, 13 of which were
not considered by previous work [12], [52], [58], [61] (see
Section II). This allows us to paint an unprecedented picture of



TABLE I: Summary of datasets used.

Dataset Data Count

Mobile app activity log Total records 6B
(01/2018 - 09/2019) Days 634

Countries and regions 201
Devices 17.3M
Distinct app names 2.13M
Distinct app SHA2s 6.5M
Distinct PIC FQDNs 76,451
Distinct PIC domains 40,851

Mobile app reputation log Low reputation SHA2s 3.4M

VT Total reports 6.5M
PHA SHA2s (detections ≥ 6) 3.5M
Benign SHA2s (no detection) 2.3M
Not found SHA2s 401K

Domain to owner org. Domains 10,736
(01/2018 - 09/2019) Organizations 9,593

Blacklists Domains/IPs 7,670
(01/2018 - 09/2019)

Geolocation Domains/IPs 40,851
(01/2018 - 09/2019)

the state of sensitive information collection on Android in the
wild, identifying the big players in this space (both legitimate
companies and malicious actors), together with geographic
trends.

Among others, this paper makes the following findings:

• Private information collection is widespread on An-
droid, with 87.2% of all devices in our dataset sending
information to at least five distinct domains. While
most PIC domains collect identifiers to track a user or
a device (e.g., device information or email addresses),
an alarmingly high number of domains collect other
types of private information such as a device’s location
or a user’s contacts.

• Looking at the destinations where private information
is sent to, we find that most information flows termi-
nate in the United States. We do however find that
China, trailing the US at the second place, collects
7% of all data flows. This is three times higher than
what was reported in previous work [58]. We also find
that there was no significant difference in the number
of information flows leaving the European Union
after the implementation of GDPR. These findings
highlight the challenges involved in implementing data
protection regulations.

• We find that potentially harmful applications
(PHAs) [28] are more aggressive in collecting private
information than benign apps, especially when it
comes to information related to the apps installed
and running on a device. We also find that a small
number of devices (4k) had apps installed that steal
the user’s text messages, potentially enabling the
circumvention of two factor authentication.

Our findings highlight a number of challenges faced by the
research community when studying private information collec-
tion on Android. We show that looking at device penetration
is critical to observe the distribution of information collection
actors in the wild, and looking at application penetration only
can provide a biased view. We also highlight how looking at
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Fig. 1: Workflow of our measurement study.

users located in different regions is important to get a compre-
hensive view, since actors operating in different countries are
interested different types of information.

II. DATASETS

This section details the approach that we follow for data
collection (summarized in Figure 1) and summarizes the
datasets used in this study (see Table I).

Workflow. The overall workflow of our measurement study is
as follows (see Figure 1). We use mobile app activity data (¶)
to identify the private information collection activities from
2.13M apps (6.5M SHA2s) installed on 17.3M devices across
200 countries and regions. We then augment this data by using
Mobile app reputation data (·) and VirusTotal (VT) reports
(¸) to identify the potentially harmful apps (PHAs). Finally
we use domain and IP Whois and passive DNS (¹) to extract
domain ownership information (e.g., parent company, business
category, etc), IP and domain geolocation (º) to identify the
country where apps send data, and IP and domain blacklists
(») to identify domains associated with malicious activity. We
provide details of each step in the rest of this section.

Telemetry data collection. In this paper, we use mobile
telemetry data collected by the security company’s mobile
security product, which has been installed on millions of
mobile devices. This company has a dedicated infrastructure
to collect apks (one app may have multiple apks) from popular
Android markets and various intelligence sources. These apks
are then analyzed by a sophisticated infrastructure with both
static and dynamic analysis pipelines. For instance, the static
analysis pipeline can identify if an apk directly invokes any



TABLE II: The 22 types of private information monitored by the security app.

Group Category Description Previously studied or novel

Tracking Phone number Phone number [36], [58]
Device info IMEI, OS/kernel version, phone producer, phone model [36], [58], [61]
SIM card info Information about SIM serial number, IMSI, voicemail number [58]
Location info GPS or cell tower coordinates [36], [61]
Operator info Information about the network operator 3
Setting info Information about the device configurations 3

Activity and social profiling Account info Details about the configured accounts can be exported
(including user names of entries under Settings/Accounts) [36], [61] (partially)

Email info Details about the email address such as Gmail address can be exported [36]
Contact info Contact list can be exported [61]
Social network account Details about the social network accounts such as Facebook account can be exported 3
Voice mail account Details about the voice mail accounts can be exported 3
Call log Call log can be exported 3
SMS info App can send the content or sender/recipient details from SMS/MMS messages 3
Calendar info Calendar can be exported 3

Usage preference Installed app info Details about apps installed on the phone are/can be exported
(full or partial list of installed package names, or app titles) 3

Running app info Details about apps running at a certain time are/can be exported 3
Browser history info Browser history can be exported 3
Browser bookmark info Browser bookmarks can be exported 3

Audio/Video Audio info Recorded audio clips can be exported
(e.g., recorded by the app, or picked from saved) [52]

Photo info Photo can be exported 3
Video info Video can be exported [52]
Camera info App can take pictures or picks them from gallery and exports them 3

suspicious and sensitive API (including reflection [1], dynamic
code loading [55], native code [38], etc.), requests permissions
not related to its advertised description [56], as well as perform
fine-grained permission analysis [64], [23], flow and context
sensitive taint analysis [7], etc. Third-party libraries/SDKs used
by the apps are also analyzed using the same procedure stated
above. Following the static analysis, the backend can build
an initial report on control-flow, data-flow, and permissions
related to an apk. In addition to static analysis, the security
company also performs dynamic analysis by running an apk
in a sandbox environment with various Android OS versions.
Through network and system instrumentation, the dynamic
analysis pipeline runs an apk in different conditions (e.g.,
UI-automation [29], input generation [82], apk fuzzing [85],
etc.) with varied execution time to capture its activities un-
der different contexts. For example, the dynamic analysis
pipeline reports if advertisements appear outside of an app
in unexpected places (e.g., notification bar, shortcut, etc.)
or exhibit unusual behaviors (e.g., change the user’s home
page). State-of-the-art commercial products are also employed
by the security company to deal with challenges such as
emulator/motion evasion, obfuscated code/libraries, etc. to
assist the aforementioned analysis pipelines. At the same time,
several machine learning models are built using the features
generated from the pipelines to enable the backend to detect
sophisticated PHAs. This way, the mobile security product can
fingerprint activities with high accuracy and minimize false
positives which may lead to an undesirable high customer
churn rate. Note that the infrastructure continuously inspects
apks. An apk that has been analyzed before may also be subject
to regular reinspection. By combining the results of the static
and dynamic analysis, the security company can rigorously
fingerprint traces of app activity, including the types of private
information that the app is collecting. These traces are later
used to develop signatures for the apps collecting private
information, in the form of sequences of method signatures.

