
Marmite: Spreading Malicious File Reputation Through
Download Graphs

Gianluca Stringhiniq, Yun Shen♣, Yufei Han♣, and Xiangliang Zhang♠
qUniversity College London, ♣Symantec Research Labs, ♠King Abdullah University of Science and Technology

g.stringhini@ucl.ac.uk, {yun shen,yufei han}@symantec.com, xiangliang.zhang@kaust.edu.sa

ABSTRACT
E�ective malware detection approaches need not only high accu-
racy, but also need to be robust to changes in the modus operandi
of criminals. In this paper, we proposeMarmite, a feature-agnostic
system that aims at propagating known malicious reputation of
certain �les to unknown ones with the goal of detecting malware.
Marmite does this by looking at a graph that encapsulates a com-
prehensive view of how �les are downloaded (by which hosts and
from which servers) on a global scale. �e reputation of �les is
then propagated across the graph using semi-supervised label prop-
agation with Bayesian con�dence. We show that Marmite is able
to reach high accuracy (0.94 G-mean on average) over a 10-day
dataset of 200 million download events. We also demonstrate that
Marmite’s detection capabilities do not signi�cantly degrade over
time, by testing our system on a 30-day dataset of 660 million down-
load events collected six months a�er the system was tuned and
validated. Marmite still maintains a similar accuracy a�er this
period of time.

1 INTRODUCTION
�emalware ecosystem is constantly evolving, with cybercriminals
both devising new ways to monetize their malicious so�ware (e.g.,
ransomware [14]) and devising more e�cient techniques to deliver
malicious payloads to victim computers (e.g., exploit kits [8] or pay-
per-install services [5], as well as developing techniques that make
their operations stealthier and more resilient — e.g., Fast Flux [9]
or Domain Generation Algorithms (DGA) [3].

Traditionally, malware detection is based on static [18, 31] or
dynamic [6, 15] analysis. Such techniques, however are prone
to evasion [12] and require a considerable amount of computa-
tional resources to carry out their inspections. More recently,
the security research community has proposed approaches that
are content-agnostic, performing detection without looking at the
malware sample itself. Some of these techniques detect malware
by looking at the characteristics of malware delivery infrastruc-
tures [5, 27, 30, 35]. Others identify topological relations among
hosts and IP addresses in the hosting infrastructure used by cyber-
criminals [11, 20, 41], crawl potential malicious hosting sites in a
proactive fashion [10, 32], analyze �le co-occurrence relationships

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2017, San Juan, PR, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5345-8/17/12. . .$15.00
DOI: 10.1145/3134600.3134604

on infected computers [23, 36], or get insights from downloader-
payload relationships of �les on a host [19]. �e problem with
most of these content-agnostic approaches is that they use features
that are based on common characteristics of malware delivery in-
frastructures, but these characteristics can change over time due
to normal evolution or a�empts to evade detection. For example,
if certain characteristics relating to network topology or payload
dropping change signi�cantly, the classi�ers must be retrained to
maintain acceptable detection rates.

More importantly, the security community is now able to collect
a very large amount of information at an unprecedented scale, e.g.,
amassing hundreds of millions of malware samples distributed glob-
ally on a daily basis. But how to e�ciently identify malware from
such large datasets remains a challenge. To address this Big Data
challenge, we propose a solution that is principled, in the sense that
it does not rely on a speci�c modus operandi of malware operators
or on speci�c features of malware delivery networks. Instead of
trying to understand whether a network delivery infrastructure is
malicious, or identify �les as malware from their characteristics or
local view of �le downloads, we leverage the known reputation of
a small number of malicious and benign �les, and propagate this
information to other �les that shared some part of the delivery in-
frastructure with them, with the goal of �agging them as benign or
malicious. Our system, called Marmite, �rst builds a global graph
of �le delivery, which we call download graph. Such a graph embod-
ies a comprehensive view of how �les are downloaded (by which
hosts and from which servers and which �les they drop) on a global
scale. Marmite is agnostic to the type of protocol used to host the
�les, to the type of the �les themselves, to the speci�c techniques
used by malware operators to avoid detection (such as Fast-Flux
and DGA) and is therefore generic and resilient to evasion. In the
next step,Marmite performs semi-supervised label propagation
with Bayesian con�dence to propagate the reputation of known
malicious �les to unknown ones, allowing us to signi�cantly and
e�ciently grow our knowledge of malware samples.

A key advantage ofMarmite is that it requires limited ground
truth to operate, and it can grow the initial knowledge of malware
signi�cantly with a guaranteed linear computational complexity,
which is a desirable characteristic in dealing with extremely large-
scale datasets. We validate Marmite on a dataset of 200 million
download events collected by Symantec over a period of ten days.
We show that our system is able to reach high accuracy (0.94 G-
mean on average) and grow our knowledge of malicious samples
up to 11 times, requiring a limited number of malware ground
truth samples for seeding. An additional desirable property for a
malware detection system is to keep their accuracy for long periods
of time. �is is a particularly important requirement, given the pace
at which malware operations evolve. To test whetherMarmite is

able to retain similar accuracy over time, we test our system on a
30-day dataset of 660 million download events that was collected
by Symantec six months a�er the system was tuned. We show that
Marmite is still e�ective even a�er this long time, without any
need for re-tuning.

Our analysis highlights idiosyncrasies of malware delivery on
the Internet that generate limited but systematic false positives
when running label propagation approaches such as Marmite. For
instance, it is common to have malware delivered through legiti-
mate Content Delivery Networks (CDNs), and this can cause benign
�les to be tainted and mistakenly considered as malicious. Simi-
larly, we observe that malicious �les, and in particular potentially
unwanted programs (PUPs [17]), have the tendency to download
legitimate libraries (DLLs) as additional components. �e bad repu-
tation of the PUPs can then be propagated to these other �les by
Marmite. We provide detailed examples of these phenomena, and
we propose a simple whitelist approach to reduce Marmite’s false
detections. We show that these systematic false positives do not
change signi�cantly over time, and a whitelist compiled six month
before deployment is e�ective in signi�cantly reducing the false
detection rate of Marmite.

In summary, this paper makes the following contributions:
• We propose Marmite, a system based on semi-supervised

Bayesian label propagation to propagate the reputation
of known �les across a download graph that depicts �le
delivery networks (both legitimate and malicious). �e
model is designed to be scalable and e�cient.

• We validate Marmite on a dataset of 200 million down-
loads collected in the wild. We show thatMarmite does
not need carefully cra�ed seeds to catch malicious �les,
and a limited set of known malicious �les is enough to seed
a system with limited false positives.

• We show thatMarmite does not require frequent retuning
by testing it on a dataset of 660 million downloads collected
six months a�er the system was tuned. We demonstrate
that a simple whitelisting of �les is enough to dramatically
reduce the false positives reported byMarmite.

