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Abstract
The Internet of Things (IoT) is frequently the epicenter of
cyberattacks due to its weak security. Prior works introduce
various techniques for analyzing the firmware of IoT devices
for bugs and vulnerabilities, especially through firmware
re-hosting. However, comparing the emulation outcomes of
different re-hosting approaches can be very challenging. In this
paper, we present Firmware Initialization Completion
Detection (FICD), a technique that enables the comparison
of full-system re-hosting approaches across their re-hosting
capabilities. In addition, prior works lack an important
capability; they do not focus on both the user and privileged
aspect of IoT firmware as a unit. Since prior work is not
capable of holistically analyzing (both the user and privileged
level) IoT firmware, we develop Pandawan, a framework that
enables the holistic re-hosting and analysis of IoT firmware
at scale. We use FICD to illustrate Pandawan’s re-hosting
improvements over the state-of-the-art, such as Firmadyne,
FirmAE, and FirmSolo on a dataset of 1,520 firmware images.
Our experiments show that Pandawan outperforms these
systems, by executing up to 6% more user level programs
and 21% more user code basic blocks, on average, than
these systems. Furthermore, Pandawan loads 9% more IoT
kernel modules and executes 26% more kernel module basic
blocks on average than FirmSolo. We also use Pandawan to
holistically analyze the firmware images by inspecting the
interactions (through system calls) of user level code with
kernel module code. Pandawan transforms the system call
information into seeds for the TriforceAFL kernel fuzzer to
analyze the kernel modules within the firmware images. The
TriforceAFL experiment on 479 firmware images with seeds,
discovered 16 bugs on 12 binary kernel modules, 6 of which
are previously unknown bugs. The bugs affect 8 closed and
4 open source kernel modules.

1 Introduction
The Internet of Things (IoT) has gained immense popularity
in the past decade. Billions of embedded devices and gadgets,
such as WiFi routers, IP cameras, and smart wearables fill

up tech store shelves and find their way into customers’
homes and businesses [26]. Despite its growth, the IoT is
infamous for its weak security. This is evident from impactful
cybersecurity attacks assisted by the IoT such as the Mirai [2],
Trickbot [33], and Meris [47] botnet attacks, which rattled the
Internet infrastructure’s foundations. Attackers exploited the
poor security posture of the IoT vendors’ devices, primarily
the use of weak passwords, hardcoded backdoors, and legacy
(outdated) software to compromise millions of devices and
gadgets [36]. Even though these security incidents raised
awareness about the security of the IoT, device vendors
still prioritize profit over protecting their products against
malicious actors [24]. Thus, it is imperative to improve
the security of these devices and gadgets to protect them
against cyber threats in the future. Fortunately, the research
community has already directed its focus on exposing bugs and
vulnerabilities in the firmware that runs on these IoT devices.

A subset of prior works in this research area conduct their
analysis directly on firmware running on physical IoT devices.
They either rely on a mobile or Web application [8, 19, 49] to
communicate with the IoT firmware or execute the firmware
within an emulated environment while forwarding memory
accesses to the actual device [12, 30, 50]. Other works that
eschew physical devices can be categorized into static and
dynamic analysis approaches. Both static analysis [13, 20]
and dynamic analysis such as firmware re-hosting [7, 28, 48]
are popular approaches that have lately dominated the IoT
firmware analysis landscape.

When considering Linux-based firmware, full-system
re-hosting (or emulation) techniques are the most popular.
Static analysis techniques generally suffer from a multitude
of false positives or false negatives [20]. Even though
re-hosting techniques revolutionized IoT firmware analysis, by
extending bug and vulnerability testing towards increasingly
sophisticated firmware, the field is characterized by the
absence of two important aspects.

First, the community lacks a mechanism to objectively
compare the capabilities of different re-hosting systems
beyond crude metrics (e.g., number of bugs found within 24



hours). However, to assess the re-hosting progress we need
to answer the following question:

Q: How can we quantify the forward progress of IoT
firmware analysis approaches in full-system re-hosting?

Prior full-system Linux-based re-hosting works showcase
their progress and improvements over their predecessors by
relying on ad-hoc and coarse-grained metrics (e.g., number
of bugs or vulnerabilities found or networking connectivity
achieved [28, 48]). However, each re-hosting system adopts
a different design directly affecting the firmware execution
flow and the emulation performance (e.g., emulating both user
and kernel level code vs. emulating user level code only), thus
introducing disparity in the firmware emulation outcome. The
existing metrics are too generic to capture these discrepan-
cies and quantify the contribution of each system in the IoT
re-hosting landscape. Thus, to answer Q we first require met-
rics (e.g., programs executed, code coverage, kernel modules
loaded, etc.) that better reflect the systems’ re-hosting capa-
bilities. Importantly, such finer-grained metrics imply a new
challenge: At which point during the emulation should we
measure them to ensure an objective comparison between re-
hosting approaches? Clearly, relying on elapsed wall-clock
emulation time as the indicator for taking a measurement is
not sufficient, as emulation speed is directly impacted by a
re-hosting system’s design. Fundamentally, to enable objective
comparisons, we require a conceptual reference point (with
respect to system progress rather than wall-clock time) that
can be identified in any re-hosting system. Once this reference
point is reached, we can take the measurement (i.e., collect
the metrics) and perform the comparison. We discuss below
how it is possible to identify such a reference point to mark the
completion of the firmware initialization logic.

The second missing capability of full-system Linux-based
re-hosting is that current state-of-the-art systems target only
one aspect of IoT firmware; either its user level [7,28,46,48,55]
or its privileged (kernel) level aspect [1, 38, 55]. In real world
devices, though, both the user and privileged aspect of the
IoT firmware run cooperatively. To effectively analyze IoT
firmware code it is therefore important to follow a more holistic
approach that includes both aspects of the IoT firmware in the
re-hosting and analysis process.

On the surface it seems that FirmSolo [1] is readily capable
of holistic re-hosting since it builds kernels that can re-host
a variety of binary IoT kernel modules and also support IoT
user level code re-hosting due to the stable Linux system call
ABI. However by design, FirmSolo’s kernels are specifically
tailored to kernel module re-hosting. As a result, these kernels
might lack functionality (in the form of kernel symbols – func-
tions and data structures) required by user level firmware code
to execute successfully. Figure 2 in Section 3.2 describes such
an example as the capability to access a Memory Technology
Device (MTD) peripheral through a character device,
via the mtd_[open,read,write] functions. Since these

functions are not required nor accessed by kernel modules, the
aforementioned functionality will be omitted from FirmSolo’s
kernels. Then, if a user level program requires these functions
to execute successfully, it will fail. To mitigate these scenarios
it is crucial to identify and supplement FirmSolo’s kernels
with kernel functionality not used by the firmware’s kernel
modules, but required by user level firmware code to execute.

To address the aforementioned shortcomings, in this pa-
per, we present Firmware Initialization Completion
Detection (FICD), a technique that detects the reference point
at which the firmware’s initialization phase is complete during
emulation. FICD makes it possible to quantify the forward
progress in firmware re-hosting, by enabling the meaningful
comparison of different full-system re-hosting approaches
on metrics such as the number of user programs executed,
user and kernel code coverage, or number of kernel modules
loaded, up to that point. The reference point represents a con-
cept common to all full-system re-hosting approaches despite
their differences; the end of the firmware initialization phase.
Since the firmware operation is usually predetermined (e.g.,
network routing), IoT devices are primarily configured dur-
ing startup by the firmware’s configuration and bootup scripts.
Every full-system re-hosting approach will inevitably exe-
cute these scripts and thus undergo the firmware initialization
phase. Thus, the reference point detected by FICD can be used
to meaningfully compare these systems along a metric that can
showcase their contribution to re-hosting (e.g., code coverage).

In addition, to fill the void in holistic full-system firmware
re-hosting we introduce Pandawan, a re-hosting framework
that builds atop of (Py)PANDA [14, 17] and FirmSolo’s
firmware re-hosting capabilities to provide Operating System
(OS) level introspection and dynamic analysis of both user
and privileged (i.e., kernel module) firmware code. To achieve
holistic firmware re-hosting and analysis, Pandawan features
the Kernel Augmentation (KA) technique. KA first isolates
the kernel functionality typically included by vendors in their
IoT firmware kernels (in the form of kernel symbols). Then,
it builds Pandawan’s “augmented” kernels which contain this
functionality to enable the successful re-hosting of firmware
user level code and kernel modules alike.

To showcase the improvements of Pandawan over the
state-of-the-art, we rely on FICD to compare Pandawan,
Firmadyne, FirmAE and FirmSolo. For our experiments
we use a dataset consisting of 1,520 firmware images. Our
investigation shows that Pandawan outperforms Firmadyne,
FirmAE, and FirmSolo, by executing up to 6% more user level
programs and 21% more user code basic blocks, on average,
than these systems. In addition, Pandawan loads 9% more IoT
kernel modules and executes 26% more kernel module basic
blocks on average than FirmSolo.

To demonstrate Pandawan’s utility in firmware analysis,
we use it to fuzz the kernel modules within the firmware
images. Fuzzing the entire system call interface would not be
efficient, since the majority of system calls (depending on the



arguments they are given) would target the core kernel code
instead of kernel module code. Thus, Pandawan targets only
the subset of system calls that result in the execution of code in
IoT kernel modules. To this end, Pandawan’s holistic analysis
approach fundamentally enables the tracing of system calls
invoked by user level programs which lead to kernel module
code execution. In turn, the traces expose entry points from
user level to kernel (module) level code. Pandawan uses the
entry point information to generate system call chains in a
format (seeds) compatible with the TriforceAFL [34] kernel
fuzzer to fuzz the kernel modules within the firmware images.
Pandawan collects traces for 479 firmware images. After
transforming these traces into seeds and providing them to
TriforceAFL, the fuzzer triggers 16 bugs on 8 closed and 4
open source kernel modules. Twelve of the bugs found are
previously known and six are previously unknown bugs.