These signatures are then deployed in the security product
on the mobile devices to identify installed apps that have

been linked to private information collection. If the user
permits telemetry data collection, meta-information related to
the app detections are sent to the telemetry data collection
infrastructure and used to improve the app security features
and its privacy leakage detection capability. The collected data
is safeguarded by the global privacy policy of this security
company. Devices are identified by a unique anonymized
identifier, but it is not possible to link such an identifier back
to the device. The mobile security app only collects detection
metadata, and it cannot inspect network traffic data, hence the
company does not collect any actual communication/user data,
or other types of PII. We provide a detailed discussion about
ethics and data privacy at the end of this section.

Mobile app activity data ¶. Following the aforementioned
data collection stage, we extract the following meta informa-
tion associated with detected app activities from the teleme-
try data: anonymized device identifier, device country code,
timestamp, app SHA2, app package name, category of private
information accessed, and domain to which such information
was sent. Note that we only collect activities detected with
high confidence by the security engine using the aforemen-
tioned signatures. Table II lists the 22 categories of private
information monitored by the security app and used in this
study. We organize these types into four functional categories:
tracking, activity & social profiling, usage preference, and
audio/video/photo data. To perform a comprehensive study, we
collected 634 days (i.e., 21 months) of data between January 5,
2018 and September 30, 2019. On average, we collect 10M raw
events from 17.3M devices daily. In total, our dataset covers
2.13M unique package names with 6.5M unique app hashes
across 200 countries and regions. Note that the distribution of
devices used this study is not heavily screwed towards any
specific region.

Mobile app reputation data ·. We also use the mobile
app reputation data from this security company to identify
potentially harmful applications (PHAs) [28], which have been
identified as malware or unwanted applications in general by



the company’s analysis infrastructure. This data contains meta
information associated with PHAs that are detected based on
pre-defined signatures or whose behaviors violate the pre-
defined rules. We collect meta information of apps with a
negative reputation score, which indicates PHAs. In total, we
collect 3.4M PHA SHA2s.

VirusTotal ¸. We augment our PHA dataset by querying
all 6.5M SHA2s collected from mobile app activity data on
VirusTotal, to minimize false positives and false negatives
potentially incurred by the mobile malware detection data
from the security company. We consider an app as PHA if
VirusTotal returns a minimum of six detections and a file as
benign if none of the AV companies flag it. Combining this
with the reputation data described in step ·, we identify 3.5M
PHA SHA2s. Besides, we also retain additional information
associated with these apps including signer info, detections,
etc from the VirusTotal reports.

Domain/IP to owner organization ¹. As part of our anal-
ysis, we aim to map the domain names that collect personal
information to the organizations that own them. This mapping
enables us to group multiple, sometimes seemingly unrelated
domain names under the umbrella of their parent organization.
For instance, google.com and youtube.com would be
both mapped to Alphabet. This task has been discussed in
the previous literature such as [42]. To better perform this
mapping we combine information related to domain names
from different data sources. Each data source typically enables
us to link multiple domains to a single organization or identify
a canonical name for the organization.

First, we take advantage of domain Whois to identify
domains that have been registered by an organization or its
subsidiaries. We then extract the IP footprint of organizations
from the Internet Routing Registries (IRRs) by identifying all
public IP addresses owned by these organizations. Further, we
use Rapid7’s passive DNS [57] to identify the IP addresses to
which domains resolve as well as uncover additional domains
controlled by the organizations. To limit the impact of IP
address churn and the dynamics of IP address and domain
registration we continuously update the domain to organization
mapping throughout the 21 months so that it always reflects
the most up-to-date view of the data controllers involved in
private information collection.

We then build a relationship graph by taking advantage
of previously extracted connections between domains, IP
addresses and organization names. We later per-
form a graph-based label propagation to map domains to their
most likely owning organizations. To avoid wrong mappings,
we filter out relationships involving domain registrars, Whois
privacy protection services, ISPs and cloud providers as these
services may hide the real owner of a domain and therefore
pollute our results.

Overall our dataset contains 76,471 PIC FQDNs, which
correspond to 40,851 (second-level) domains. We can map
10,736 domains to a total of 9,593 organizations. To assess
the accuracy of these results we inspect the mapping results
to remove corner cases and found that 107 domains (0.13%
of the total) were mapped to wrong organizations. Such false
positives were mainly due to domains using the same domain
registrars and technical support email addresses,e.g., some

public relations (PR) companies possibly register and maintain
domains for their different customers. Given the small number
of false positives, we consider these results accurate enough
to conduct further analysis in this paper.