2 BACKGROUND AND MOTIVATION

machine1 machine3

URL: http://absoluterejuven.com/offerjk435
/css/3e2d22ef2.exe

SHA2: 9DBD9…
Filename: XJQnhA.exe

SHA2: 7379C…
Filename: CbqWRRI.exe

FQDN: absoluterejuven.com

IP: 104.130.86.40

SHA2: 4B914…
Filename:XJQnhA.exe

machine4

URL: http://amalgamatedcoatings.com/
images/images/3e2d22ef2.exe

FQDN: amalgamatedcoatings.com

IP: 98.129.229.168

machine2

SHA2: 4B914…
Filename: CbqWRRI.exe

FQDN: absoluterejuven.com FQDN: amalgamatedcoatings.com

URL: http://absoluterejuven.com/offerjk435
/css/3e2d22ef2.exe

URL: http://amalgamatedcoatings.com/
images/images/3e2d22ef2.exe

Figure 1: Local view of �le distribution network via end-
points. Each graph is built from the local view from one of
the end user machines.

To illustrate the complexity of keeping track of malware sam-
ples across di�erent distribution infrastructures, consider the real
world example in Figure 1. Each graph is built by looking at the

1

4

6

8

5

7

9

URL: http://absoluterejuven.com/offerjk435
/css/3e2d22ef2.exe

3
SHA2: 9DBD9…
Filename: XJQnhA.exe

SHA2: 7379C…
Filename: CbqWRRI.exe

FQDN: absoluterejuven.com

IP: 104.130.86.40

URL: http://amalgamatedcoatings.com/
images/images/3e2d22ef2.exe

FQDN: amalgamatedcoatings.com

IP: 98.129.229.168

2
SHA2: 4B914…
Filename: CbqWRRI.exe
 XJQnhA.exe

Figure 2: Global view of �le distribution network. �is
graph includes the information that the samemalware sam-
ple has been delivered by two separate servers.

download activity of a single end user’s computer, similarly to
what was done in [19]. �ere are two servers delivering mal-
ware, each with a distinct IP address as well as a separate domain
(absoluterejuven.com and amalgamatedcoatings.com). Each
malicious server drops two di�erent malicious �les over its lifetime,
to a di�erent victim computer each. In particular, the malicious �le
identi�ed by the SHA2 value 4B914... is dropped by both servers.
One solution to �ag these �les as malware is to blacklist the mali-
cious hosts dropping them, and consequently consider as malware
any executable dropped by those hosts. A problem with this tech-
nique is that blacklists typically have coverage problems [26, 29],
and if only one of the two hosts ended up in the blacklist then
there would be a malware sample that would escape detection (ei-
ther 7379C... or 9DBD9...). Another option is to blacklist �les
as they are observed, for example by running them in a sandbox
and �agging anomalous behavior [39]. �e problem with this type
of techniques is that malware authors are actively trying to evade
sandbox systems, and for this reason these approaches have limited
coverage too. If a sandbox system was able to detect only the mal-
ware sample identi�ed by 4B914... as malicious, then the other
two would escape detection.

To mitigate the aforementioned limitations, previous work fo-
cused on studying �le dropping relationships a�er the malicious
�les are downloaded on victim computers [13, 19]. �ese approaches
build local �le dropping graphs extracted from endpoints (similar
to Figure 1), extract features from these local graphs, and leverage
machine learning algorithms to detect malicious droppers. While
these approaches are e�ective in detecting droppers (i.e., malware
samples that download additional components, for example as part
of pay-per-install schemes), they do not provide a global view of
the malware delivery ecosystem, and therefore their detection is
also limited. For example, it is not guaranteed that any of the two
aforementioned systems would be able to �ag the �les 7379C... on
machine1 and 4B914... on machine2 as malware. �is could hap-
pen because the localized view leveraged by these systems requires
local graphs to be complex to guarantee an e�ective detection (e.g.,
to be part of a dropper operation in [19] or to have multiple infec-
tions on the same machine in [13]), or because the features relating
to malware delivery infrastructures (e.g., the number of unique
domains [19]) have changed since the time the detection systems
were trained, and the detection e�ciency of the systems decreased
signi�cantly since then.

As we said, in this paper we propose to approach the problem of
detecting malware in a principled way, by looking at the end-to-
end �le distribution from a global perspective instead of focusing

on local views or relying on speci�c features of malware delivery
networks (as previous systems did [11, 27]). In fact, the only re-
quirement for Marmite is for malicious hosts to drop a multitude
of malicious �les, possibly dropped by other servers too. As these
requirements are needed by the malware delivery process to be
e�ective, they are not likely to change. Figure 2 shows an example
of the download graph built by Marmite, obtained by merging
the localized information from Figure 1. As it can be seen, this
graph includes the information that the malicious �le identi�ed
by 4B914... is downloaded by two separate servers. �anks to
this global view, we can leverage structural information to detect
malware when we only know that some of the �les are malicious
— as we will see in Section 3, we do this by probabilistically prop-
agating labels across the download graph. For example, if node 1
in Figure 2 was initially �agged as malicious, node 2 and node 3
could be �agged as well since the boundary between hosts and ma-
chines no longer exists in this representation, and the evidence of
maliciousness could be propagated along the graph. Ideally, a very
limited initial knowledge of malicious samples could be enough to
have this reputation propagated across the graph and to identify a
large number of unknown malicious �les.
Problem statement. Despite of its straightforwardness, the global
download graph and the label propagation that we propose bring
along several interesting issues regarding their applicability to
the real world, especially in the Big Data context. First of all, le-
gitimate content delivery network infrastructures (e.g., Amazon
Web Services, Akamai) have been substantially used to host large
amounts of malware alongside benign so�ware, and therefore both
benign so�ware and malware are served through them [38]. At the
same time, vulnerable websites (typically serving benign �les) could
also be compromised by cybercriminals to host malware. Moreover,
a considerable amount of �les could not be analyzed in a timely
manner and thus have unknown reputation at the time of check (i.e.,
we could not con�rm that a �le is benign or malicious). Inevitably
this global download graph is a mixture of benign �les, malware,
PUPs, and �les with unknown status together with their hosting
infrastructures. On that account, our major goal is to design a scal-
able graph inference model to reliably detect malicious �les and
validate this approach via a large-scale analysis on real-world data.
�is approach complements existing malware detection systems as
it o�ers insights on how various �les are hosted and distributed to
end-hosts. Our second goal is to develop an approach that can be
e�ective over a long period of time, despite the quick changes that
the malware delivery ecosystem understakes. Finally, our third goal
is to gain insights into current malware delivery schemes, which
can help our community develop be�er mitigation techniques.

3 METHODOLOGY
In this section, we start by explaining how Marmite builds down-
load graphs. We then describe the label propagation with Bayesian
con�dence graph inference model used by Marmite, giving a real
world example of how it works. Finally, we provide a theoretical
analysis of its scalability in dealing with large scale datasets.