In summary we make the following contributions:

• We introduce Firmware Initialization
Completion Detection, a technique that enables
the meaningful comparison of full-system re-hosting
approaches despite their discrepancies and quantify their
progress in the firmware re-hosting domain.

• We propose the Kernel Augmentation technique which
configures and builds kernels that contain functionality
usually included by IoT vendors in their privileged
firmware code, so that these kernels are conducive to
holistic firmware re-hosting and analysis.

• We present Pandawan, the prototype implementation of
Kernel Augmentation. Pandawan constitutes an OS
level introspection and dynamic analysis framework that
enables holistic (user and privileged level) re-hosting and
analysis of IoT firmware.

• To quantify Pandawan’s improvements over the state-of-
the-art we use FICD to compare it with Firmadyne, Fir-
mAE and FirmSolo re-hosting frameworks. Furthermore,
we use Pandawan’s holistic analysis capabilities to ana-
lyze the firmware images in our dataset. The information
collected is then used by the TriforceAFL kernel fuzzer to
analyze the kernel modules within the firmware images.

To further foster the research in this area, we will make
Pandawan’s source code publicly available1.

2 Background
Before discussing the design of Pandawan, we first provide
background information about full-system firmware re-hosting
and the systems we will reference throughout the paper;
PyPANDA, Firmadyne, FirmAE and FirmSolo.

2.1 Full-system Firmware Re-hosting
Full-system firmware re-hosting (or emulation) [18] is a tech-
nique used to run a binary firmware image without the need for

1https://github.com/BUseclab/Pandawan

the IoT hardware it was designed for. Particularly, the firmware
(image) code is executed within an emulated environment (e.g.,
QEMU [4]), where hardware accesses are handled by the em-
ulator. Full-system firmware re-hosting has become popular
mainly due to two major benefits; 1) allowing the emulation
of IoT firmware at scale, and 2) exposing firmware code to
dynamic analysis (e.g., fuzzing) and operating system level
introspection. However, full-system firmware re-hosting can
be challenging. A recurring issue in the IoT infrastructure is the
lack of standarization [15]. Particularly, the absence of com-
mon specifications and protocols leads to the production of
billions of devices with diverse and proprietary hardware (e.g.,
NVRAM and Wireless NICs). Hence, IoT firmware and specif-
ically its kernel component is dependent on each particular IoT
device’s System on Chip (SoC) and hardware peripherals.

Unfortunately, state-of-the-art emulators such as QEMU
only support a fraction of the hardware peripherals used
by IoT and embedded devices [18] and thus are unable
to emulate the IoT firmware kernels. As a result, current
full-system re-hosting approaches either target only user level
IoT firmware code [7,28,48] or the IoT kernel modules [1,38],
by substituting the original firmware kernel with a custom
kernel compatible with the emulators.

2.2 (Py)PANDA
One of the core foundations of Pandawan is PyPANDA [14],
a Python frontend to PANDA [17], an Operating System
(OS) level introspection framework built on top of QEMU.
Besides emulating IoT related architectures (e.g., ARM
and MIPS), (Py)PANDA also enables users to control the
guest code execution and inspect the guest’s internal state
(e.g., memory). The OS level guest introspection is possible
through a set of PANDA’s existing C/C++ plugins and through
PyPANDA’s Python plugin interface. These plugins unlock
unique capabilities not available in the upstream version of
QEMU, such as system call and basic block tracing, and guest
OS function hooking. Pandawan builds upon PyPANDA’s
Python interface to introduce new custom plugins and enable
holistic analysis and introspection of IoT firmware.

2.3 Firmadyne & FirmAE
Firmadyne [7] and FirmAE [28] are among the state-of-the-art
when it comes to full-system firmware re-hosting and dynamic
analysis approaches. Specifically, they are designed to emulate
the user level code of IoT firmware images and subject it
to various bug and vulnerability analyses, such as testing
against exploits from the Metasploit framework [39] or
fuzzing. By design, both systems replace the original firmware
kernels, which are incompatible with QEMU, with custom
pre-built kernels that can be booted under QEMU. Since both
the original IoT kernels and the pre-built kernels are based
on Linux, they share the same stable system call interface
required by user level firmware code to run.

Unfortunately, by relying on custom pre-built kernels,

https://github.com/BUseclab/Pandawan
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Figure 1: System overview of Pandawan: The figure features the two components of Pandawan. The first component, Kernel
Augmentation is a 5-step process that produces Pandawan’s PWk kernels. The second component, Firmware Re-hosting &
Analysis uses a PyPANDA script to emulate the PWk kernel and the Ff s file-system under PyPANDA. It also uses PyPANDA’s
plugins to holistically analyze the target firmware.

Firmadyne and FirmAE only support user level firmware code.
The Linux kernel modules contained within the IoT firmware
file-systems cannot be loaded by the pre-built kernels. These
kernels do not meet the requirements of Linux’s module load-
ing process, such as exporting kernel symbols (i.e., functions
and data structures) required by the kernel modules to load into
the kernel. As a result, the analysis of privileged IoT firmware
code is out of scope for both Firmadyne and FirmAE.

2.4 FirmSolo
FirmSolo [1] is the first framework that facilitates dynamic
analysis of Linux-based IoT kernel modules at scale. Unlike
Firmadyne and FirmAE, FirmSolo targets the privileged
level aspect of IoT firmware. Specifically, it automatically
configures and builds kernels that can load the kernel modules
contained in the file-systems of IoT firmware images. Existing
dynamic analysis systems (e.g., kernel fuzzers) can leverage
FirmSolo as the foundation to analyze the IoT firmware kernel
modules for bugs and vulnerabilities. While FirmSolo is also
capable of re-hosting user level firmware code through its
compatibility with Firmadyne, it was not designed for that
purpose. In particular, the kernels produced by FirmSolo are
configured exclusively based on the metadata extracted from
the IoT kernel modules and the original firmware kernels if
they are available. Figure 2a shows why this configuration
process is not always effective.

3 Overview
In this section we detail the FICD technique and the system
overview of Pandawan. The goal of FICD is to detect the (ref-
erence) point in emulation where the firmware’s initialization
is complete. Since this point is conceptually common across
re-hosting systems, it is possible to compare these systems
along various metrics (e.g., user and kernel code coverage).

In Section 4.1 we discuss in detail how to apply FICD on
different full-system re-hosting approaches and compare them
based on their emulation capabilities.

To fill the void in holistic firmware re-hosting we present
Pandawan, a framework capable of holistic (both user and
privileged) re-hosting and analysis of IoT firmware code. As
illustrated in Figure 1, Pandawan constitutes a two-component
framework: 1 The Kernel Augmentation (KA) component
supplements FirmSolo’s kernels (FSk) with kernel functional-
ity frequently included by vendors in their IoT firmware kernels
(IoTk) and used by user level firmware code. We refer to this
functionality as user-code-required functionality. The out-
come of component 1 are Pandawan’s “augmented” kernels
(PWk), which support both user level and kernel module code
(i.e., holistic) re-hosting. 2 The Firmware Re-hosting &
Analysis component is responsible for the holistic re-hosting
of the firmware code while emulating the PWk kernels under
PyPANDA. This component also employs PyPANDA’s plug-
ins to conduct a series of OS introspection and holistic analyses
(e.g., tracing system calls that lead to kernel module code exe-
cution) during the firmware emulation run. Then, the results of
the analyses can be transformed into seeds to fuzz the firmware
kernel modules with a kernel fuzzer (e.g., TriforceAFL).

Throughout the rest of the paper we use the notations user
code to refer to user level firmware code and kernel code to
refer to privileged/kernel level code. The privileged level com-
ponent can be further classified into the core kernel and kernel
module code. We also reference the terms program, process,
and task. Intuitively, a program corresponds to an executable in
the firmware’s file-system. We define a process as the running
instantiation of a program during emulation. Finally, we refer
to a task as the concatenized argv vector, representing (as a
string) a program (name) along with its arguments.

3.1 Firmware Initialization Completion
Detection

As mentioned previously, quantifying the progress of
full-system re-hosting approaches is challenging, due to their
unique implementation features that impact the emulation of
a firmware image (Fimage) for each re-hosting framework. For



1 [ncc_runtimecfg.c: 539 initRunTimeCfg()]
::: Total 4470 nodes, each node 24
bytes.

2 [ncc_runtimecfg.c: 540 initRunTimeCfg()]
::: Total 107280 byte for all nodes.

3 [ncc_runtimecfg.c: 207 loadCfg()] :::
Start loadCfg

4 [ncc_lz77.c: 509 flash2rootfs()] ::: BUG
ON!!

5 [ncc_lz77.c: 538 flash2rootfs()] ::: Load
Fail(/var/tmp/cfg.txt)

6 [ncc_runtimecfg.c: 213 loadCfg()] :::
flash2rootfs() fail!! restore to
default!!

7 [ncc_lz77.c: 621 rootfs2flash()] ::: BUG
ON!!

8 [ncc_runtimecfg.c: 215 loadCfg()] ::: Del
TAG default file!!

9 [ncc_lz77.c: 509 flash2rootfs()] ::: BUG
ON!!

10 ...

(a) Example firmware image serial log when
re-hosting with FirmSolo.