Domain and IP geolocation º. One critical aspect of measur-
ing private information collection in mobile apps is the ability
to locate, i.e., identifying the country where this information
is sent to. To achieve this goal, we systematically extract the
geolocation of all domains and IP addresses with which apps
communicate. Note that these domains and IP addresses are
identified on the backend when analyzing the apps. They do
not come from actual communication/user data. To obtain the
most accurate and fine-grained location of the PIC parties
we first attempt to geolocate each domain from its country-
related top-level domain, e.g., .be for Belgium. If not
possible, we revert to geolocating the domain based on its
IP-level hosting infrastructure. To this end, we first try to
locate the individual IP address with Maxmind [45] and,
if unsuccessful, consider the coarser-grained location of its
encompassing network using the IRR (IP whois). The impetus
behind our domain geolocation approach is that the country
code of a top-level domain should provide more accurate
geolocation than its resolving IP address location, as observed
by recent work [63]. Note that to limit the impact of CDNs
(e.g., IP anycast) on the geolocation of the domains they serve,
we identify these domains by relying on CNAME DNS records
for the PIC domains and a list of CDN domains 1. Cases of
generic ccTLDs such as .io, .me, .tv or .co are handled
with care and only represent 2.7% of all domains in our dataset.
We have also noticed that some domains (about 6%) appear
to have been incorrectly extracted by the dynamic analysis
infrastructure leading to invalid domains that are therefore
discarded.

Domain and IP blacklists ». To determine whether some
apps in our dataset communicate with domains or IP addresses
that have been previously associated with malicious activities
we query large domain and IP blacklists. These feeds cover a
wide range of activity including sending spam emails, hosting
malware, phishing, and fraud websites. They are pulled from
different sources, such as Spamhaus’ SBL and DBL [66],
Team Cymru’s Botnet Analysis and Reporting Service [72],
Abuse.ch’s malware sources blacklist [3], and IPS and AV
alerts collected by the security company. We take daily snap-
shots of these feeds and can assess the reputation of each
domain and IP address throughout the period covered by our
main dataset (Jan 2018-Sep 2019).

Ethics and data privacy. At the very first screen when using
the mobile security product for the first time, users are shown
a dialog about the purpose of the telemetry collection in the
license agreement, and how the global privacy policy of the
security company safeguards the data. The license agreement
specifies that the telemetry is “processed for the purposes
of delivering the product by alerting the User to potentially
malicious applications as well as improving the app security
feature” and is “kept in an encrypted pseudonymized form.”
Detecting private data leakage from apps is one of the detection
capabilities offered by the security product. The stated purpose
for data collection therefore meets the use of the data in this

1https://github.com/appurify/OpenSource-Software-Bundle/blob/master/
webpagetest-wpt/agent/wpthook/cdn.h

https://github.com/appurify/OpenSource-Software-Bundle/blob/master/webpagetest-wpt/agent/wpthook/cdn.h
https://github.com/appurify/OpenSource-Software-Bundle/blob/master/webpagetest-wpt/agent/wpthook/cdn.h
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Fig. 2: (log-scale) Complimentary cumulative distribution
(CCDF) of mobile apps in terms of unique PIC domains (a)
and unique categories of private information collected (b).

paper, since the measurements performed in this paper are
being used by the security company to refine and improve
data protection on the customer devices. The telemetry used
in this paper does not contain any PII. The anonymized
device identifier that characterizes each device is only used
to compute device-based prevalence rates in this study and
discarded after processing.

Roadmap. The roadmap of our measurement study is laid
out as follows. In Section III, we discuss the landscape of
private information collection (PIC) in Android ecosystems.
More specifically, we start with the measurement of the per-
vasiveness of PIC apps installed on our user base, then focus on
the app presence rate and the device penetration rate to uncover
the most pervasive PIC domains globally as well as important
regional players. Once we identify the global/regional players,
we then study the destination of those private information
flows, aiming to understand the countries where these flows
terminate in Section IV, and understanding the characteristics
of the data controllers who ultimately obtain and process
the private information in Section V. Finally, we investigate
whether the type of information collected by PHAs is different
from the one collected by regular apps in Section VI.

III. LANDSCAPE OF PRIVATE INFORMATION COLLECTION
(PIC) IN MOBILE ECOSYSTEMS

In this section, we study the landscape of private infor-
mation collection (PIC) in mobile apps. First, we look at the
pervasiveness of PIC apps installed on the user base of the se-
curity vendor. We then focus on the app presence rate (i.e., the
number of PIC domains in apps) to identify the global/regional
top players. We later focus on the device penetration rate (i.e.,
the number of devices that a PIC domain collects information
from) to uncover the most pervasive PIC domains globally as
well as important regional players, understand what types of
private information are collected by these PIC domains, and
if we can observe behavioral differences in different regions
regarding private information collection.

A. Pervasiveness of PIC in Mobile Apps

In this section, we demonstrate the pervasiveness of private
information collection in mobile apps. The results are shown in
Figure 2. Apps send private information collected to 2 unique
PIC domains on average. As we can observe in Figure 2a, over
175K apps (approximately 8.2% of total apps) send collected
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api.airpush.com(A)
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seattleclouds.com(M/D)

Fig. 3: Global top 20 PIC domains ranked by app presence.
Domain’s primary function- M: Metrics/Analytics, A: Adver-
tising, and D: Development.

data to at least 5 unique PIC domains. These apps are installed
on 15.1M devices in our dataset (87.2% of all devices). At the
same time, as we can observe in Figure 2b, over 156K apps
collect at least 5 unique categories of private information (see
Table II). This covers 13M devices (74.9% of all devices).
The overlapping 57.6k apps between the aforementioned two
categories of apps cover 12.8M devices (73.8% of all devices).
In other words, 73.8% of all devices in our dataset have
at least one app collecting at least 5 unique categories of
private information and sending them to at least 5 unique PIC
domains. Our findings show that private information collection
in mobile apps is universal and diversified at the same time.