File B
SHA2: …

File A
SHA2:… Intermediate URL:

http://intermediate.url/redirection/
path

URL :
http://parent.com/path

URL:
http://download.file.com/path/

FQDN: parent.com

IP: 4.3.2.1

FQDN: download.file.com

IP: 1.2.3.4

File C
SHA2: …

FQDN: intermediate.url

Figure 3: Legend to interpret graphs throughout the paper.

3.1 Building Download Graph
Marmite builds download graphs to perform its label propagation
operation. We de�ne the download graph

G = (V ,E,A), (1)
in whichV is a set of heterogeneous nodes that represent the follow-
ing entities: IP addresses, Fully-quali�ed domain names (FQDNs),
URLs, and �les. It is important to note that, although the nodes
in this graph have a very di�erent nature, some being related to
hosts and some others to �les, Marmite treats them in the same
way, as the �le reputation is propagated across them without mak-
ing a distinction on their types. �is keeps our model general
and makes it independent to speci�c characteristics of malware
delivery networks. E is a set of edges that represent the relation-
ships among these nodes. As we will explain later, we consider
nodes as connected if they appeared in the same download event.
A is the symmetric adjacent matrix of the graph G: Ai, j = 1 if xi
and x j are linked, otherwise Ai, j = 0. An example of download
graph is shown in Figure 3. As it can be seen, the model captures
both �le dropping relationships and the �le distribution network
as discussed in Section 2.

To build the download graph, Marmite takes as input download
events. We de�ne a download event as a tuple

d =< I ,D,Uf , Ff ,Up , Fp ,Ui1, ...,Uik >, (2)
where I is the IP address that the �le was downloaded from, D is its
FQDN,Uf is the full URL of the download (a�er removing the URL
parameters), while Ff is the �le identi�ed by its SHA2. We then have
information on the �le that initiated the download event. �is �le
can be a malware sample dropping other malware, as part of a pay-
per-install scheme [5] or a legitimate program used to download
�les, such as a web browser. As we will explain in Section 4, we
remove information on popular web browsers and �le archivers
from our datasets, to avoid to have unrelated �les connected in the
download graph. Fp indicates the SHA2 of this parent �le, while
Up indicates the URL that this �le was downloaded from. Note that
both these values are not necessarily present in a download event.
In fact, the information where a parent �le was downloaded might
not be available. Finally, we include a series of URLs Ui1, ...Uik ,
which are the URLs involved in the HTTP redirection chain that
terminates with the �nal download URL Uf . As previous research
showed [35] malware operators are commonly using redirection
chains to make their infrastructures resilient and avoid detection.
�ese URLs are not always present in a download event, because
not all downloads take advantage of any redirection.

Marmite collects download events over an observation period
(as we show in Section 5.4, we experiment with variable period
lengths, from one hour to one day), and then builds the download
graph associated to this observation period. To build the graph, the
following steps are taken for each download event d:

• For each element de in the tuple d, we check if de already
has a node in the graph, if it does not, we create a new
node identi�ed by the node’s identi�er and add it to the
set of nodesV . We use the full IP address and the FQDN as
identi�ers for IP addresses and domain nodes respectively,
the full URL without parameters for URL nodes, and the
SHA2 hash for �le nodes.

• If there is no edge existing yet between any two elements
de1 and de2 in d , we create one and add it to the set of edges
E.

Finally, we populate the |V | × |V | matrix A, se�ing Ai, j as 1 if
there is an edge between those two nodes, and to 0 otherwise. �is
matrix will be used by the label propagation algorithm described
in the next section.

3.2 Label Propagation with Bayesian
Con�dence

In this section we outline the theoretical foundation ofMarmite
to detect malware reliably over the download graph. To describe
the malware detection problems in formal terms, we introduce the
notions used in this section �rst, then formally present the Bayesian
label propagation algorithm employed by Marmite. Note that our
proposed Bayesian label propagation is a semi-supervised algo-
rithm and calculates posterior probability of a node’s missing labels
based on graph structure. It is di�erent from belief propagation,
which is a sum-product message passing algorithm and estimates
marginal distribution of each variable through the factor graph
based presentation of a given Bayesian network.
Notation. Let xi represent an element de in d (see Section 3.1),
and (x1,y1)... (xl ,yl) be labeled data, denoted as (XL ,YL). We
assume that all class labels are presented in YL . Let (xl+1,yl+1)...
(xl+u ,yl+u) be unlabeled data (XU ,YU), where YU denotes the
underlying true class labels of the unlabeled data. In addition,
X = {x1,x2, ...xl+u } is used to denote the combination of both
labeled and unlabeled data.
Bayesian Label propagation. Label propagation [42], as a trans-
ductive semi-supervised learning algorithm, is designed to estimate
YU from X and the given YL by propagating label information from
labeled data samples to unlabeled ones. It has shown that graph-
based propagation can be very e�ective at �nding the best label
distribution across nodes [42]. However, most nodes in a real world
download graph tend to have few neighbors, and thus, a small
amount of evidence. It is important for us to provide a con�dence
level to the inference results. In our work, the malware detection
algorithm used by Marmite is designed by inheriting the spirit
of label propagation and incorporating the technique of Bayesian
inference [40]. We use the graph de�nitionG = (V ,E,A) presented
in Section 3.1 for download graphs, where V represents �les, URLs,
FQDN and IP nodes, the edge set E represents the relationships
among these nodes, and A is the symmetric adjacent matrix of the
graph G: Ai, j = 1 if xi and x j are linked, otherwise Ai, j = 0.

We assume the label (benign or malicious) of each node in the
graph as a random categorical variable. �e label is 1 or 0, corre-
sponding to the malicious or benign class. What we target is to infer
the probability of each node to be malicious as P (yi = 1|θ) = θ ,
where θ is the parameter of the distribution. Changing the value
of θ changes the likelihood of the corresponding nodes belonging
to the malicious group. Following the neighborhood smoothness
hypothesis of label propagation, we assume the graph nodes in-
side the same neighborhood share the same θ value. �e binomial
likelihood of labels inside the neighborhood is given as follows:

P (Ñi |θ) =
ni !

ni !(Ñi − ni)!
θni (1 − θ)Ñi−ni , (3)

where Ñi denotes the all graph nodes in the neighborhood of node
i . ni =

∑
j ∈Ñi

yj . For computational convenience, we use the con-
jugate prior of the binomial distribution, a.k.a Dirichlet distribution
as the prior probability over θ , P (θ) ∝ θα1−1 (1 − θ)α2−1, where α1
and α2 are the parameters of Dirichlet prior. �e posterior distribu-
tion of θ given the labels of the nodes inside the same neighborhood
is formulated as:

P (θ |Ñi) ∝ θ
ni+α1−1 (1 − θ)Ñi−ni+α2−1. (4)

In a further step, we can write the posterior predictive distribu-
tion of yi :

P (yi = 1|Ñi ,α1) =
∫
θ
P (yi = 1|θ)P (θ |Ñi ,α1)dθ

=
ni + α1
���Ñi

��� + 1
.