1 undefined4 loadCfg(void)
2 {
3 bool bVar1;
4 char *__stream;
5 ...
6 while( true ) {
7 (*pcVar7)(__stream);
8 LAB_004a73cc:
9 iVar3 = \

10 flash2rootfs("/tmp/cfg.txt");
11 if (iVar3 != 0) break;
12 bVar1 = true;
13 pFVar4 = \
14 fopen64("/dev/console","a");
15 if (pFVar4 != (FILE *)0x0) {
16 uVar2 = getpid();
17 ...
18 fclose(pFVar4);
19 }
20 ...
21 }

(b) Ghidra snippet of ncc’s loadCfg function

1 undefined4 flash2rootfs(undefined4
param_1)

2 {
3 FILE *pFVar1;
4 ...
5 pFVar1 = \
6 fopen64("/dev/mtdblock4","rb");
7 if (pFVar1 == (FILE *)0x0) {
8 ...
9 fputs("BUG ON!!\n",pFVar1);

10 }
11 else {
12 ...
13 if (iVar3 == 0) {
14 ...
15 }
16 return 1;
17 }
18 ...
19 return 0;
20 }

(c) Ghidra snippet of ncc’s flash2rootfs
function

Figure 2: An example of a firmware re-hosting with FirmSolo. The firmware targets the D-Link DIR-826L Wi-Fi router. The
figure provides the serial log output of the firmware under test as well as the Ghidra snippets of the loadCfg and flash2rootfs
functions called by the ncc user program during the firmware’s initialization.

example, the combination of both user and kernel code being
re-hosted may result in different emulation speeds and thus in
a different amount of overall code executed at the same point in
time compared to only user code emulation. Thus, simply us-
ing ad hoc comparative methods such as the wall-clock time as
the common denominator to assess the progress of re-hosting
systems does not produce objective results. Instead, FICD
aims to detect the point (I f in) during the emulation of Fimage
where its initialization phase has finished. At I f in, full-system
re-hosting approaches can be compared using different metrics,
such as the number of executed user level programs, user and
kernel code coverage, or number of kernel modules loaded,
which we call emulation-based metrics. In Section 5.5 we
use these emulation-based metrics to compare the emula-
tion progress of Pandawan, Firmadyne, FirmAE and FirmSolo.
However, these metrics can of course be supplemented with
additional ones depending on the analysis’ requirements (see
Section 6). We note that I f in is not fixed (in time) for any two
re-hosting systems, especially if their emulation speed varies.

The rationale behind FICD is that all the firmware activity up
to the I f in point is automated via the configuration and startup
scripts within Fimage’s file-system. Beyond I f in, there is none to
little automated activity occurring, since IoT firmware primar-
ily invokes new functionality (i.e., tasks), such as setting new
firewall rules or recording a video, based on its interactions
with external actors (i.e., human interaction [27]). We consider
detecting events that lead to new activity after I f in as a problem
orthogonal to this research and we leave it as future work.

Since the activity after the firmware initialization phase
is limited, I f in can be considered as any point during the
emulation of Fimage after it has stopped executing new tasks.

Specifically, FICD defines a grace period (or time frame) t f
during which the emulation of Fimage can stay alive while
Fimage does not execute any new tasks (to see how we choose
t f refer to Section 5.5). If during the emulation of Fimage, time
greater than t f elapses without executing a new task, FICD
marks that point as I f in. Here, metrics can be collected and
compared. Even though I f in might not be fixed (timewise)
between different full-system re-hosting approaches that
emulate Fimage, it will always represent Fimage’s end of
initialization phase (regardless of the re-hosting framework).

3.2 Holistic Re-hosting & Analysis
As discussed previously, there is currently no prior work that
supports holistic firmware re-hosting and analysis. At first
glance, FirmSolo (see Section 2.4) seems to be readily capable
of supporting holistic firmware re-hosting and analysis by
emulating both firmware user and kernel (i.e., kernel module)
code. On the contrary though, our investigations reveal that
FirmSolo’s FSk kernels lack importantuser-code-required
functionality required by user code to execute.

Specifically, the absence of the user-code-required
functionality in the FSk kernels might result in firmware user
code to either prematurely terminate its execution or exhibit
unwanted behavior, such as getting stuck in an infinite loop.
We provide a motivating example of such a case for D-Link
DIR-826L Wi-Fi router firmware in Figure 2a. The example
illustrates the serial console output of Fimage’s emulation
run, where the capability to access a Memory Technology
Device (MTD) through a character device is missing from
the FSk kernel. As a result, the ncc program which handles
the configuration of the IoT device and uses character devices



to interact with the MTD peripheral, gets stuck in an infinite
loop when executed in FirmSolo (lines 7-9 in Figure 2a).
Specifically, ncc executes the loadCfg function which in turn
calls the flash2rootfs function. We provide the Ghidra de-
compilation snippets for these functions in Figures 2b and 2c.
The loadCfg function calls flash2rootfs within an infinite
loop (lines 6-21 in Figure 2b) and exits the loop only when
flash2rootfs returns a non zero value (line 16 in Figure 2b).
The return value of flash2rootfs depends on the successful
opening of the /dev/mtdblock4 character device (lines 5-10,
11-17 and 19 in Figure 2c). The ability to access a MTD
peripheral through a character device is included in the kernel
via the CONFIG_MTD_CHAR configuration option. As none of
the firmware kernel modules use any functionality guarded
by CONFIG_MTD_CHAR, FirmSolo did not enable this config-
uration option in its FSk kernel. In Section 3.2.2, we explain
how Kernel Augmentation adds user-code-required
functionality (e.g., CONFIG_MTD_CHAR) required by user level
firmware programs to execute successfully, into Pandawan’s
kernels. Next, we detail Pandawan’s components.

3.2.1 Preprocessing

Based on our observations (see Section 5.3) vendors use sim-
ilar configuration parameters (options) to configure their IoT
firmware kernels (IoTk). In particular, it is common for privi-
leged firmware code of different IoT devices to share the same
capabilities, such as supporting MTD peripherals or network-
ing subsystems (i.e., netfilter), which are accessed by user
code. Thus, by knowing the configuration of the IoTk kernels of
firmware images we also acquire the user-code-required
functionality required by user code to execute. This
user-code-required functionality is crucial for firmware
images without a KALLSYMS entry. The KALLSYMS entry is a ta-
ble containing information about the kernel symbols exported
by the kernel (and thus about its configuration). The entry is op-
tionally embedded in the kernel binary if the kernel is compiled
with the CONFIG_KALLSYMS configuration option. We consider
the configuration of the IoTk kernels of firmware images with-
out a KALLSYMS entry partially known since the only source
about these images’ kernel configuration originates from
their kernel modules. Thus, to account for the missing kernel
configuration (and in turn user-code-required functional-
ity) from these firmware images, Pandawan collects popular
configuration options from the IoTk kernels of firmware
images with a KALLSYMS entry. Then, Pandawan enables these
options in its PWk kernels for the firmware images without
a KALLSYMS entry, to provide the user-code-required
functionality needed by user code to execute.

3.2.2 Kernel Augmentation

Component 1 is responsible for supplementing the FSk
kernel of Fimage with user-code-required functionality

generally used by user code. The product of component 1
is the PWk kernel for Fimage, which is conducive to holistic
firmware code emulation and analysis.

To produce the PWk kernel for Fimage, Pandawan follows
these five steps: S1 : Extract the file-system of Fimage and
gather metadata information, such as the KALLSYMS entry from
the IoTk kernel (if both the kernel and entry exist in Fimage).
S2 : Furthermore, to aid the loading process of additional ker-
nel modules, supplement PWk kernels (their code) with “stubs”
of symbols that are not present in the upstream kernel source
code, but required by Fimage’s kernel modules. S3 : Build the
upstream counterparts (UPkos) of open-source kernel modules
within Fimage’s file-system. The UPkos modules are compiled
with debugging information available (i.e., DWARF). We note
here that S3 and S4 will only executed for firmware images
that do not have an available KALLSYMS entry. We consider
the kernel configuration of firmware images with a KALLSYMS
entry to be “fully” known. Particularly, the entry reveals infor-
mation about the specific symbols needed by both the user and
kernel code in these images. In these cases, the respective con-
figuration options for these symbols (also used in the IoTk ker-
nels) will be added (by default) in S5 in the PWk kernels. S4 :
Invoke the Oracle process with the UPkos modules and either
the MIPS or ARM configuration option pool (depending on
Fimage’s architecture). The Oracle is a filtering process which
checks and removes configuration options from the MIPS or
ARM pools that affect the layout of kernel data structures used
by the UPkos modules (produced in S2 ). S5 : Finally, feed the
“safe” configuration options that remain from S4 to its kernel
configuration and build process to produce the PWk kernels.

3.2.3 Firmware Re-hosting & Analysis

In component 2 , Pandawan relies on the custom file-system
creation and network configuration logic of FirmAE [28] to
produce a dedicated PyPANDA script for Fimage (see Sec-
tion 4.2.3). We note here that the custom file-system also
supports Pandawan’s (and FirmSolo’s) kernel module load-
ing logic. Next, Pandawan uses the modified file-system, the
PWk kernel and the PyPANDA script to emulate Fimage un-
der PyPANDA and conduct a series of analyses on the target
firmware using PyPANDA’s plugins. Examples of the analyses
implemented are the collection of coverage about the user code
executed during the firmware emulation, such as the executed
program names and their executed QEMU Translation Block
(TB) addresses, and the tracing of system calls (i.e., ID and
arguments) invoked by user code during the emulation.

Furthermore, through its holistic re-hosting, Pandawan cap-
tures the interactions between the user code and kernel code.
This introspection provides information about the inner work-
ings of both the user and privileged code of Fimage, which can
then be used by dynamic analysis systems to thoroughly an-
alyze Fimage. Since prior works only focus on one aspect of
the firmware; either the user or the privileged level, they lack



insights about how both these firmware aspects actually work
together. Thus, these approaches have to resort to heuristics or
impose limitations during their firmware analysis. For example,
FirmSolo does not have the ability to extract information about
system calls that interact with the kernel modules. It is limited
only to fuzzing these modules through their IOCTL interface.

On the contrary, Pandawan does not suffer from these
limitations. Instead, Pandawan makes use of its OS intro-
spection capabilities to trace the system calls of processes
that lead to the execution of code in kernel modules. These
traces expose entry points (i.e., through the system calls and
their arguments) from user space to kernel space. Pandawan
relies on these entry points to detect kernel modules in Fimage
that communicate with user code through a socket or a file
descriptor such as iptables.ko and gpio.ko, respectively.
Next, Pandawan uses this information to create seeds for
a modified version of the TriforceAFL kernel fuzzer that
supports fuzzing MIPS and ARM IoT kernel modules, to
analyze the kernel modules in Fimage.