B. PIC Domains: App Presence Study

PIC organizations generally benefit from collecting data
about more users. To reach this goal, one of the strategies
adopted by these organizations is increasing their presence in
mobile apps to reach out to more users. For example, an ad
library will entice developers into including it in their apps.
Figure 3 shows the 20 PIC domains with the largest app
presence globally (i.e., the domains that were contacted by the
largest number of apps). Based on the information we collect
from Crunchbase and the company websites, we attribute
these PIC domains to three functions - Metrics/Analytics
(M), Advertising (A), and Development (D). As we can see
in Figure 3, the majority of these PIC domains (15 out of
20) offer advertising services. For example, in addition to the
PIC domains owned by Google and Facebook, several known
PIC domains operated by online advertisement companies
(e.g., api.airpush.com, android.revmob.com,
e.admob.com, ads.mopub.com) have considerable
global app presence, being contacted by 10K apps or
more. Additionally, 8 out of the top 20 PIC domains offer
metrics/analytics services. One noticeable finding from our
study is alog.umeng .com (part of Alibaba Group).
This domain has the largest global app presence and is
contacted by 79,402 apps (3% of total apps). This domain
was not reported by previous measurement studies [58],
and might be because our dataset contains three orders of
magnitude more devices, distributed across the globe (recall
that over 7M users are located in Asia). Note that a high app



Top 20 Domains Top 100 Domains 1K Domains 10K Domains

Rank Cat. # Domains # apps Cat. # Domains # apps Cat. # Domains # apps Cat. # Domains # apps

1 device info 20 192,488 device info 99 255,794 device info 993 327623 device info 9866 353662
2 settings info 20 16,096 location info 95 62098 sim card info 891 184712 sim card info 7448 224159
3 email address 19 4,638 settings info 92 21987 location info 816 106313 location info 5415 126247
4 location info 18 36,083 email address 87 6546 phone number 646 37972 settings info 2833 33491
5 social network account 17 196 phone number 85 15450 settings info 594 299501 phone number 2700 51989
6 phone number 16 7,572 sim card info 85 100204 email address 475 9250 email address 1839 14088
7 sim card info 16 41,249 social network account 68 2623 social network account 280 4042 account info 778 6299
8 account info 15 2,876 account info 61 3255 account info 247 4537 social network account 741 6051
9 contact info 14 171 call log 47 275 call log 178 364 installed app info 489 21191

10 call log 14 162 contact info 41 258 installed app info 164 18074 call log 366 596
11 sms info 13 117 sms info 39 234 contact info 139 475 contact info 350 1384
12 installed app info 10 9,795 installed app info 33 11616 sms info 129 337 sms info 340 917

TABLE III: Top 12 Private Information collected by top 20, 100, 1K and 10K PIC domains (ranked by global app presence).
We also show the number of apps collecting such information and communicating with these domains.

penetration rate does not necessarily lead to a high device
penetration rate, while the latter is directly proportional to the
real amount of data collection. We will discuss this aspect in
Section III-C.

We then investigate the diversification of private informa-
tion collection by these PIC domains from a global perspective.
Previous literature focused on unique hardware- and user-
identifiers (UIDs) to study Advertising and Tracking Services
(ATS) [58]. It remains an open question if these PIC domains
only collect UIDs given their wide presence in mobile apps. In
this study, we move beyond UIDs and leverage 22 categories of
private information monitored by the security company to show
a holistic picture of private information collection in the mobile
ecosystem. We summarize our findings in Table III. As it can
be seen, the top 20 domains collect a wide spectrum of private
information (e.g., 14 out of 20 collect call log information, 13
out of 20 collect SMS information, etc). We can also observe
that the top 10,000 PIC domains converge to collecting three
types of private information - device (9,866 PIC domains), sim
card (7,448 PIC domains), and location information (5,415 PIC
domains) - which enable them to uniquely identify and track
the end users for potential targeted advertising purpose [73],
[37]. In contrast, the top 100 PIC domains focus on collecting
more types of private information (i.e., on average, the top
100 PIC domains collect over 8 types of private information)
and build a holistic profile of users (e.g., 61 out of top 100
PIC domains collect social network account information from
the end users, in contrast to only 741 out of top 10,000 PIC
domains collecting such information).

Geographic differences in PIC domains. Figure 4a, 4c
and 4e show the top 20 PIC domains with the largest
regional app presence in North America, Europe and Asia
respectively. In addition to the top global PIC domains, we
uncover that certain PIC domains have a high regional app
presence and were not previously reported. For example,
poseidon.mobilecore.com (7,046 apps, 91% of
its global presence) and seattleclouds.com (89%
of its global presence) have high app presence in North
America, Russia-based startup.mobile.yandex.net
(1,832 apps, 72.5% of its global presence) and
mysearch-online.com (2,194 apps, 70% of its global
presence), respectively, have high app presence in Europe and
Asia. Regarding this regional presence phenomenon, we can
only speculate that it is due to the business models adopted
by these companies by focusing on serving regional markets.

At the regional level, we find that the top 20 PICs con-
tacted by apps installed on devices in different geographical
regions collect different categories of private information. Note
that we consider a PIC domain notably collects a certain
kind of private information if 20% of apps with its pres-
ence collect such information. In North America, we observe
that the top 20 PIC domains (Figure 4b) mainly collect
device information and sim card information, and only 3 PIC
domains (api.airpush.com, data.flurry.com and
ads.mopub.com) collect location information. In contrast,
top PIC domains in Europe (Figure 4d) and Asia (Figure 4f)
collect more diversified categories of private information. For
example, 8 out of 20 top PIC domains collect location and set-
tings information in both Europe and Asia, 4 out of top 20 PIC
domains in Asia prevalently collect installed app information,
with mysearch-online.com exclusively gathering such
data.

C. PIC Domains: Device Penetration Study

In this section, we investigate the top PIC domains from
the mobile device penetration rate perspective. We show that
looking at device penetration provides different results than
looking at app presence only. In fact, some of the actors who
manage to get their libraries installed in many apps do not
manage to have a large number of users running them.

Top PIC domains by device penetration rates. In reality,
a high app presence does not necessarily lead to a high
device penetration rate (i.e., the number of users sending
information to PIC domains), whereas the latter is directly
proportional to the real amount of information collection.
In the rest of the section, we focus on the PIC domains
that have high device penetration rates to uncover their
private information collection dynamics in the real world.
Figure 5a shows the 20 PIC domains with the largest device
penetration rate globally. As we can see in Figure 5a, the
top 3 PIC domains (settings.crashlytics.com,
graph.facebook.com, and ssl
.google-analytics.com) cover 8.03M, 7.8M, and
4.5M devices respectively, which are proportional to their
app presence (see Figure 3). alog.umeng.com’s high app
presence strategy also pays off covering roughly 3M devices.
However, quite a few PIC domains with high app presence
failed to gain high device penetration rates. For example,
api.airpush.com only covers 68K devices despite of its
high app presence (21K apps, Figure 3). Besides, PIC domains
controlled by revmob.com, seattleclouds.com and
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Fig. 4: (left column) Regional top 20 PIC domains ranked by app presence. Domain’s primary function - M: Metrics/Analytics,
A: Advertising, and D: Development. (right column) Heatmap illustration of top 12 categories of private information collected
by these PIC domains. Each row is normalized to [0, 1] by a PIC domain’s total app presence. The darker the red implies that
the more apps that a PIC domain collects information from.

mobilecore.com also did not manage to have high
prevalence in the devices.