(5)

To derive the formulation of the predictive distribution, we fol-
low the theorem that the predictive distribution P (yk |αk , Ñi) =

E (θ |Ñi ,αk) and we assume∑k={1,2} αk = 1 and ���Ñi
��� is the number

of neighbors of the node i in the graph. By relaxing the de�nition of
ni and replacing the discrete labels of the neighboring nodes with
continuous posterior probability of node labels P (yi = 1|Ñi ,α1),
we can further derive a recursive estimation of the con�dence of
node labeling in the following equation:

fi =

∑N
j=1Ai, j fj + α1∑N
j=1Ai, j + 1

. (6)

where N is the number of nodes in the graph andA is the adjacency
matrix. We use fi to denote the posterior labeling probability P (yi =
1|Ñi ,α1). With a simple linear algebra calculation, the recursive
calculation of labeling posterior probability for each unlabeled node
in the download graph can be formulated in a matrix form:

FU = (DU + I)
−1 (AU F + 1α1) (7)

Assuming we haveu unlabeled nodes, 1 isu dimensional column
vector with each entry as 1. F is a vector of fi for all nodes including
both labeled and unlabeled, and FU is a vector of fi for u unlabeled
nodes. AU is formed by aggregating the u rows of A corresponding
to unlabeled nodes. I is au-by-u identify matrix, andDU is au-by-u
diagonal matrix, where the k-th element in diagonal is the sum of
all values in the k-th row ofAU . An example of howMarmite infers

probabilistic node labels in a small real-world download graph is
shown in Section 3.3.

3.3 Marmite: Inference Example
In this section, we demonstrate howMarmite infers probabilistic
node labels in a small real-world download graph. �e label fi
is a probabilistic value as de�ned in Eq (6) and fi ∈ [0, 1] (see
Section 3.2 for details). In short, the closer fi to 1, the more likely a
�le is malicious; the closer fi to 0, the more likely a �le is benign.

Initially �le 4.exe with SHA2 96D26... and �le svchos.exe
with SHA2 DB000... are identi�ed as malicious �les (respectively
Zusy and a trojan). We label them accordingly using 1 as their prob-
ability of being malware. Another �le 4.exe with SHA2 CB866...
is labeled with 0 (i.e., a known benign �le). Marmite uses Eq (6) to
recursively update each node’s probabilistic label and the results are
shown in Figure 4. As we can observe, �le AFFGSDGWIJGWEOG.exe
with SHA2 18A2F... is �agged as malicious with high probabilistic
con�dence score 0.969 as all its neighbors (i.e., svchos.exe in this
case) are malicious. �is follows the neighborhood smoothness
hypothesis of label propagation (see Section 3.2). �e other nodes’
probabilistic node labels (between 0.6 and 0.7) were partially in-
�uenced by �le 4.exe with SHA2 CB866..., which is benign. For
this example, we consider a node as malicious if fi > 0.5. In the
end,Marmite is able to �ag as malware three previously-unknown
samples. As we can see in Figure 4, the Bayesian label propagation
algorithm enablesMarmite to �ag the rest of the �les as malicious.

Filename: 4.exe
SHA2: F8BA7…

URL:
http://218.22.3.215:290/4.exe

IP: 218.22.3.215

Filename: svchos.exe
SHA2: DB000…

Filename: AFFGSDGWIJGWEOG.exe
SHA2: 18A2F…

Filename: 4.exe
SHA2: 96D26…

Filename: 4.exe
SHA2: 1713C…

Filename: 4.exe
SHA2: CB866…

1

1 00.61

0.969

0.6

0.6

inferred label

initial label

0.7

Figure 4: An example of how Marmite infers probabilistic
node labels. Initially, two �les are known to bemalware and
one is known to be benign. At the end of process, three ad-
ditional �les are correctly identi�ed as malware.

3.4 Scalability
It is important to note that Eq (6) can be easily parallelized due to
its recursive update nature. �at is, for each individual node i , it
outputs its current label con�dence fi to its neighbors during the
map phase; at the reduce phase, it updates its labeling con�dence
fi by using a weighted aggregation ∑N

j=1Ai, j fj + α then divided
by ∑N

j=1Ai, j + 1 (which is the sum of all edges incidental to the
node i). In terms of time complexity, the proposed method iterates
over each edge in the download graph a constant amount of times.
Given the maximum number of iterations parameter is �xed as c ,
the graph has |E | edges and |V | node, the overall time complexity
is O ((|E | + |V |) ∗ c). �erefore, it is safe for us to conclude that
Marmite has a linear time complexity.

4 DATASETS
To validate and test Marmite we use the download activity data
from Symantec’s data sharing platform. �is data was collected
from the users who opt in for Symantec’s data sharing program to
help improving its detection capabilities. To preserve the anonymity
of the users, client identi�ers were anonymized so that it is not
possible to link back the collected data to the user that originated
it.

�e download activity data provides meta-information about all
download activities on the user clients. From this datawe extract the
following information: the server side timestamp of the download
event, the name, SHA2, and size (in bytes) of the downloaded
�le, the referrer URL, the landing page URL and IP address of the
server the �le was downloaded from, the full path at which the
downloaded �le was stored on the server, the SHA2 of the parent
�le (the �le that initialized the �le downloading activity) and the
URL that this �le was downloaded from. Note that SHA2 and URL
of the parent �le are not always present and we also remove parent
SHA2s related to popular web browsers and �le archivers from
our dataset, to prevent unrelated �les from being connected in the
download graph — a similar approach was used in previous work
that studied local delivery graphs [19]. In this paper, we remove 710
SHA2s that are relating to Outlook, IExplore, Firefox, Chrome,
WinZip, Filezilla, 7Zip, TeamViewer and WinRAR.

Symantec also employs extensive static and dynamic analysis
systems to determine the maliciousness of a binary. We leverage
these results and further enrich our dataset using its binary reputa-
tion data to include metadata about the reputation and prevalence
of the downloaded �les. �is allows us to evaluate Marmite’s per-
formance, by looking at its capability of �agging known malware
and benign so�ware. On average we extracted 20 million download
events generated by 1.5 million machines per day. We compiled
two separate datasets from this download data. �e �rst one, which
we call D1, spans a period of 10 days in January 2016, and is com-
posed of over 200 million download events. We use D1 to tune the
parameters needed forMarmite’s operation, and to validate our
approach. We then compile another dataset, which we call D2. �is
dataset is composed of 660 million download events collected over
the entire month of June 2016. We use this dataset to testMarmite,
and to show that our system can still perform accurate detections
without needing re-tuning six months a�er it was set up.
Data Limitations: It is important to note that the download activ-
ity data is collected passively. �at is, download events are recorded
only when their associated downloading request is initiated (this
being generated from a user by clicking on a link or stealthily trig-
gered by a drive-by download exploit or a �le dropping event). Any
downloads preemptively blocked by existing defenses (e.g., URL/IP
blacklists) were not observed.