4 Implementation
In this Section, we discuss the implementation details behind
FICD and Pandawan.

4.1 Firmware Initialization Completion
Detection

FICD seeks to identify the reference point I f in in the emulation
of a firmware image where the firmware completed its
initialization phase. To this end, FICD considers that a
firmware image reached I f in if no previously unseen (i.e.,
unique) tasks are launched within t f seconds. We refer to t f as
the time frame parameter. To assess whether a task is unique,
FICD uses the Levenshtein2 edit distance (ed) to check the
similarity of a task executed at a given point in time with all
the tasks that have been executed prior to that point. We define
a task (t) as previously unseen if it has a similarity below a
certain threshold h (see Section 5.5) with all the previously
executed tasks. That is, t is previously unseen iff ∀tied(t,ti)<h
where ti refers to all tasks started before t. The use of ed rather
than strict equality is crucial to mitigate cases where nearly
identical tasks (e.g., /bin/iptables -t filter -F and
/bin/iptables -t nat -F) impact the discovery of the
I f in point. Our implementation of FICD uses a thread that
runs alongside the main emulation and evaluates the above
expression every five seconds. Once t f expired without a
previously unseen task being launched, FICD declares I f in
reached and signals that measurements can be taken.

4.2 Holistic Re-hosting & Analysis
Next we provide the implementation details behind Pandawan.
Since Pandawan uses FirmSolo as its foundation to configure
and build its PWk kernels,Pandawan reuses FirmSolo’s reverse
engineering and hybrid kernel configuration and build process.

2https://www.cuelogic.com/blog/the-levenshtein-algorithm

4.2.1 Preprocessing

Before proceeding to the execution of Pandawan’s compo-
nents we first execute the Preprocessing step. In this step we
pre-compute the user-code-required functionality that
needs to be included in the PWk kernels in component 1 to
support the successful re-hosting of user code. Specifically, we
extract the KALLSYMS kernel symbols (where available) from
all the available IoTk kernels in our dataset (950 kernels). Then,
we group the symbols into two sets SMIPS and SARM matching
the IoTk kernel architecture respectively. Next, we use
FirmSolo’s symbol-to-configuration-option mapping
mechanism to map each symbol s in SMIPS and SARM to the
corresponding configuration option that guards s’s implemen-
tation in the kernel source code. This yields two pools (sets) of
configuration options, one for MIPS (OMIPS) and one for ARM
(OARM). These pools represent the user-code-required
functionality that is added to the PWk kernels in component 1 .

4.2.2 Kernel Augmentation

In component 1 , Pandawan consumes a binary firmware
image Fimage as input and invokes the Kernel Augmentation
(KA) technique. The goal of KA is to produce the PWk kernels
that are conducive to holistic firmware code emulation and
analysis. The KA phase consists of five steps:

Step S1 In this step, Pandawan executes its metadata gath-
ering process for Fimage. This process extracts the file-system
of Fimage, metadata information such as IoTk’s KALLSYMS
symbol entry (if both IoTk and the entry are available) and
also maps these symbols to their corresponding configuration
options in the kernel source code.

Step S2 To improve its kernel module re-hosting ca-
pabilities, Pandawan implements the technique used by
EASIER [38] for loading out-of-tree kernel modules. Specif-
ically, Pandawan supplements the PWk kernels with “stubs”
of kernel symbols (not present in the upstream kernel source
code) required by Fimage’s kernel modules. Pandawan detects
these symbols in step S1 . The symbol stubs simply return
a NULL value and make the corresponding symbol available
to the kernel modules through the kernel’s EXPORT_SYMBOL
macro. Without these symbol stubs the kernel modules would
immediately fail to load during the kernel module loading
process. Next, if Fimage contains a KALLSYMS entry, Pandawan
immediately skips to step S5 .

Step S3 Pandawan executes its kernel build process to build
and acquire the upstream versions (UPkos) of open-source
kernel modules within Fimage (since Pandawan, like FirmSolo,
uses the upstream version of the IoTk kernel). The UPkos
kernel modules are compiled with debugging information
enabled (DWARF), required in step S4 .

Step S4 In this step, Pandawan invokes the Oracle process
whose goal is to provide the necessary user-code-required
functionality to each PWk kernel. First though, Oracle makes

https://www.cuelogic.com/blog/the-levenshtein-algorithm


sure to filter out any option o∈OMIPS (or OARM) that affects
the layout of kernel data structures used by the kernel modules
within Fimage. If the PWk kernel and Fimage’s kernel modules
do not agree about the layout of their common data structures,
then misaligned data structure member accesses and in turn
kernel module crashes might occur during emulation.

To this end, Oracle uses the DWARF information from
the UPkos kernel modules compiled in S3 and extracts the
data structures used by Fimage’s kernel modules. The intuition
behind this process is that both the UPkos modules and their
open-source counterparts within Fimage (if they are unmodified)
make use of the same data structures since they share the same
source code. Afterwards, Oracle parses the upstream kernel
modules’ source code and detects all the configuration options
(Oups) that modify the layout of the data structures (DS) used
by these modules (also used by their counterpart modules in
Fimage). These options are considered “unsafe” since, if they
were included in Pandawan’s kernel build process, they would
misalign the layout of these data structures. Next, Oracle pro-
ceeds to filter out any configuration options from OMIPS/ARM
that belong to the set Oups. We consider the remaining config-
uration options (Osa f e=OMIPS/ARM−OUP) as “safe” options
that can be included in Pandawan’s kernel build process
to supplement its kernels with the user-code-required
functionality. We note that Oracle cannot detect the data struc-
tures exclusively used by the proprietary kernel modules in
Fimage since these modules do not have a counterpart in UPkos.
However, these modules can indirectly benefit from the Oracle
process if they use any data structures in DS, since Oracle
prevents these data structures from becoming misaligned.

Step S5 Finally, Pandawan includes the Osa f e options in
its kernel build process. Next Pandawan produces the PWk
kernels which are conducive to both user and kernel (in the
form of binary kernel modules) code re-hosting. For images
that contain KALLSYMS in their kernels, Oracle is redundant
as Pandawan simply obtains all the necessary configuration
options corresponding to the symbols in KALLSYMS during S1 .

4.2.3 Firmware Re-hosting & Analysis

The goal of component 2 of Pandawan is to initiate an em-
ulation run using a modified version of Fimage’s file-system
(Ff s ), the PWk kernel and a dedicated PyPANDA script and
analyze Fimage using PyPANDA’s plugins. Component 2 is a
two-pronged process; 1) Pandawan creates the Ff s file-system
and PyPANDA script for Fimage, and 2) it holistically emulates
and analyzes Fimage’s code with PyPANDA and TriforceAFL.

File-system and PyPANDA script creation. At first,
Pandawan uses the custom file-system and network config-
uration process of FirmAE to create the Ff s file-system and
set the network connectivity of Fimage. Specifically, the custom
file-system creation process proceeds as follows. Similar to

FirmAE and FirmSolo, Pandawan uses binwalk3 to extract
Fimage’s file-system, but ensures that it supports Pandawan’s
kernel module loading logic. The Ff s file-system also contains
a custom serial console binary, which Pandawan uses to issue
commands to the emulated firmware (e.g., run TriforceAFL’s
fuzzing harness). Since the original startup scripts within the
Ff s file-system are responsible for loading any of the kernel
modules, Pandawan has to ensure that these scripts do not load
the kernel modules that crashed during the hybrid kernel build
process in S5 . Pandawan applies any kernel module substitu-
tions in-place, meaning that if a kernel module c that crashed
during S5 has a substitution s (i.e., a counterpart in UPkos),
then c is replaced by s within Ff s, else c is deleted from Ff s
altogether. Thus, when a startup script attempts to load c during
emulation, it will either load s instead or no module at all.

To infer the networking configuration of Fimage, Pandawan
initiates an emulation run with the Ff s file-system, the PWk
kernel and QEMU. During emulation, Pandawan gathers in-
formation about the networking interfaces (e.g., bridge mode)
and IP configuration of Fimage. Finally, Pandawan embeds
Fimage’s network configuration within a PyPANDA script, used
to emulate and analyze Fimage with PyPANDA and its plugins.
Pandawan also addresses kernel module crashes that occur

during its re-hosting experiments (see Section 5.3). In these
cases, Pandawan first uses FirmSolo’s data structure layout
recovery mechanism to address the errors. If the crashes per-
sist then Pandawan, during the creation of Ff s, substitutes the
crashing modules with their counterparts inUPkos (if they exist)
else it removes the crashing modules from Ff s entirely.

Holistic Re-hosting & Analysis. Next, Pandawan initiates
a firmware emulation run using the PWk kernel, the Ff s
file-system and PyPANDA. During emulation, Pandawan
enables the OS introspection (Py)PANDA plugins osi_linux
(enabled by default), coverage, and syscalls_logger to
analyze Fimage. Primarily, the information collected are the
executed program names, their executed QEMU Translation
Blocks (TBs), and the system calls (ID and arguments) that
were invoked by user code during the emulation. We note
here that we modified PyPANDA’s coverage plugin, in its
summary mode, to not only provide information about the
programs and the number of unique TBs executed, but also the
addresses of the TBs along with their origin (e.g., the program
itself or the symlink target if the program is a link). Pandawan
also introduces two additional custom plugins; the FICD and
the SyscallToKmodTracer.

As the name suggests the former plugin implements
the FICD technique in Pandawan, while the goal of
the SyscallToKmodTracer is to showcase Pandawan’s
utility in holistic firmware analysis. Specifically,
SyscallToKmodTracer traces system calls invoked by
user code that lead to the execution of code in kernel modules.
These traces expose entry points from user level to kernel level,

3https://github.com/ReFirmLabs/binwalk
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which Pandawan transforms into seeds for the TriforceAFL
kernel fuzzer to analyze the binary kernel modules. Essentially,
Pandawan leverages the hooking infrastructure of PyPANDA
to hook all system calls. Upon entering a system call, the
corresponding hook triggers and Pandawan stores information
about the execution context at the time (i.e., the current
process name, its pid and creation time) and correlates the
running system call (ID) with that context. Keeping track of
the different execution contexts and their running system
calls is mandatory, since the kernel can alternate between
different contexts via context switches. Pandawan uses this
information to detect the context in which the kernel module
code is executed in and also the system call that led to the
execution of that kernel module code.