Geographic differences in PICs. We also discover
that different regions present different dominant PIC
domains. For example, *.urbanairship.com and
mads.amazon-adsystem .com have high device
penetration rate in North America. config.ioam.de
(99.4% of its global presence) solely operates in Europe.
cm.ushareit.com (92.4% of its global presence),
api.mobula.sdk.duapps.com (88% of its global

presence), ads.pdbarea.com (825K, 95.4% of its global
presence) and adbsc.krmobi.com (95.4% of its global
presence) are almost exclusively contacted by devices located
in Asia. We further investigate the types of private information
collected by PIC domains with high device penetration rates,
to check if different players active in different regions are
interested in different types of private information. Our
findings are summarized in Figure 6. Each row is normalized
by a PIC domain’s total device penetration rate. The heatmaps
illustrate the main types of information collected by the PIC
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Fig. 5: Top 20 PIC domains ranked by device penetration rate. The number next to a PIC domain represents its ranking by app
presence.

domains. First, it is interesting to see in Figure 6 that the
top 20 global and regional PIC domains with high device
penetration rate focus on collecting four types of private
information from the end users - device, sim card, location
and settings information. For example, all of the top 20 PIC
domains in Figure 6 collect device information. The only
exception is logger.cloudmobi.net, a prominent PIC
active in Asia (see Figure 6d), which predominantly collects
device setting information. Approximately 50% of the top PIC
domains collect sim card, location, and setting information at
both global and regional levels. Our findings also show that
certain PIC domains consistently collect multiple types of
private information from devices, potentially enabling them
to track the end users more systematically. For example, in
Europe events.appsflyer.com (1.16M global device
penetration rate) collects device information from all devices
that connected to it, and sim card information (and setting
information) from 95% of them (see Figure 6c). Similarly,
ads.mopub.com with 1.8M global device penetration rate
(see Figure 6a, 6b and 6c) exhibits a similar behavior, i.e.,
collects location, device, and sim card information from over
80% of the devices that connected to it. In Section III-B,

we show that these two behavior patterns are different from
the ones observed when looking at the top PIC domains
ranked by app presence, where the intention is to collect more
diversified private information (see Table III). Our findings
can be treated as the profiles of PIC domains, and help
the community understand their behavior in fine granularity
(e.g., understanding the correlation between domain naming
conventions and the types of private information collected).

Summary of findings. We found that looking at app presence
can provide misleading results. In fact, some of the actors who
managed to get their libraries installed in many apps failed
to have many users running them. Further information can be
found in Section III-B. We also found that certain PIC domains
consistently collect multiple types of private information from
the devices and are capable of tracking the end users more
systematically. We observed different regional players targeting
users in different continents, and collecting different types
of private information. Following these observations, we will
further discuss the data controllers behind these PIC domains
and the implications of data protection in Section V.
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Fig. 6: Heatmap illustration of top 12 types of private information collected by both global and regional top 20 PIC domains.
Each row is normalized to [0, 1] by a PIC domain’s total device penetration rate. The darker the red implies that the more
devices that a PIC domain collects information from.

IV. PRIVATE INFORMATION DESTINATIONS

In the previous section, we focused on end user devices,
looking at the top PIC domains that collected private informa-
tion from them. In this section, we focus on the destination
of those private information flows, aiming to understand the
countries where these flows terminate.

Geolocation of PIC Domains. We leverage the technique
detailed in Section II to uncover the geolocation of the PIC
domains and summarize our findings in Figure 7. Our analysis
reveals that United State and China are the largest two coun-
tries hosting the PIC domains. The United States hosts 44% of
PIC domains, which is in line with the previous literature [58]
and China hosts 26.1% of PIC domains. This figure is three
times higher than previously reported [58]. PIC domains hosted
in the US and China collect private information from 14M
devices (80.9% of global devices) and 4.6M devices (26.5% of
global devices) respectively. Other countries host significantly
fewer PIC domains compared to the United States and China
(e.g., South Korea, ranked 3rd in the list, hosts merely 2.6%
of the PIC domains). Note that the geolocation of 6.4% of PIC

domains could not be identified because our approach cannot
trace their historical domain records.

Global private information flow. As we saw in Section III, a
PIC domain can collect multiple types of private information
from the end user. We further investigate the global private
information flow from the mobile devices to the PIC domains.
The result is shown in Figure 8a. PIC domains hosted in
the United States collect 62% (of which 42.3% coming from
out of the country) of global private information flows. PIC
domains hosted in China collect 7% of private information
flows from 4.59M devices globally. This figure is almost four
times more than previously reported [58]. At the same time,
PIC domains hosted in Singapore collect 6.53% of global
private information flows (mainly from India). The rest of the
countries shown in Figure 8a notably collect much less private
information comparing to these three countries.