5 VALIDATION
In this section, we �rst describe how we collect the ground truth
of malicious and benign �les in Section 5.1. We then provide a
detailed validation of Marmite over the D1 dataset (see Section 4)
collected in January 2016. We identify the optimum values for
several parameters used byMarmite. Once the optimal parameters
are identi�ed, we validate Marmite’s e�ectiveness at detecting

malware by comparing its detections with the ground truth labels.
We show that Marmite can e�ectively increase the knowledge
of malware samples delivered over a download graph, requiring
limited seeds of known malicious and benign �les. In Section 6.1
we show that the system tuned and tested on the dataset D1 can
still detect malware on a dataset collected six months later.

5.1 Ground Truth
Marmite requires labeled ground truth of malware and benign
so�ware for two reasons. �e �rst one is that the approach de-
scribed in Section 3.2 requires a number of seed �les to propagate
their reputation across the download graph. �e second one is that
ground truth is needed to check whether the detections performed
byMarmite are accurate or not. We used three separate sources to
collect ground truth: VirusTotal, the National So�ware Reference
Library, and data collected by Symantec.
VirusTotal. VirusTotal [2] is a free online service that aggregates
the scanning outputs of �les and URLs from di�erent antivirus
engines, website scanners, and a number of �le and URL charac-
terization tools. We query VirusTotal for each �le SHA2 to obtain
its �rst seen timestamp, the number of AV products (and associ-
ated vendor names) that �agged the �le as malicious, and the total
number of AV products that scanned the �le. We consider a �le
malicious if at least one of the top �ve AV vendors w.r.t. market
share (in no particular order, Symantec, Avast, Microso�, AVG,
Avira) and a minimum of two other AVs detect it as malicious. A
similar technique was used by previous work [24].
National So�wareReference Library (NSRL).To identify known
benign and reputable �les we used NSRL’s Reference Data Set (RDS)
version 2.51 [1]. �is dataset provides SHA1 to SHA256 hashes for
known benign programs and it was useful for us to identify such
�les in our dataset.
Complementary Ground Truth. We obtained additional ground
truth about malicious �les from Symantec, which provided us with
the data. �is ground truth is based on Symantec’s static and
dynamic binary analysis platform.

In total our ground truth on dataset D1 consists of 833,705 ma-
licious �les and 1,896,782 benign �les. �e skewed distribution
between benign and malicious �les maps the real world observa-
tion that benign �les are more prevalent in the wild.

5.2 Choose Optimal Parameters
Marmite requires three parameters to operate. �ese three param-
eters are the shape parameter of the Dirichlet distribution α , the
benign �le sampling ratio rb , and the malware sampling ratio rm .
Di�erent α values a�ect the inference accuracy (see Section 3.2),
while rb and rm determine the training data size for benign and
malicious �les respectively. In this section, we explain how we
selected the optimal value for these parameters for Marmite to
operate.

Since α , rb , rm are not independent, but selecting one of them
in�uences the values of the others, we did not choose them sepa-
rately. We adopt the grid search approach [4] to �nd the optimal
parameters. More precisely, we exhaustively search through a
multiple combinations of values for these three parameters and
evaluate Marmite by using each of them. We identify the optimal

parameters that generate the maximum geometric mean (G-mean)
score [25] (G-mean=

√
TPrate × (1 − FPrate)). Our dataset is im-

balanced between benign and malicious �les. �is makes G-mean
the ideal metric to evaluate the performance of Marmite, because
it balances between the classi�cation performance on the majority
and the minority class.

Guided by this methodology, we form the parameter space by
se�ing α between (0, 1], rb between [0.4, 0.7] and rm between
[0.05, 0.2], and build 64 combinations of these three parameters.
�e ranges of rm and rb are selected to re�ect the real world sce-
nario; there are plenty of benign �les available while the number of
malware samples is limited and we also need to leave some portion
of samples out for test purpose.

We then use them to carry out the grid search. We runMarmite
on a three day subset of the dataset D1 for each combination, and
average the G-mean score over the three days to measure the per-
formance of each combination. We perform strati�ed 10-fold cross
validation [16] for each combination. Our results show that given
α = 0.1, rb = 0.6 and rm = 0.1, Marmite outputs the best average
G-mean score, 0.953. On that account, we use these values for the
rest of the paper. In the next section we provide detection results
using these parameters over the remaining part of dataset D1. In
Section 6.1 we demonstrate that these parameters are still e�ective
for Marmite to detect malware six months later.

5.3 Time and Memory Performance
Following our theoretical analysis in Section 3.4, we evaluate our
system runtime performance to answer key practical questions such
as 1) how long does Marmite take to construct a download graph, 2)
how long does Marmite take to infer maliciousness of all unlabeled
nodes in a download graph and 3) how long doesMarmite take to
compute the optimal parameters. Since our typical use case is to
identify malicious �les on any given day, for the rest of the section,
we use one day of data with 21,627,935 download events from D1
as our runtime evaluation baseline. All tests are performed in a
server with a 2.67GHz Xeon CPU X5650 and 64GBmemory running
Ubuntu Linux 12.04 and Python 2.7.3. In this setup, Marmite
takes 890.95 seconds to construct the download graph from one
day of data with 15.98GB memory footprint. Once the graph is
constructed, Marmite takes 84.498 seconds to �nish the inference
task (see Section 3.2). In other words,Marmite is able to perform
its entire analysis for one day in about 16 minutes. �is exempli�es
Marmite’s computational advantage as we theoretically proved in
Section 3.4. In terms of how long it takes to tune the parameters
required by Marmite to operate, essentially we need to repeat the
aforementioned inference task 64 times (see Section 5.2) on a three
day subset of the datasetD1. Marmite takes therefore 4.82 hours to
�nd the optimal parameter combination. Note that we don’t need
to run this tuning task frequently as we demonstrate thatMarmite
is able to retain similar accuracy over time (see Section 6).

5.4 Labeling Performance
We validate the overall performance of Marmite on the labeled
data (i.e., ground truth) over a 7 days subset of the D1 dataset —
note that the remaining 3 days for this dataset were used to tune
the optimal parameters. In order to assess Marmite’s performance

Table 1: Performance of Marmite on labelled ground truth
using seven days of data collected during January 2016
(AUC=0.96, G-Mean=0.944). �e table reports averaged
TPR/FPR results over the seven days.

TPR TPR TPR TPR
(FPR=0.5%) (FPR=1%) (FPR=2%) (FPR=3.5%)

0.690 0.786 0.866 0.923

from di�erent perspectives, we also include the area under the ROC
curve (AUC) score [7], in addition to the G-mean score that we
already used in Section 5.2. Overall, Marmite achieves an average
AUC of 0.960 (with a standard deviation of 0.01), and an average
G-mean of 0.944 (with a standard deviation of 0.008). �is shows
that Marmite can o�er high accuracy with stable performance
over time since the standard deviation of both AUC and G-mean
scores over the measurement period of 7 days are small. We further
con�rm this �nding by testing Marmite on a dataset collected six
months later in Section 6.1.