To detect when kernel module code is executed, Pandawan
also places a hook on memory regions occupied by kernel
modules depending on the underlying architecture of Fimage
(e.g., 0xc0000000 - 0xc2000000 for MIPS). Specifically, if
a system call leads to code residing in these regions then the
aforementioned hook will trigger. Within the hook, Pandawan
checks the current execution context and iterates all the
previously traced execution contexts (captured by the system
call hooks) until it finds a match. When it does, Pandawan
correlates the current kernel module code address (i.e., the
start of the TB currently executed) with the current execution
context and the (running) system call associated with that
context. The aforementioned system call is considered the one
that led to the kernel module code execution.

Seed Creation. However, to create useful seeds for the
TriforceAFL fuzzer, Pandawan also requires information
about the arguments (i.e., values) of the system calls that lead
to the execution of kernel module code. Another PyPANDA
plugin, the syscalls_logger, is responsible for collecting
the arguments of all the system calls executed during the
emulation. Pandawan combines the data collected by the
syscalls_logger and SyscallToKmodTracer plugins to
create seeds and fuzz the firmware kernel modules. Seed
generation for fuzzers is not a new research topic. Prior
works [3, 9, 37, 42, 53] leverage either system call traces,
concolic execution or static analysis to extract information
about the program execution and use it to create seeds for
popular fuzzers such as syzkaller [23] or AFL/AFL++ [21,51].
Our approach is similar to [37] in the sense that it relies
on system call traces to create seeds for the TriforceAFL
kernel fuzzer. However, we target only kernel modules that
are accessed by system calls either through a socket or a
file descriptor since TriforceAFL’s fuzzing agent [35] is
inherently compatible with these types of system calls.

As we show in Section 5, the majority of TriforceAFL
compatible system calls (sc) that lead to kernel module
code execution are networking (e.g., sys_setsockopt) or
file-based system calls (e.g., sys_write). Thus, to create
valid seeds for the fuzzer, Pandawan first has to detect which
sys_socket and sys_open system call creates the file

descriptor accessed by each sc, respectively. To gain
this information, Pandawan leverages the first argument
of a sc which corresponds to the file descriptor number
f d. Then for each sc, Pandawan parses the information of
syscalls_logger and detects the sys_socket or sys_open
system call that was invoked by the same process as sc and
returned a value equal to f d. System calls that operate on the
same f d are grouped together in the same seed.

Fuzzing. To start fuzzing the kernel modules in Fimage,
Pandawan runs the PWk kernel along with the Ff s file-system
and the seeds found previously under TriforceAFL. The I f in
point for Fimage plays a critical role also in this scenario. In
particular, Pandawan spawns a thread that runs alongside the
TriforceAFL process and waits until Fimage reaches its I f in
point, since all the target kernel modules would be loaded by
that point. Then, the thread connects through a UNIX socket
to the custom serial console within the Ff s file-system and
initiates the fuzzing harness to begin the kernel module
fuzzing. We note here that Pandawan limits the range of
system calls that the fuzzing harness can execute to the
twelve system calls illustrated in Table 6 in Appendix C. The
rationale behind this limitation is to only execute system calls
compatible with TriforceAFL’s fuzzing agent.

5 Evaluation
In this Section, we first evaluate Pandawan’s effectiveness on
holistic IoT firmware re-hosting and analysis and then FICD’s
capability to meaningfully compare full-system re-hosting
approaches. Specifically, we answer the following three
research questions:

RQ1 Is Pandawan capable of holistically re-hosting firmware
code (§ 5.3)?

RQ2 How effective is Pandawan on enabling holistic firmware
analysis (§ 5.4)?

RQ3 How efficient is FICD when it comes to quantifying the
forward progress in full-system IoT firmware re-hosting
(§ 5.5)?

First, we describe our dataset and our experimental setup,
then we detail the experiments we use to evaluate Pandawan
and finally discuss the comparative experiments with FICD.

5.1 Dataset
For our evaluation, we use the dataset of FirmSolo and a subset
of firmware images used in Greenhouse [46]. The Greenhouse
dataset was shared with us upon request to the authors. We use
the FirmSolo dataset since it is supported by FirmSolo, Firma-
dyne, and FirmAE. We do not use the entire Greenhouse dataset
(consisting of 7,347 firmware images) since the majority of
the images use the same kernel version as the images in the
FirmSolo dataset. Instead, we pick at random 50 images from
the 97 images that use a kernel version between 4.4.198 (lat-
est version used by FirmSolo) and 4.9.206 (the latest kernel



version used by the ARM/MIPS 32bit images in Greenhouse).
Our dataset consists of 1,520 firmware images containing a
total of 61,319 binary kernel modules. The firmware images
in the dataset target the MIPS (984 images) and the ARM
(536 images) platforms. Finally, the firmware images span a
total of 95 unique Linux kernel versions, ranging from version
2.6.18 to version 4.9.206.

5.2 Experimental Setup
We run all our experiments Intel Xeon machines using 2
cores with minimum of 16GB of RAM. All of our re-hosting
experiments consist of three runs and the results correspond
to the averages across these runs.

5.3 Holistic Re-hosting
In this section we evaluate the 1 Kernel Augmentation
and 2 Firmware Re-hosting & Analysis components of
Pandawan to answer RQ1.

Preprocessing. We execute this step only once in our
experiments, to generate the configuration option pools
OMIPS and OARM , which constitute the user-code-required
functionality that is added in the PWk kernels in component
1 . We include these configuration option pools as part

of Pandawan’s repository. During this step, we extract 754
options in the OMIPS and 726 options in the OARM pools,
respectively. We opt to only keep the most popular options in
both sets. In Figures 3a and 3b in Appendix A, we provide the
Cumulative Distribution Function (CDF) of the configuration
options in OMIPS and OARM pools, respectively, over the
images that have KALLSYMS available. To find the most popular
options in each pool we use the Kneedle algorithm [40] to
deduce the “knee” points in both figures (marked with the red
lines). We filter out the options that reside beneath these knee
points. Specifically, the knee point in Figure 3a is 30 (images),
418 (options), while the knee point in Figure 3b is 85 (images),
513 (options). In the end, 336 (754 - 418) and 213 (726 - 513)
options remain in the OMIPS and OARM pools, respectively.

Kernel Augmentation. Regarding the unresolved symbols
required by kernel modules to load into the PWk kernels,
Pandawan successfully adds the stubs for all these 4,254
unique symbols into the PWk kernels’ source code. Next, we
evaluate the Oracle only on the subset of 570 (38%) firmware
images that do not contain a KALLSYMS entry, since the Oracle
only affects the PWk kernels produced for these images. After
S4 , 200 configuration options (out of OMIPS and OARM) on
average remain as the “safe” options that can be included
in S5 to produce the PWk kernels for the images without
a KALLSYMS entry. Regarding the 950 firmware images that
contain a KALLSYMS entry, there are no additional options
included in S5 , thus the PWk kernels are identical to the FSk
kernels produced (by default) by FirmSolo.

Network configuration. Since Pandawan leverages Fir-
mAE’s network configuration logic, every PyPANDA script by
default sets at least a networking interface in PANDA for each

firmware image. Unfortunately, we notice that the PyPANDA/-
PANDA emulation hangs for the ARM images in our dataset
that target the Versatile and Realview platforms (498/536
images) when the networking interfaces are enabled. The re-
maining 38 images target the “dummy” virt QEMU platform
and are unaffected. Since FirmAE’s pre-built ARM kernel
targets the virt platform, FirmAE does not suffer from the
same issue. Thus, we disable these interfaces for the affected
images to successfully re-host them with Pandawan. We have
notified the PyPANDA/PANDA developers about this issue.

Re-Hosting Success. Component 2 of Pandawan is
responsible for initiating an emulation run, using the Ff s
file-system and the PWk kernels while concurrently enabling
PyPANDA’s OS level introspection and analysis plugins.
Pandawan successfully re-hosts 1,389 (91%) of all the images
in our dataset. We define as successfully re-hosted all the cases
where the emulation successfully executed init without pan-
icking or freezing. Unfortunately,Pandawan cannot re-host the
remaining 123 firmware images since for 38 images there is no
working init script available in the file-system, init immedi-
ately crashes for 12 images or important libraries are missing
in the file-system for 11 images. Additionally, 29 images use
a kernel with MIPS Thread Context, a feature that improves
parallelism in MIPS systems, but not supported by QEMU.
Furthermore, 2 images use a very old kernel version (2.6.18),
resulting in the emulation freezing while the kernel boots up.
We also notice 13 cases where the kernel cannot not mount the
file-system because the latter is corrupted and 8 cases where
the kernel hangs while mounting the file-system. Finally, Py-
PANDA crashed for 18 images during emulation, while trigger-
ing a bug in its osi_linux plugin (used by default by PANDA).
We have notified the (Py)PANDA developers about the issue.
Since these failures are not specific to Pandawan’s implemen-
tation, we do not consider them as a limitation of our work.

Serial Console Connectivity. As discussed in Section 4.2.3,
to run the fuzzing harness within a target firmware image,
Pandawan has to first connect through a UNIX socket to a
custom serial console within the image’s file-system. To
discover the number of firmware images that are accessible
through their serial console, we conduct an experiment where
we emulate each firmware image with Pandawan and attempt
to connect to its serial console through a UNIX socket after
30 seconds of emulation time and run a dummy command
(e.g., /bin/ls). A successful connection with a serial console
means that we get the output of the dummy command in the
serial log output of the firmware image. We are able connect
to the serial console of 1,200 (86%) out of the 1,389 firmware
images that Pandawan successfully re-hosts. We “break down”
the reasons behind the console connectivity issues for the 189
failed cases in Table 5 in Appendix B.