European private information flow and the effect of
GDPR [79]. The European Union’s (EU) General Data Pro-
tection Regulation (GDPR) entered into effect on May 25th,
2018. It imposes obligations onto organizations in any country
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Fig. 7: Global top 20 countries ranked by the number of PIC
domains hosted.

so long as they target or collect data related to people in EU
countries (EU28). If data is being transferred to a third-party
and/or outside the EU28, GDPR requires that data subjects
must be clearly informed about the extent of data collection,
the legal basis for the processing of personal data, how long
data is retained. In light of this legislation, we measure the
private information flows originated from EU countries before
(January 5th, 2018 - May 24th, 2018) and after (May 26th,
2018 - September 30th, 2019) the GDPR effective date, and
check if GDPR has a real-world impact to private information
collection. Our findings are shown in Figure 8b and 8c. As
we can see, private information confinement within the EU is
low. PIC domains hosted in the United States dominate the
private information collection in the EU, collecting 68% and
66% of European private information flows respectively before
and after the GDPR. This figure is 30% lower than previously
reported 89.2% [58]. At the same time, Germany and Ireland
are the only two European countries that host a reasonable
portion of PIC domains and good control of private information
can be applied, while the other European countries hosting a
very small fraction of PIC domains and US remains the largest
hosting country. Notably, we uncover that approximately 4.4%
and 1.7% of private information flows are collected by PIC
domains hosted in Russia and China respectively [86], [87].

It is also interesting to see that private information collec-
tion in Europe is not affected by GDPR in general. As we
can see in Figure 8b and Figure 8c, the fractions of private
information collected by these PIC domains (and consequently
the countries hosting them) remains stable regardless of the
implementation of GDPR. Our results show that GDPR has not
stopped companies from collecting private information from
end users as long as their services are GDPR-compliant, par-
tially because that the GDPR treats first-party data uses more
leniently [30]. However, it remains an unanswered question,
especially to the consumers, how to trace their private infor-
mation after sharing with the GDPR-compliant companies, and
how accountability can be truly guaranteed [80], [47], [49].

For instance, which company should be held accountable if
a device identifier was abused (e.g., targeted advertising)
while the majority of apps in mobile devices collect device
identification information as shown in Section III-C? We aim
at studying this question in Section V.

V. DATA PROCESSORS AND CONTROLLERS

In the previous sections, we provided an overview of
the landscape of private data collection from mobile devices
(Section III) and of the countries where private information is
sent to (Section IV). In this section, we aim at understanding
the characteristics of the data processors and controllers who
ultimately obtain and process the private information and the
implications of their privacy policies to the end users.

Overview of top data processors and controllers. We
select the top 10k PIC domains covering all the devices in
this study, and use the technique detailed in Section II to
uncover the ownership of the PIC domains. The top 25 data
processors and controllers (ranked by the fraction of devices
they collect private information from) are shown in Figure 9. In
total, these 25 data processors and controllers collect private
information from 13.9M devices (80.2% of all devices used
in this study). Facebook and Alphabet are the two dominant
data controllers, collecting private information from 9.3M and
9.1M devices respectively. AppsFlyer is the third largest data
processor/controller collecting information from 3.4M devices.
It is worth noting that there are six Chinese companies among
the global top 25 data processors and controllers: Alibaba
(3.1M), Baidu (1.6M), CloudMobi (1.0M), MobVista (880K),
Tencent (650K), and Intsig(Shanghai) (646K). In total, these
six companies are collecting private information from 4.55M
devices (i.e., 26% of total devices).

Operation of top data processors and controllers. We ana-
lyze the domain distribution of these top 25 data processors and
controllers to understand more details on their infrastructure
and on their operational strategies. Our findings are summa-
rized in Figure 10. In total, 16 out of the top 25 data processors
and controllers have no more than 21 PIC domains. For
example, AppsFlyer, the third largest data processor/controller,
has only 11 PIC domains in our dataset. It is evident that
the majority of the data controllers prefer to control data flow
via several API gateways. At the same time, Baidu (425 PIC
domains), Tencent (531 PIC domains), and Adobe (374) prefer
to use many loosely coupled services to collect data since
their operational strategies rely on the Cloud infrastructure.
For example, DU Ad Platform (*.duapp.com, part of Baidu)
almost exclusively runs in the AWS infrastructure, QQ plat-
form (*.qq.com, part of Tencent) operates in Tencent owned
Cloud infrastructure, and 2o7 (*.2o7.net) is part of Adobe
Marketing Cloud. Note that previous literature [58] found that
“292 parent organizations that own nearly 2,000 ATS and
ATS-C domains.” Our findings, however, indicate that these
data controllers may own more PIC domains that previously
thought.

Cross-border transfer, non-EU data processor and con-
trollers, and implications to data protection. Based on our
factual findings, we use Chinese companies as a case study
to quantitatively and objectively understand the implications
of users’ private information collection when involving cross-
border data transfer [80], [47], [49], [74] and how it becomes
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Fig. 8: Sankey diagrams illustrating 1) Global private information flows between the top 15 countries (ranked by the number of
devices) and top 20 PIC domain locations (a) and 2) Private information flows between EU28 and top 20 PIC domain locations
before (b) and after (c) GDPR. Note that the left side of the diagrams represents the origin of information flows and the right
side represents where the information flows terminate. We add a postfix ‘ in’ to the country code at the right hand side in case
of private information flows originating and terminating at the same country.
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Fig. 9: Global top 25 data controllers ranked by the fraction of
devices they collect private information from. These 25 data
controllers collect private information from a total of 13.9M
devices covering 80.2% of all devices used in this study.

more difficult to trace how this data flows. As mentioned
before, the top six Chinese companies are collecting private
information from 4.55M devices. Superficially, such coverage
seems in line with our findings in Section IV where we found
that 7% of private information flows from 4.59M devices
globally flow to China. We further investigate the geolocation
of the PIC domains controlled by these companies and see if
these domains are hosted in China using the technique detailed
in Section II.

For example, Baidu has 210 PIC domains hosted out-
side China, mainly because the *.duapp.com PIC domains
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Fig. 10: Domain distribution: top 25 data controllers.