We then wanted to understand the true positive rate (TPR) and
false positive rate (FPR) reported by Marmite on labeled data.
�ese values are important, because they give us a feeling of how
wellMarmite would perform if ran in the wild. Table 1 reports the
results of this experiment. We start by se�ing a fairly high false
positive rate of 3.5%, and measure that in this se�ing Marmite
has a TPR of 0.923 (which corresponds to a false negative rate of
7.7%) on average. By decreasing the false positive rate, the TPR
decreases but remains high. With a FPR of 1%, Marmite reports a
TPR of 0.786 (false negative rate of 21.4%) on average. By decreasing
the false positive rate even further, to 0.5%,Marmite reports and
average TPR of 0.690 (false negative rate of 31%). �is result shows
thatMarmite could be set to have very low false positives and still
be useful in practice, �agging a signi�cant amount of malware. In
addition, in Section 6.1 we show that whitelisting can be used to
further reduce false positives. We also show that false negatives
in the wild are lower than what reported by these validation tests,
which were only performed on ground truth of known malicious
and benign �les. Marmite, regardless the size of the graph, can also
maintain comparable accuracy in terms of both AUC and G-mean
scores thanks to recursively propagated evidence across the whole
graph. Details can be found in Section 5.5.

5.5 Modifying the Observation Interval
Our hypothesis is thatMarmite, regardless the size of the graph,
should maintain comparable accuracy in terms of both AUC and G-
mean scores thanks to recursively propagated evidence across the
whole graph. To check if this is the case, we build three download
graphs from observation periods of one hour (00:00 - 01:00), two
hours (00:00 - 02:00), and three hours (00:00 - 03:00), extracted from
the data collected on a one day subset of the dataset D1. We use the
same parameters as in the rest of the paper. We list the results of
this experiment in Table 2 and compare the results to those obtained
on the data extracted over an entire day. As we can see, even if
the graphs for shorter time intervals are signi�cantly smaller, both
AUC and G-mean scores from all three experiments remain similar
to those for the full day data: we have an AUC of 0.975 (G-mean
0.919) for the one-hour interval, an AUC of 0.977 (G-mean 0.923) for

the two-hour interval, and an AUC of 0.978 (G-mean 0.957) for the
three-hour interval. �ese results demonstrate that our approach
can work well on di�erent observation windows, and underpins
Marmite’s real-world practicability.

Table 2: Performance of Marmite using one hour, two hour,
and three hour observation intervals on one day of data. As
it can be seen,Marmite reports good results both in terms of
AUC and G-Mean for all interval lengths.

Observation interval #nodes #edges AUC G-mean
00:00 - 01:00 147,721 196,297 0.975 0.919
00:00 - 02:00 261,686 359,602 0.977 0.925
00:00 - 03:00 355,787 498,745 0.978 0.934
00:00 - 23:59 2,256,984 3,364,215 0.972 0.957

6 EVALUATION
In the previous section we validated Marmite by testing it on
ground truth data collected over a period of 10 days (datasetD1). In
this section we evaluate it against dataset D2, which was collected
six months later. We �rst show that Marmite is still e�ective in
detecting malware without need for re-tuning a�er this period
of time, signi�cantly growing the amount of detected malware
samples compared to the ones used for seeding. We also show that
Marmite is able to detect malware before VirusTotal.

6.1 Malware Detection In the Wild
We ran Marmite on the entire 30-day dataset D2. On average, we
seeded the system with 111,449 benign �les and 7,657 malicious
ones every day. We used four di�erent modes of operation for
Marmite, which means that for each of them we set the parame-
ters that reported 3.5%, 2%, 1%, and 0.5% FPR in the ground truth
validation from Section 5.4. �e overall results for our experiments
are reported in Table 3.

For each of the se�ings, we carefully ve�ed the results provided
byMarmite. In particular, we �rst checked whether the detections
performed were either con�rmed by Symantec’s internal systems
or if the SHA2 hashes of the detected �les appeared as malicious
in VirusTotal. We considered these detections as true positives
byMarmite. Note that we split detections between malware and
PUP, based on Symantec’s feedback. As we show in Section 7.4,
it is o�en di�cult to distinguish the two types of operations. As
it can be seen in Table 3, the fraction of detections performed by
Marmite is generally high. For the 3.5% se�ing we can con�rm 94%
of the detections as either malware or PUP. �is number gradually
increases as we make detection stricter, peaking at 98% for the
se�ings that lead to a 0.5% FPR during the validation phase.

For the false positive analysis, we looked at �les whose SHA2s
are known as benign by Symantec. As it can be seen in Table 3,
false positives decrease as we makeMarmite stricter on which �les
it considers as malware. For the 3.5% case, Marmite reports a 5.8%
false positive rate in the wild. �is number decreases steadily as the
system becomes stricter, up to arriving at 1.1% for the 0.5% se�ing.
In general, we can observe thatMarmite’s results in the wild are
slightly worse than they were by looking at labeled data only (as we
did in Section 5.4). As we explained, however, we expect many of

Table 3: Summary of detection performance byMarmite on our 30-day measurement data. “Setting” reports the FPR obtained
when setting the same parameter values during the validation phase.

Se�ing Tot.
Prediction

Con�rmed
Malware

Con�rmed
PUP

FPs before
Whitelisting

FPs a�er
Whitelisting FNs Unknown

0.005 1,684,439 1,540,877 111,913 24,546 (1.1% FPR) 14,978 (0.6% FPR) 593,643 (26.2% FNR) 7,101
0.01 2,104,897 1,757,027 277,091 53,949 (2.3% FPR) 34,676 (1.5% FPR) 383,634 (15.6% FNR) 16,827
0.02 2,496,526 1,899,359 481,170 89,175 (3.8% FPR) 51,277 (2.2% FPR) 246,175 (9.1% FNR) 26,811
0.035 2,864,481 1,985,959 707,545 134,657 (5.8% FPR) 67,752 (3.0% FPR) 163,940 (5.5% FNR) 36,298

these false positives to be systematic and not change signi�cantly
over time, so that they can be easily removed by using a whitelist.
In Section 7.1 we show a detailed example of these systematic false
positives. To test this hypothesis, we compile a whitelist of known
benign �les from January 2016, and apply it to our results obtained
six months later, in June. As Table 3 reports, the whitelist is able to
reduce false positives signi�cantly. For the 3.5% se�ing, the false
positive rate of the �ltered dataset is only 3%, while for the 0.5%
se�ing it becomes 0.6%.