Kernel Module Re-hosting. During the firmware emulation
runs in component 2 , Pandawan loads 14,413 (24%) kernel
modules out of the 61,319 IoT kernel modules in our dataset.
As illustrated in [1], the configuration and bootup scripts



Plugins I f in Avg. (sec) Overhead (%)

All 496 22
No syscalls_logger 496 22
No coverage 460 13
No SyscallToKmodTracer 440 8
Only coverage 462 14
Only SyscallToKmodTracer 456 12
Only syscalls_logger 413 2
Only FICD 407 0
Frameworks

FirmSolo 476 17
Firmadyne 441 9
FirmAE 477 17

Table 1: Pandawan’s plugin performance ablation study.
The experiment includes every plugin combination used
by Pandawan. The second column provides the average I f in
points marked by FICD for every plugin combination. The
third column provides the performance overhead incurred by
each plugin combination. The table also includes the average
I f in measured for FirmSolo, Firmadyne and FirmAE on the
same dataset with all the plugins enabled.

dictate which kernel modules will be loaded into the kernel
during the firmware initialization, which is merely a fraction
of all the kernel modules in the images’ file-systems. Finally,
Pandawan executes 336 kernel module TBs on average.

In cases where kernel module crashes occur during
emulation, Pandawan uses its custom crash solving method
(see Section 4.2.3) to address the issue. In total, Pandawan
addreses 249 kernel module errors.

User Code Re-hosting. When considering its user code
re-hosting capabilities, Pandawan executes 30 user level pro-
grams and 15,671 unique QEMU TBs on average. The startup
scripts within the firmware images dictate which programs are
executed during bootup. We make sure to substitute symlinks
with their actual targets in our results so that the TBs executed
get attributed to their actual origin. For example, if the firmware
executes /bin/ls which is a symlink to /bin/busybox, we
only include and count the TBs executed towards the busybox
executable in our results. Note that each TB is attributed only
once (counted one time only) to their origin. For instance, a
TB that belongs to a shared library and executed by multiple
programs will only be counted once towards the shared library
it belongs to. In Section 5.5, we discuss how these results
compare against Firmadyne, FirmAE and FirmSolo.

Kernel Augmentation Ablation Study. To demonstrate
the contribution of KA in firmware re-hosting, we also con-
duct an ablation study where we measure the effective-
ness of the two key features of KA: 1) The addition of the
user-code-required functionality by the Oracle and 2)
the addition of the kernel symbol stubs (required by kernel
modules to load into the kernel). For this experiment we use
a smaller dataset of 150 firmware images (100 images with-
out KALLSYMS and 50 images with KALLSYMS). We bias our
selection towards images without KALLSYMS since KA benefits
these images the most. We present the results of this study in
Table 3 in the third group column. Based on our results the
contribution of KA is apparent when taking into account all

Module Type Vendor Kernel Paths Path var (std) Bugs

MIPS
arp_tables O AT&T 2.6.31 121 43 (7) 2
led P Linksys 2.6.31 26 39 (6) 1
ipt_STAT P TP-Link 2.6.36 59 28 (5) 1
x_tables O TP-Link 2.6.31 153 134 (12) 1
statistics P TP-Link 2.6.31 166 81 (9) 1
ip6_tables O AT&T 2.6.30.10 252 129 (11) 2
ipv6_spi P Netgear 2.6.30 43 245 (16) 2
ip_tables O TP-Link 2.6.31 202 19 (4) 2
gpio P DLink 2.6.31 31 18 (4) 1
gpio_module P DLink 2.6.31 5 0 (1) 1

ARM
ipt_STAT P TP-Link 2.6.32.11 56 47 (7) 1
statistics P TP-Link 2.6.36.4 25 121 (11) 1

Total 16

Table 2: Statistics about the fuzzing experiments with
TriforceAFL. The O and P in column two represent kernel
modules that are open-source and proprietary, respectively.
Column six provides the variance and standard deviation for
the paths found by the fuzzer over the ten runs.

of our metrics. Specifically, Pandawan with KA executes 6%
more user level programs and executes 11% more TBs than
Pandawan without KA (i.e., FirmSolo), while also loading 3%
more kernel modules and executing 17% more kernel module
TBs. Finally, our experiments show that the addition of only the
user-code-required functionality by the Oracle is more
beneficial than simply adding the kernel symbol stubs, since
the majority of the metrics are the closest to Pandawanwith KA.
Specifically,Pandawanwith only theOracle enabled manages
to surpass Pandawan with KA in kernel module loading by 1%.
Upon further inspection, two images whose the kernel modules
crashed and deleted from the Ff s file-system (see Section 4.2.3)
during the emulation with Pandawan with KA, skew the results
in favor of Pandawan with only the Oracle enabled.

Plugin Overhead. To measure the performance overhead
of each PyPANDA plugin, we pinpoint the I f in points
using every possible combination of the plugins enabled in
Pandawan’s analysis (i.e., syscalls_logger, coverage and
SyscallToKmodTracer) excluding FICD which is responsi-
ble for determining the I f in points and thus is always enabled.
For this study we use again a smaller dataset of 150 images
(95 with KALLSYMS and 55 without KALLSYMS) that better
represents the distribution of the images in our dataset. We
provide the results in Table 1. When all the plugins are enabled
we notice a 22% slowdown compared to enabling only FICD.
This is expected since each plugin contributes an additional
level of analysis which impacts the overall emulation speed.
Specifically in our case, the most computational heavy
plugins are coverage and SyscallToKmodTracer since they
constantly track the execution of QEMU TBs during the em-
ulation, incurring a slowdown of 14% and 12%, when enabled
individually and a slowdown of 22% when both are enabled.

5.4 Holistic Analysis
To demonstrate Pandawan’s contribution to holistic firmware
analysis and answer RQ2, we evaluate how the information
collected by the SyscallToKmodTracer plugin is used to
further analyze the binary kernel modules with TriforceAFL.



Dataset All Images (/w cov) (1328) No KALLSYMS (/w cov) (456) KA Ablation Dataset (/w cov) (135)
Framework FD FAE FS P FD FAE FS P No KA KA w/o oracle KA w/o stubs KA

Avg. Progs 30 31 31 31 35 36 34 36 32 32 33 34
Avg. TBs 15,483 16,767 15,523 16,360 15,715 16,552 13,835 16,740 15,099 14,961 16,611 16,790
KOs Loaded 0 0 13,598 14,089 0 0 4,936 5,146 1,481 1,470 1,535 1,521
Avg. KOs TBs 0 0 323 336 0 0 200 251 266 322 280 310

Table 3: Comparison results between the Pandawan (P), Firmadyne (FD), FirmAE (FAE) and FirmSolo (FS) re-hosting frameworks.
The table depicts the average number of user programs and QEMU TBs executed, the number of kernel modules loaded and kernel
module TBs executed, for each system respectively. The green cells represent the best results for each metric. The bold values
represent the cases with statistical significance, where p-value p<0.05 (using the Wilcoxon signed-rank test).

Seed Generation. The SyscallToKmodTracer plugin
monitors the interactions between the user and kernel
code during the firmware emulation run in component
2 . Pandawan processes the information collected by the
SyscallToKmodTracer plugin (i.e., system calls that lead to
kernel module code execution) and generates seeds that are
used by TriforceAFL, as explained in Section 4.2.3.

During our experiments, the plugin identified 927 out of
the 1,389 successfully re-hosted firmware images that load
at least a kernel module. In addition, within these images,
353 processes invoke 6,954 system calls on average that lead
to kernel module code being executed. The remaining 462
firmware images did not successfully load kernel modules.

Unlike FirmSolo which targets only the IOCTL system
call, Pandawan can trace and generate seeds for all types of
system calls that interact with kernel modules. However, we
opt to create seeds only for cases involving popular system
calls that interact with kernel modules through a file descriptor
created either by a sys_socket or sys_open system call, due
to their compatibility with TriforceAFL’s fuzzing agent. We
also provide details about the system calls we did not fuzz in
Table 7 in Appendix C. In the end, Pandawan creates seeds for
479 images whose user code invokes system calls (see Table 6
in Appendix C) which lead to the execution of kernel module
code. Out of these images, 466 (97%) have serial console
connectivity, thus can be fuzzed by TriforceAFL.

Kernel Module Fuzzing. After the seed creation, Pandawan
uses TriforceAFL to fuzz the IoT modules within the firmware
images. We run all experiments ten times for 12 hours.

While Pandawan creates seeds for 479 firmware images,
we chose to fuzz only the kernel modules in a subset of 20
randomly selected firmware images (with serial console con-
nectivity to invoke the fuzzing harness) due to computational
resource constraints. We provide the information about our
fuzzing campaigns in Table 2. The table provides the average
number of paths found by TriforceAFL, the path variance and
standard deviation over the ten runs and the number of bugs
we confirmed, for each image. Based on the path variance and
standard deviation measured (see column six in Table 2), the
coverage found in all the fuzzing campaigns is consistent (the
variances and standard deviations are insignificant).

Specifically, TriforceAFL triggers 16 bugs in 12 kernel
modules (8 proprietary and 4 open-source – see Table 2).
The bugs fall into the stack corruption (6), arbitrary memory

reads and writes (7), and large virtual memory allocation (3)
categories. Three of these bugs (gpio (1) and ipv6_spi (2))
were also detected by FirmSolo. In addition, the seven bugs
triggered for the open source kernel modules (arp_tables (2),
ip6_tables (2), ip_tables (2), and x_tables (1)) are re-
lated to known bugs (CVE-2016-4998 and CVE-2016-3135),
which is why we did not report these bugs to the Linux kernel
developers. Finally, the six remaining bugs on the proprietary
kernel modules led (1) ipt_STAT (2), gpio_module (1),
statistics (2) are previously unknown bugs. We have
disclosed these bugs to the respective vendors, and two
vendors acknowledged our findings; TP-Link and DLink.