(owned by its subsidized DU Ad Platform) are hosted in AWS
(USA). Besides, *.mobvista.com is hosted in Amazon
Web Services (AWS) and *.cloudmobi.net, has a mixture
of hosting environments in the US and Singapore. We report
more details about the country distribution of Chinese data
controllers in Figure 11. The figure confirms that many PIC
domains owned by these companies are not hosted in China.
Such operational strategy employed by these data controllers,
however, leads to undesirable implications for data protection.
For example, the DU Ad Platform (partnering with Facebook,
Alphabet, appnext, etc.) states in its privacy policy2 that
personal information could be “shared with any organization
part of Baidu Group” and “may be transferred to countries

2http://ad.duapps.com/gdpr/index.html#title-2
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which provide an adequate level of protection.” In this case,
even though private information flows terminate in the AWS
Cloud, such data could still be transferred to third countries.
Moreover, Mobvista (partnering with Baidu, TikTok, etc) ex-
plicitly claims in its privacy policy3 that private information
would be “transferred to recipients in countries located outside
the EEA (including in Singapore where the Site is hosted)
which do not provide a similar or adequate level of protection
to that provided by countries in the EEA.”We acknowledge that
without knowing more about the actual underlying contractual
relationships it is difficult to draw conclusions on how data
is further processed by those entities. Nevertheless, it remains
an open yet important question on how to protect and audit
the usage of such data flows terminated at the PIC domains
owned by these companies with data transfers to third countries
explicitly stated in the privacy policy. We hope that our
findings will motivate lawmakers to consider how to address
such issues in the future legislations, and more importantly,
encourage the commercial partners of these companies to
design rigorous policies to protect user private information
when sharing data cross-border.

Summary of findings. We found that the top 25 data pro-
cessors and controllers can collect private information from
an overwhelming 80.2% of all devices. 6 top Chinese data
controllers provided privacy policies and hosted part of their
infrastructure in countries with rigorous data protection laws.
However, they also allow data transfer to third countries and
may incur technical and legal complications on how to further
protect private information [86], [87], [80], [47], [49].

VI. CHARACTERIZATION OF PHA PRIVATE
INFORMATION COLLECTION

Potentially harmful applications (PHAs)[28] are apps that
could put users, user data, or devices at risk (e.g., trojan,
spyware, etc.). Some of them arent strictly malware but are
harmful to the software ecosystem (e.g., impersonating other
apps). These PHAs have been substantially discussed and stud-
ied in the previous literature [40], [89], [24], [21], [14]. In this

3https://www.mobvista.com/en/privacy/

Rank Cat. # PHAs # Dev.

1 Device Info 295K 1.45M
2 Sim Card Info 167K 993K
3 Location Info 127K 670K
4 Operator Info 116K 393K
5 Installed App Info 91K 486K
6 Phone Number 75K 364K
7 Running App Info 63K 280K
8 Account Info 17K 73K
9 Settings Info 10K 376K
10 Email Address 4K 107K

TABLE IV: Top 10 private information collected by PHAs on
a global scale.
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Fig. 12: Heatmap illustration of regional private information
collection by PHAs.

section, we focus on understanding what private information is
collected by PHAs. In particular, we aim to understand whether
the type of information collected by PHAs is different from
the one collected by regular apps.

Private information collection by PHAs. We consider a
SHA2 as potentially harmful if it is flagged by at least 6 AV
companies in VirusTotal (see Section II). Together with mobile
app reputation data, we identify 3.5M SHA2s associated with
1.2M unique PHA app names that were installed on 3.8M
devices. Following the analytical process used in Section III,
we uncover the top 10 types of private information collected by
PHAs and summarize our findings in Table IV. We can see that
PHAs mainly collect tracking information, e.g., device info,
sim card, location, etc. Besides, 116K PHAs (covering 393K
devices) collect operator information and 63K PHAs (covering
280K devices) also collect running app information on a
global scale. This is more aggressive comparing to the private
information collection behavior comparing to 43K/42K benign
apps respectively collecting such information. As we can see in
Figure 12, the majority of these aggressive PHAs are installed
on devices in North America. Note that such aggressive private
information collection behavior enables adversaries to better
profile end users and may lead to some intrusive monetization
actions. For example, we uncover that 590K devices with
PHAs presence are affected by notification bar ads (i.e., ads
are displayed as app notifications) and 317k devices suffer
from short-cut ads (i.e., targeted ads are placed on the home
screen). Yet, only 230K devices with PHA installations exhibit
in-context ads behavior (i.e., normal behavior as ads are
displayed inside an app). However, due to the limitation of
our system, we are not able to measure the content correlation
between private information collected by PHAs and the subject
of advertisement displayed as shortcuts on the devices. We
also identify 1,549 PHAs (4,930 SHA2s) that read/sent SMS
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Fig. 13: (log-scale) Top 20 malicious IPs/Domains ranked by
the number of PHAs.

from 4,461 devices. Even though such SMS leakage is minor
in terms of device prevalence ratio, in light of the recent
discussion of limitation of SMS-based 2FA authentication4,
our findings show that the possibility of such breaches still
exists in the wild.

Communications with malicious domains. We compile a
blacklist of IPs/domains that have been involved with ma-
licious activities from various sources (see Section II), and
aim at understanding if PHAs send private information col-
lected from these devices to malicious domains. Figure 13
shows the 20 malicious domains with the largest app pres-
ence and the fraction of devices connecting to them. As we
can see in Figure 13, 115.236.18.232 has the largest
app presence and was contacted by 550 PHAs collect-
ing data from 686 devices. www.toptools100.com and
yy.yamahafree.com have higher device penetration rates,
respectively showing communications with 3,789 and 6,455
devices respectively. In general, we find that only a small
portion of PHAs communicate with known malicious hosts and
domains, and such domains have limited device coverage. This
is different from PC malware while a considerable fraction
of malware connect with malicious domains and are part of
botnets [6], [54], [31].

Summary of findings. We found that PHAs are more ag-
gressive comparing to generic private information collection
behavior, leading to intrusive monetization actions. However,
communications with malicious domains are less pervasive
comparing to desktop applications.

VII. DISCUSSION AND LIMITATIONS

Implications for the research community. Our study shows
that looking at device penetration provides different results
than looking at apps only. Designing measurement studies
focused on executing apps could lead to conclusions that are
biased and do not reflect real malicious activity in the wild.
In fact, some of the actors who manage to get their libraries
installed in many apps do not manage to have many users
running them. In light of this, we hope that our study can

4https://krebsonsecurity.com/2018/08/reddit-breach-highlights-limits-of-
sms-based-authentication/

inspire security researchers to design measurement studies that
are representative of the real world as possible.