While false positives in the wild turn out to be slightly higher
than in the validation phase, false negatives are lower, indicating
thatMarmite is able to comparatively detect more malware than
it was present in our ground truth. As it can be seen in Table 3, the
false negative rate for the 3.5% se�ing is 5.5%, while it was 7.6%
on the ground truth. Similarly, for the 0.5% case the FNR is 26.2%,
while it was 31% during the validation. Finally, for a small number
of �les none of our sources could con�rm whether these �les were
benign or malicious. We list them as “unknown” in Table 3.

Based on the results reported in this section, we can see that
Marmite is able to e�ectively detect malware, and does not require
frequent retraining, as the results in the wild six months a�er
the tuning of the systems are generally in line with the original
validation results. Depending on how strict the operator wants
to be in making detections, Marmite can increase the original
knowledge of malware from the seed �les between 11 times (in the
3.5% case) and 6 times (in the 0.5% case).

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Date (June)

2

4

6

8

10

12

14

16

E
a
rl

y
 D

e
te

ct
io

n
 (

d
a
y
s)

0

500

1000

1500

2000

2500

3000

N
o
. o

f M
a
lw

a
re

Early Detection (days)

No. of Early Detected Malware

Figure 5: Number of malicious �les detected by
Marmite in advance and average early detection
time.

6.2 Early Detection of Unknown Malware
We estimate that if Marmite was run in production it would have
been able to detect these �les as malicious before other antivirus
programs. To understand how relevant this early detection would
have been, we looked at the average days passed between when
Marmite �agged a �le as malicious and when VirusTotal �agged

it as such too. Note that we consider a malware sample as detected
by VirusTotal if it is �agged by one of the top �ve AV products plus
any other two [24]. For evaluation purpose in this section, we set
FPR=3.5%. Figure 5 reports a summary of the number of malware
samples detected by Marmite that were unknown to VirusTotal
at the moment, together with how much later (in days) these �les
appeared on VirusTotal as malicious. On average, Marmite was
able to detect 1,870 �les as malware 6.46 days before VirusTotal on
a daily basis.

7 LESSONS LEARNED AND CASE STUDIES
In this section, we provide some interesting case studies that we
encountered while operatingMarmite. Note that we remove FQDN
nodes from all the �gures to make them easier to read.

7.1 Malicious programs download legitimate
libraries.

In this section, we carry out a detailed case study on PUPs drop-
ping both benign DLLs and further PUPs. �is is a typical ex-
ample of the false positives reported by Marmite, and shows
that many false positives are systematic. Figure 6 shows part of
a download graph built by Marmite, illustrating a typical case
that PUPs drop both benign dlls and further PUPs. As we can
see in the �gure, �le AddonsUI.exe with SHA2 5CD12... is iden-
ti�ed as PUP Bubbledock and dropped two other PUPs, respec-
tively �le OneSystemCare.exe with SHA2 B9BEE... (identi�ed as
PUP OneSystemCare) and �le 7d27aa...exe with SHA2 6307C...
(identi�ed as Adware ConvertAd), and three benign DLLs, respec-
tively �le WmiInspector.dllwith SHA2 A9347..., nsdialogs.dll
with SHA2 1DEC2..., and HttpRequest.dllwith SHA2 97CE1....
Even though these DLLs are legitimate (we speculate that they are
dropped as part of the dependencies used by �le AddonsUI.exe),
these three DLLs are wrongly classi�ed as malicious due to the over-
whelming evidence surrounding them. In this paper, we showed
that benign �les marked as malicious byMarmite do not change
quickly over time, and can therefore be prevented by applying a
static blacklist.

7.2 Legitimate content delivery networks are
used to deliver malware.

Figure 7 illustrates a typical false positive case by Marmite. IP ad-
dress 23.77.202.16 serves four di�erent URLs from very di�erent
domains, including an Apple domain. We inspected this IP address,
and discovered that it belongs to Akamai, a well-established content
delivery network serving between 15 and 30 percent of all web traf-
�c. Both http://files4.fastdownload6.com/dl-pure/... and
http://download.cdn.sharelive.net/cdn/... host a number

52.84.13.223

AddonsUI.exe
SHA2: 5CD12…

http://us-cdn.winapp.net

Amazon AWS Network Operations,
Amazon Technologies Inc.

PUP Bubbledock
OneSystemCare.exe
SHA2: B9BEE…

PUP OneSystemCare
7d27aa…exe
SHA2: 6307C…

Adware ConvertAd

WmiInspector.dll
SHA2: A9347…

nsdialogs.dll
SHA2: 1DEC2… HttpRequest.dll

SHA2: 97CE1…

Figure 6: Example of a PUP dropping benign DLLs.

AppleSoftwareUpdate.msi
SHA2: D462A…

23.77.202.16

http://swcdn.apple.com/
content/downloads/10/43…

http://swcdn.apple.com/
content/downloads/52/40…

iTunes.msi
SHA2: C1676…

http://files4.fastdownload6.com
/dl-pure/1126566/…

…

multiple
update_33.exe
with different

SHA2s

http://download.cdn.sharelive.net
/cnd/r/612/…

iLividSetup-r612-n-bc.exe
SHA2: 91539…

onesystemcare.exe
SHA2: 7523B…

Akamai CDN

Bandoo

DownloadAdmin

Figure 7: Case study in which a legitimate content delivery
network is used to deliver both benign and malicious �les.

of malicious �les/PUPs (shown as red blocks in Figure 7). For ex-
ample, iLividSetup-r612-n-bc.exe is identi�ed as the Bandoo
adware, and update 33.exe is identi�ed as PUP DownloadAdmin.
When running Marmite, the malicious reputation of these �les
gets propagated to AppleSoftwareUpdate.msi and iTunes.msi,
which end up being wrongly detected as malware. �e issue here
is that the CDN is both serving benign and malicious content. In
Section 8 we discuss how we could deal with this type of false
positives to decrease the false positive rate ofMarmite.

7.3 Malware operation.
In this section, we carry out a detailed malware distribution case
study. Figure 8 shows part of a download graph built by Marmite
on January 11, 2016. Nodes connected by dash lines are veri�ed
to be benign sites and nodes connected with solid lines are the
focus of our discussion. �ere are three IP addresses that belong to
three di�erent hosting infrastructures, respectively GoDaddy.com,
Arvixe and Beyond Hosting. Before running Marmite, �les
BridgectrlSpl.dllwith SHA2 1F771... and 2653992.exewith
SHA2 D6D45... were known to belong to the Razy and Diple
malware families respectively. All the other �les had unknown
reputations. A�er running Marmite, the rest of the �les were
identi�ed as malicious (shown in Figure 9), and were accordingly
con�rmed by VirusTotal, either on that same day (7456933.exe)
or several days later (4393841.exe, 5315672.exe, 5315671.exe
and kinnect.dll). It is worth noting that �le 7456931.exe with
SHA2 A8CF2... remains unknown to VirusTotal at the moment of
writing.