5.5 Comparative Results
The previous evaluation based on the coarse-grained “number-
of-bugs-found” metric shows that Pandawan finds more di-
verse bugs than FirmSolo. Even when it comes to bug find-
ing speed, Pandawan is four times faster on average than
FirmSolo (see Table 8 in Appendix E). However, FICD helps
to assess re-hosting process on a finer granularity than just
bugs found. Thus, in this Section, we evaluate FICD’s util-
ity in comparing full-system re-hosting approaches based
on the emulation-based metrics. Specifically, we compare
the Pandawan , FirmAE, Firmadyne and FirmSolo re-hosting
frameworks to answer RQ3.

As mentioned previously, the FICD technique requires two
parameters; 1) the task similarity threshold h for the Leven-
shtein edit distance (ed) which Pandawan uses to identify pre-
viously unseen tasks, and 2) the time frame t f which indicates
how long can the emulation continue without the firmware
executing a previously unseen task. For our experiments, we
set the threshold h equal to 0.5 (for all re-hosting frameworks)
and t f equal to 300 seconds for Pandawan and FirmSolo and
220 seconds for FirmAE and Firmadyne, respectively. To
obtain these values we initiate a ten minute experimental run
with FirmAE and Pandawan for all the images in the dataset,
without the FICD plugin enabled. We set the h and t f of Firma-
dyne and FirmSolo the same as FirmAE’s and Pandawan’s due
to the re-hosting similarities shared between the frameworks
(i.e., Firmadyne with FirmAE and FirmSolo with Pandawan).
To calculate the threshold h, we first sort all tasks based on
their creation time. Then, for each task in the sorted list we
use ed to calculate its similarity against all the tasks with an
earlier creation time, as a ratio between 0 and 1. According to



Figures 4a and 4b in Appendix D, almost 90% of the tasks have
a similarity less than 0.5 with any other task created earlier, for
both FirmAE and Pandawan, thus we choose h=0.5. Then, to
get the time frame t f , we measure the average t and standard
deviation (σ) of the time that passes between the execution of
previously unseen tasks. Based on the ten minute experiment
runs, FirmAE’s t = 52sec and σ = 81sec, while Pandawan’s
t = 69sec and σ = 115sec. To ensure statistical relevance
we choose a time frame t f > t+2σ, thus we set t f = 220sec
as our optimal time frame for FirmAE and Firmadyne and
t f =300sec for Pandawan and FirmSolo, respectively.

Re-hosting Fidelity Comparison. To showcase Pandawan’s
progress on holistic firmware re-hosting, we use theFICD
technique to compare it with the Firmadyne, FirmAE, and
FirmSolo re-hosting frameworks, based on the number of
executed user level programs (non symlinks), the QEMU TBs
executed in these programs, the number of kernel modules
loaded, and the kernel module TBs executed during emulation.
To make our comparison fair among all compared re-hosting
frameworks we only include images where we collected
coverage in all three emulation runs with a maximum total
emulation time of 45min for all frameworks. Thus, we compare
Pandawan , Firmadyne, FirmAE, and FirmSolo on 1,328 out of
the 1,520 images in our dataset. We note here that throughout
all our experiments FICD was successful in detecting the I f in
point for each framework and each image and terminating the
emulation way before the 45min global timeout (see Table 1).
Pandawan executes up to 3% more user level programs on

average than Firmadyne, FirmAE and FirmSolo (see column
group 1 in Table 3). Similarly, Pandawan outperforms both
Firmadyne and FirmSolo on the average number of TBs exe-
cuted by up to 5%. However, FirmAE executes 3% more TBs
on average than Pandawan. The predominant reasons behind
this outcome are twofold; 1) the emulation speed of Pandawan
is slower than FirmAE’s due to the SyscallToKmodTracer
affecting only Pandawan (and FirmSolo) which loads and an-
alyzes the IoT kernel modules, and 2) KA impacts negatively
the re-hosting progress. Since FirmAE and Firmadyne focus
solely on user level re-hosting and do not load any firmware
kernel modules, the plugin’s module TB tracing functionality is
ineffective for these frameworks. As illustrated in Table 1 both
Firmadyne and FirmAE are 13% and 4% faster than Pandawan
on average. In addition, for 36 out of the 1,328 images used in
the comparison experiments, the PWk kernels produce a crash
(i.e., Oops), while the FSk kernels do not suffer from the same
issue. The addition of the user-code-required functional-
ity and the kernel symbol “stubs” by KA hinders the re-hosting
progress of the images in these cases. This small regression
can be attributed to the heuristic nature of KA.

When it comes to the kernel module loading we compare
onlyPandawan and FirmSolo, since neither Firmadyne nor Fir-
mAE load IoT kernel modules. Specifically, Pandawan loads
6% more kernel modules and executes 5% more kernel mod-
ule TB’s on average than FirmSolo. To be fair towards Firm-

Data Avg. TBs
Framework FD FAE FS P

httpd 1,784 1,886 1,803 1,790
uhttpd 268 279 249 252
mini_httpd 751 782 743 744
lighttpd 2,281 2,448 2,267 2,270
goahead 194 198 188 185
httpd 699 637 596 595

Table 4: Coverage information of popular IoT webservers.

Solo we addressed the crashes during its emulation runs using
Pandawan’s crash solving methods (see Section 4.2.3). In this
case, we address 225 crashes in total.

Since Pandawan only includes the user-code-required
functionality in images without a KALLSYMS entry (see Sec-
tion 3.2.2), the improvements of Pandawan over FirmSolo
can be better observed on these images (see column group
2 in Table 3). In particular, Pandawan executes 6% more
user programs and 21% more TBs on average than FirmSolo.
Pandawan also outperforms FirmSolo on the number of kernel
modules loaded and kernel module TB’s executed by 9% and
26% on average, respectively. Both the user-code-required
functionality and the symbol “stubs” added by Pandawan in
the PWk kernels for these images, greatly benefit the progress
of holistic (user and kernel code) re-hosting as well as the
loading of additional kernel modules.

We also test the statistical significance of our results using
the Wilcoxon signed-rank test [45]. Specifically, for each met-
ric we compare Pandawan’s data with Firmadyne’s, FirmAE’s
and FirmSolo’s data (28 comparisons). We exclude the kernel
module related metrics (loaded and TBs executed) for Firma-
dyne and FAE since they do not load the IoT kernel modules.
We note that the majority of our measurements (24/28) are
statistically significant with a p-value p<0.05 (see Table 1).

Webserver Re-hosting. To further showcase the efficiency of
Pandawan in user code re-hosting, we conduct a study about
the re-hosting of webservers used by firmware images. We
provide the results in Table 4. Specifically, we collect coverage
information for 6 popular webservers used in IoT [28]. Our
findings show that FirmAE and Firmadyne which are the
state-of-the-art in user code re-hosting marginally outperform
Pandawan in re-hosting webservers by executing up to 8%
more QEMU TBs across all the servers in our study. Given the
fact that Pandawan aims to holistically re-host and analyze
Linux-based IoT firmware, Pandawan’s slight deficiency in
webserver re-hosting is an acceptable tradeoff. We leave the
qualitative analysis of the differences in webserver re-hosting
between the compared frameworks as future work.

6 Discussion
In this Section we discuss future applications of FICD and
Pandawan. With the introduction of FICD, developers can
efficiently improve upon the existing works by comparing
their implementations with the state-of-the-art. Furthermore,
Pandawan could be leveraged to develop future frameworks
whose re-hosting capabilities closely approximate physical
IoT devices. For instance, the re-hosting techniques imple-



mented in Honware [48] could be integrated into Pandawan to
further improve its holistic re-hosting capabilities. In addition,
the FICD and setup of Pandawan (i.e., using PyPANDA for
firmware emulation) are generic and OS agnostic. Thus, any
firmware that can be emulated by QEMU and uses a concept of
process/task (e.g., FreeRTOS [22]) can be adapted to leverage
FICD. Next, we explore the categories of metrics that could be
used to quantify re-hosting progress and lastly specify certain
limitations of both FICD and Pandawan.

Alternate Metrics. In general, we can distinguish the metrics
that quantify the emulation progress in two categories; system-
and process-oriented metrics. Our existing metrics; number of
programs executed and number of kernel modules loaded fall
into the system-oriented metrics, since they showcase emula-
tion progress from a higher (system) level of abstraction. Other
metrics in this category could be the number of networking
interfaces successfully initialized and/or the successful firewall
configuration (e.g., the number of successfully applied rules).

The average number of QEMU TBs traced belong in the
process-oriented (lower-level) metrics, since (Py)PANDA
correlates each TB executed to a running program or kernel
module. Another metric that could fit in this category is the
number and identity of successful and unsuccessful system
calls executed by each process. In summary, the metrics used in
this paper work well and other metrics can be easily integrated.

Regarding techniques to assess a successful firmware ini-
tialization, generally there is no reliable indicator to establish
the end of a firmware’s initialization phase. However, 33 of our
images print a specific message about the end of bootup and
timewise this message coincides with I f in- t f , thus I f in accu-
rately corresponds to these images’ end of initialization phase.

Limitations. As far as FICD’s limitations are concerned,
the time frame t f is directly dependent on which (Py)PANDA
plugins are enabled during a firmware emulation run.
When many computationally heavy plugins are enabled,
the emulation speed will decrease, thus t f requires an
adjustment. In our re-hosting experiments we use three
(Py)PANDA plugins (coverage, syscalls_logger, and
SyscallToKmodTracer) along with the FICD plugin, which
results in the optimal t f = 220sec and t f = 300sec for
FirmAE and Pandawan, respectively. Furthermore, Pandawan,
like other re-hosting frameworks, faces specific limitations.
Since the Oracle targets only the data structures used by
open-source kernel modules with a counterpart in UPkos, it
does not guarantee that the layout of data structures used by
proprietary kernel modules will be unaffected. The options
produced in S4 can potentially misalign the layout of data
structures used by proprietary kernel modules causing the
modules to crash during emulation. Furthermore, as shown
in Section 5.3 only a fraction of the total modules in the Ff s
file-systems are loaded during emulation by the firmwares’
bootup scripts. Consequently, the SyscallToKmodTracer
plugin only collects system call information for a subset
of user level programs that interact with the loaded kernel

modules during emulation. The kernel modules that are not
loaded and user level programs that are not executed during the
emulation do not contribute to the holistic firmware analysis.