Implications for policymakers. We observe that private in-
formation confinement within the EU is low. GDPR has not
stopped companies from collecting private information from
the end users as long as their services are GDPR-compliant. In
light of these findings, we hope that our study would encourage
policymakers to further regulate how private information is
used by and shared among the companies and how accountabil-
ity can be truly guaranteed (e.g., , which company should be
held accountable if a device identifier was abused by targeted
advertising while the majority of apps on that mobile device
collect device identification information).

Study limitations. Our study relies on the static and dy-
namic analysis, and layered security engines at the backend to
identify and fingerprint that certain API calls lead to specific
private information leakage. This prevents us to capture private
information collection activities that happen at runtime but
are not captured by the company’s analytical infrastructure,
which the on-device security engine relies on. Therefore, our
work covers the lower bound of global private information
collection activities. Nevertheless, despite such limitations, our
study provides the most comprehensive view of private data
collection by Android apps to date and actionable insights.

While this paper is based on measurements collected from
a user base that is three orders of magnitude larger than
previous work, our dataset is biased towards the end users of
a single mobile security product, and therefore still presents
some biases. For example, the distribution of devices used
this study is not heavily screwed towards any specific region.
However, the device distribution in Asia is skewed towards
India and Japan and does not have as many devices in China
which is one of the top countries/markets in terms of mobile
users. In terms of the representativeness of the analyzed apps,
it is challenging to ascertain the coverage of our study since
it is infeasible to determine the total number of all Android
apps, given such a fragmented ecosystem and many alternative
markets. Still, by analyzing 2.1M apps this study is covering
one of the largest sets of apps to date and is in line with the
largest datasets collected by the academic community [5].

Our analysis of data controllers presented in Section V
rely on the identification of the organizations behind PIC
domains. As detailed in Section II the mapping of domains
to their owner organization relies on multiple data sources
providing connections between the domains, the networks that
host them as well as the organizations supposedly maintaining
these resources. Such connections are cross-checked in the
different data sources to compensate for inaccuracies in each
of the sources. We also take a conservative approach and
automatically discard all connections that are not seen in all
data sources. This naturally hurts the number of domains
to which we can map an organization. However, we favor
the accuracy of the domain to owner organization mapping
over its coverage. It is also important to note that some apps
communicate with raw IP addresses instead of relying on
domains. Moreover, we have seen that more than 97% of these
IP addresses refer to CDNs or hosting or cloud providers which
hinder the identification of their owner organization.



Finally, while in this paper we studied how private infor-
mation is collected from devices, and where this information
flows to, our study does not allow us to understand how this
information is acted upon by data controllers (i.e., whether and
how it is used to track users). This remains an open question
for the research community.

VIII. RELATED WORK

In this section, we selectively review previous studies
on PHA characterization, Android permission system, private
data leakages and prevention, and third party advertising and
tracking services. We refer the readers to [71], [23], [20], [51],
[83], [69] for in-depth studies and surveys on securing Android
devices in general.

PHA characterization. Previous studies mainly focused on
analyzing PHAs and systematically characterize them from
various aspects such as evasion mechanism [21], installation
methods [89], malicious payloads [89], repackaging mecha-
nism [88], [69], [40], behaviors [39], [84], monetization [24],
etc. These efforts shed light on how Android PHAs operate in
the wild [89], main incentives of mobile malware [24], [40],
weaknesses of some of the popular mitigation solutions [21],
etc. However, they did not discuss potential threats posed by
information collection on mobile devices as these efforts center
on app analysis and offer a less comprehensive view of the real
device prevalence.

Android permission system. Android permission system has
been extensively covered in the previous literature [11], [51],
[23], [8], [10]. These studies on Android permissions have
mainly leveraged static analysis techniques to understand the
role of a given permission [8], [23], [26], potential privacy vi-
olation incurred by overprivileged apps [23], [64], permission
circumvention [59], description-to-permission fidelity [56], and
improve mapping of Android permissions to framework/SDK
API methods [9], [2]. Some recent research efforts also
utilize dynamic analysis systems to distinguish and trace
the permissions requested by apps at the runtime and those
requested by the apps core functionality [18] and generate
a more precise call graph enabling the system to extract the
permission specification and improve the mapping [43]. Our
study complements these studies by showing the scales and the
prevalence of private information collection in the real world
devices.

Third-party advertising and tracking services (ATSes).
There are two main approaches on studying third-party adver-
tising and tracking services (ATSes). One approach leverages
static tools to decompile apps and identified the embedded
trackers from API calls and quantify various aspects of track-
ers [65], [12]. These methods offer a view of tracker behavior
and prevalence from app perspective. Another approach is
leveraging network traffic either captured on device or by ISP
providers to provide insights into the mobile advertising and
tracking ecosystem from an information flow perspective [33],
[76], [58], [32].

PII leakage detection and protection. The root cause of
PII leakage is because the end users are presented with a
set of required permissions by the apps but not how they
handle the data after permissions are granted. Previous studies
showed that mobile apps leak more privacy information than

their web counterpart [53], [36]. To this end, research efforts
mainly focused on monitoring private information flows [19],
[70], detecting potential privacy leaks by apps [27], [60],
[59], sensitive data leakage via third party libraries [68], [17],
[41], privacy implication caused by targeted advertising in
apps [13], private data leakage via network traffic analysis [61],
[16], impact of GDPR notices [75], and privacy implications
incurred by pre-installed apps [25]. Our work complements
the previous work and shows a holistic picture of the state
of sensitive information collection on Android in the wild,
identifying the big players in this space (both legitimate
companies and malicious actors), together with geographic
trends.

IX. CONCLUSION

In this paper, we presented the most comprehensive mea-
surement study on private information collection on Android
to date. We showed that PIC is widespread on Android, and
that various types of information are collected, with actors
operating in different geographic areas interested in different
types of information. While most information flows terminate
in the US, 7% of the flows that we observe are directed to
China. We also find that data regulation laws like GDPR
have not been effective in limiting the amount of personal
information that flows to third countries outside EU.
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