7 Related Work
Benchmarking. These studies are important for establishing
reliable metrics for evaluating the contributions of works and
also setting the standards for future directions in a research
area. Both [29, 31] introduce metrics to evaluate the perfor-
mance and effectiveness (i.e., bug finding) of fuzzing tools
as well as guidelines that should be followed by future fuzzing
applications. AIR [52] proposes a metric to quantify the pro-
tection offered by Control Flow Integrity techniques on binary
executables. Similar to these works, FICD uses specific metrics
(i.e., the number of user level, user and kernel module code
coverage and number of kernel modules loaded) to evaluate
different approaches in the full-system re-hosting domain.

IoT Firmware Analysis. There are plenty of academic
works focusing on firmware analysis. On the one hand, static
analysis and symbolic execution [16, 25, 43, 44] are two of the
most prominent techniques for firmware analysis. While some
works rely solely on static analysis [13, 20] to analyze IoT
firmware, it is mostly used to aid symbolic executors [5, 6, 10]
to explore firmware code more efficiently.

On the other hand, dynamic analysis has also gained a
lot of popularity in the IoT firmware analysis landscape in
the past few years. Firmadyne [7] and FirmAE [28] are two
examples of frameworks which use firmware re-hosting at
their core to emulate IoT firmware and subject it to various
dynamic analyses, such as vulnerability and bug testing.
Similarly, Honware [48] relies on re-hosting techniques to
deploy emulated IoT firmware as honeypots on the Internet to
observe and study real world network attacks. FirmGuide [32]
is a re-hosting framework that semi-automatically creates
QEMU peripheral models to successfully re-host the Linux
IoT kernels of open-source firmware images (e.g., OpenWRT).
However, both the need for human intervention and source
code availability renders FirmGuide unable to re-host
proprietary firmware, unlike Pandawan. Finally, FirmSolo [1]
is a framework that re-hosts and enables the dynamic analysis
of IoT firmware binary kernel modules.

In contrast to Pandawan, which holistically re-hosts and ana-
lyzes IoT firmware, most of the works above focus exclusively
on either the user or the kernel level aspect of IoT firmware.

Hardware-In-The-Loop. Frameworks in this category
combine both a physical IoT device and re-hosting to dynami-
cally analyze binary IoT firmware. Specifically, AVATAR [50]
leverages the debugging interface (i.e., JTAG) of IoT devices
and the QEMU emulator (driven by a symbolic execution
engine) to forward I/O operations to the physical device while
the firmware code is executed within the emulator. Similarly,
SURROGATES [30] and Inception [12] follow a similar logic.
While effective at analyzing IoT firmware, these systems
are intrinsically limited in terms of scalability due to their



dependence on the IoT hardware.
Firmware Fuzzing. Both Greenhouse [46] and

EQUAFL [55] rely on user mode QEMU to emulate user level
firmware applications and analyze these applications through
fuzzing. EASIER [38] is a framework that loads binary kernel
modules on pre-configured Android kernels within an emu-
lated environment and analyzes these modules with AFL [51].
FirmAFL [54] combines a hybrid firmware re-hosting tech-
nique (user and full system mode) with fuzzing to analyze user
level firmware code. Fuzzware [41] is a system that relies on
dynamic symbolic execution (DSE) to infer hardware created
values (provided to the firmware through MMIO) which are
used to drive a fuzzer while analyzing the embedded firmware
code. On a similar fashion, Halucinator [11] uses Hardware Ab-
straction Layers (HALs) to model hardware peripherals along
with a fuzzer to dynamically analyze embedded firmware.

Unlike Pandawan, these systems are unable able or only suit-
able of analyzing specific categories of firmware kernel mod-
ules. Pandawan can load and analyze a variety of binary Linux
IoT kernel modules, due to its holistic analysis capabilities.

8 Conclusion
In this work, we present FICD, a technique that enables the
objective comparison of full-system re-hosting approaches
on their emulation capabilities. Also, we introduce Pandawan,
a framework that enables holistic re-hosting and analysis of
Linux-based IoT firmware. Pandawan, implements theKernel
Augmentation technique which produces kernels conducive
to holistic re-hosting and analysis. We use Pandawan to holis-
tically analyze IoT firmware and provide the information pro-
duced to the TriforceAFL fuzzer to analyze the firmware’s ker-
nel modules. Finally, we rely on FICD to showcase Pandawan’s
progress in firmware re-hosting by comparing it with the
Firmadyne FirmAE, and FirmSolo re-hosting frameworks.
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A User-Code-Required Functionality
In Figures 3a and 3b we showcase the popularity of the config-
uration options in the OMIPS and OARM pools, respectively.
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(a) CDF of the configuration
option usage in OMIPS.
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Figure 3: CDFs of the configuration option popularity/usage in
OMIPS and OARM , respectively. We use the Kneedle algorithm
to detect the “knee” points in both figures. The options used by
the number of images below the “knee” points are filtered out.
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B Console Connectivity Issues
Table 5 provides the breakdown of the reasons and the number
of cases behind Pandawan’s console connectivity issues

Issue # of Images

Console is unresponsive 82
The console binary crashes 59
The kernel panics 45
Firmware reboots 3
Total 189

Table 5: Console connectivity issues during the Pandawan
emulation experiments. Column one illustrates the reasons
behind the console connectivity issues.

C System Calls Traced Statistics
In Table 6 we present the twelve system calls that lead to kernel
module code execution and are explicitly fuzzed by Pandawan
(using TriforceAFL). We opt to fuzz only these system calls
due to their inherent compatibility with TriforceAFL’s fuzzing
agent (harness), TriforceLinuxSyscallFuzzer [35]. Even
though the fuzzing agent is capable of invoking any system
call, it primarily supports socket or file-descriptor based
system calls (see Table 6).

Table 7 illustrates the top ten traced system calls, which lead
to kernel module code execution, but not fuzzed during our
fuzzing experiments. We opt out from fuzzing these system
calls for two reasons. First these system calls do not operate
on a file descriptor or socket (i.e., the most compatible
system calls with TriforceAFL’s fuzzing agent). Second, in-
voking these system calls does not lead to kernel module code
being executed until certain conditions are met. For example,
sys_select is used to monitor file descriptors until they
are ready for I/O, which the fuzzer is not sophisticated enough
to generate. Also fuzzing this specific system call would
not produce any interesting results (i.e., crashes). The same
premise is true for the rest of the system calls we did not fuzz.

System Call # of Invocations

sys_setsockopt 1,769,439
sys_ioctl 671,531
sys_getsockopt 648,336
sys_sendto 424,880
sys_close 123,338
sys_read 43,126
sys_open 42,847
sys_write 32,187
sys_send 10,564
sys_fcntl 4,611
sys_socket 3,584
sys_connect 1,115

Table 6: The most pop-
ular system calls used
in Pandawan’s fuzzing
experiments.

System Call # of Invocations

sys_recvmsg 301,866
sys_select 293,624
sys_nanosleep_time32 291,664
sys_nanosleep 211,628
sys_gettimeofday 85,761
sys_brk 49,077
sys_fork 23,625
sys_execve 19,625
sys_rt_sigprocmask 14,718
sys_wait4 13,704

Table 7: The top 10 traced
system calls that are not
“compatible” with Tri-
forceAFL.

D Edit Distance Threshold Experiments
Figures 4a and 4b depict the results of the ten minute edit
distance threshold experiments for FirmAE and Pandawan.
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(a) FirmAE edit distance thresh-
old experiment.
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(b) Pandawan edit distance
threshold experiment.

Figure 4: Edit distance threshold experiments for FirmAE and
Pandawan. For both frameworks, we measure the similarity
between a task and all the tasks created at an earlier point in
time using the Levenshtein edit distance algorithm.

E FirmSolo Bug Finding Speed
Table 8 depicts the bug finding speed measurements for
Pandawan and FirmSolo. For Pandawan’s experiments we
use the images where TriforceAFL triggered at least a bug in
one of their kernel modules. For FirmSolo’ experiments, we
choose images that load the same kernel modules that FirmSolo
originally found bugs in (exceptrt_rdm.kowhich did not load
in any of our images). We run the experiments 10 times for
12 hours and the results are the averages over these runs. The
measured Time-To-Crash (TTC) variances and standard de-
viations for both Pandawan and FirmSolo (see columns three
and six in Table 8) indicate that TriforceAFL is inconsistent
regarding the time it requires to arrive to the first crash/bug.

Pandawan FirmSolo
Module TTC (sec) TTC var (std) Module TTC (sec) TTC var (std)

MIPS
ipv6_spi 1,644 14e+5 (1e+3) ipv6_spi 16,262 126e+6 (11e+3)
gpio 751 114e+3 (337) gpio 51 678 (26)
arp_tables 1,488 24e+4 (490) acos_nat 70 570 (24)
led n/a n/a art n/a n/a
ipt_STAT 3,856 25e+6 (5e+3) art-wasp 151 39e+2 (62)
x_tables 880 200e+3 (448) edinvram2 25 379 (20)
statistics 152 5,071 (71)
ip6_tables 811 536e+3 (732)
ip_tables 1,811 72e+3 (270)
gpio_module 124 3 (2)

ARM
ipt_STAT 2,776 18e+5 (1.4e+3) gpio 189 91e+3 (302)
statistics 169 6,878 (83) IDP 28,919 74e+6 (86e+2)

smcdrv 7 1 (1)
u_filter 1,029 440e+3 (663)

Avg. 1,315 5,189

Table 8: Pandawan’s and FirmSolo’s bug finding speed
measurements. TTC in column two and four stands for
Time-To-Crash (i.e, the time it takes the fuzzer to reach the
first crash). Columns three and six provide the measured
variance and standard deviation forTTC. Regarding the led.ko
kernel module, in line four, TriforceAFL registers the bug as
a hang and not a crash, hence there is no TTC in this case. The
art.ko kernel module in line two crashed while being loaded
into FirmSolo’s kernels and thus the measurement is invalid.
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