�e identi�ed malware samples belong to four di�erent families:
(Radamcrypt, Kovter, Zusy, and Kazy). Note that We collect the

173.201.247.1

http://g1inc.net/counter

7456931.exe
SHA2: A8CF2…

7456933.exe
SHA2: A8CF2…

198.252.64.124

http://avirivi.co.il/counter

4393841.exe
SHA2: 7EA66…

5315672.exe
SHA2: 6F196…

BridgectrlSpl.dll
SHA2: 1F771…

8.36.40.31

2653992.exe
SHA2: C6FC2…

5315671.exe
SHA2: ED4F6…

http://hellointerviewer.com/counter

http://www.lauracandler.com
/filecabinet/…

http://www.mgtsolution.com/…

GoDaddy.com, LLC Arvixe, LLC Beyond Hosting, LLC

kinnect.dll
SHA2: D6D45…Razy

Diple

Figure 8: Malware case study before label propagation. At
the beginning, only two �les are labeled as malware.

173.201.247.1

http://g1inc.net/counter

7456931.exe
SHA2: A8CF2…

7456933.exe
SHA2: A8CF2…

198.252.64.124

http://avirivi.co.il/counter

4393841.exe
SHA2: 7EA66…

5315672.exe
SHA2: 6F196…

BridgectrlSpl.dll
SHA2: 1F771…

8.36.40.31

2653992.exe
SHA2: C6FC2…

5315671.exe
SHA2: ED4F6…

http://hellointerviewer.com/counter

http://www.lauracandler.com
/filecabinet/…

http://www.mgtsolution.com/…

GoDaddy.com, LLC Arvixe, LLC Beyond Hosting, LLC

kinnect.dll
SHA2: D6D45…

Radamcrypt
Zusy/Kovter

remains unknown
to VirusTotal

Kazy

Kovter Zusy

Figure 9: Malware case study a�er label propagation. At the
end of the process, six additional samples are discovered.

tags used by di�erent vendors, remove general words like “trojan,”
“backdoor,” “malware,” etc., and choose the most frequent token as
the malware family name. Adding the two malware samples that
were provided as ground truth, these three sites dropped malware
from 6 di�erent families during a single day. When we look at
the URLs that host the �les closely, they share the same URL path
pa�ern - a simple path ‘/counter/’. All the �les directly hosted
by these three URLs also share similar naming pa�ern - a �le name
with 7 digits. �is leads us to believe that these sites were part of
an exploit kit deployment. We also carried out a case study on PUP
operation, which can be found in Appendix A.

7.4 Combined malware and PUP operation.
In this section, we study a case that demonstrates that Marmite’s
label propagation can enable us to detect PUPs starting from mal-
ware labels. �is case study shows that malicious operations in
which malware downloads PUP or vice versa exist, although re-
cent research showed that they are rare [17]. Figure 10 shows part
of a download graph built by Marmite on June 1, 2016. Before
running Marmite, �les N1NBGXOOKAQD.EXE with SHA2 20749...,
YhLGsb1eNlqf.exewith SHA2 D1AFB... and coi1.exewith SHA2
63B2A... were known to belong to the Kryptik, SelfDel and
Trojan.Skeeyah malware families respectively. All the other �les
had unknown reputations. A�er runningMarmite, �les EITVUYTPB63C.EXE
with SHA2 E413D... and ts 10051.exe with SHA2 D530D...
were detected as malicious. �ese �les were further identi�ed as
PUP by VirusTotal, respectively as PUP.SearchGo and PUP.Neobar.
As pointed out in [17], there is a fundamental di�erence between
malware distribution and PUP, as malware is mostly delivered
through drive-by downloadswhile users actively install PUP through
deception. �is case is therefore very interesting since we see the

malicious group delivers both PUPs and malware via the same
infrastructure.

52.31.98.154

pwd se9 1 rus.exe
SHA2: BF990…

http://waitressdetail.ru

Amazon AWS Network Operations,
Amazon Technologies Inc.

EITVUYTPB63C.EXE
SHA2: E413D…

N1NBGXOOKAQD.EXE
SHA2: 20749…

YhLGsb1eNlqf.exe
SHA2: D1AFB…

http://whoeverkill.ru

http://hissbowth.ru

ts_10051.exe
SHA2: D530D…

coi1.exe
SHA2: 63B2A…

Kryptik

PUP.Neobar

PUP.SearchGo

Trojan.Skeeyah

SelfDel

http://lcorani.ashsliceheat.ru

46.28.67.145
UAServers Network

Figure 10: Operation consisting of both PUP and malware.

8 DISCUSSION
Possible practical deployments of Marmite. We showed that
Marmite can e�ciently increase the knowledge of malware sam-
ples, identifying malware that was not detected by VirusTotal
months a�er it was observed in the wild. We mainly envision
Marmite as a method that security companies can use to improve
their internal knowledge of millions of malicious �les they collect
on a daily basis. �e blacklists generated could then be integrated
with existing end-user protection programs, such as antivirus tools
and browser blacklists [28].
Limitations. Although Marmite is a useful tool for detecting
malicious �les, it has some limitations. First of all, Marmite relies
on an initial set of labeled nodes to infer the probabilistic labels
of other unlabeled nodes in the download graph. As we showed,
Marmite needs a minimal number of labeled nodes to be e�ective,
but this could be a problem in some se�ings. Another limitation is
that Marmite only infers probabilistic labels of unlabeled nodes in
the download graph and does not update the labels of seed nodes
during the inference process. �is is typically not a problem because
AV vendors are conservative in the way they assign labels, but it is
a limitation to keep in mind.
Evasion. Marmite does not make any assumptions on how ma-
licious �les are delivered, or on the structure of these malware
delivery networks. �e only assumption that is made is that cyber-
criminal are either delivering the same �le over di�erent servers or
are reusing parts of their infrastructure to serve multiple malware
samples. �is design choice makes Marmite less prone to evasion
than previous systems. AssumingMarmite is known to cybercrim-
inals, there are three possible ways that they could try to evade
Marmite. �ey could try to compartmentalize their infrastructures,
and serve a single malware sample with unique SHA2 from each
malicious server. Although this could be e�ective in evading our
system, we argue that it would not make sense for the malware
ecosystem in general, as it would make malware delivery much
more expensive (due to the need of se�ing up a higher number of
servers) and it would ultimately break the pay-per-install ecosys-
tem, since these networks would not be able to provide malware
samples from multiple customers anymore. �ey could also try
to evade Marmite by dropping more benign �les together with
malicious binaries, causing our system to potentially �ag those
benign �les as malware. Again, even though this could be e�ective
in evading our system, we argue that this approach would also

make malware delivery much more di�cult (due to the need of
binding a high number of benign �les into the payload, leading to
increased payload size, etc). As a third and �nal option, malware
operators could start using CDNs exclusively to deliver their mali-
cious �les. WhileMarmite would �nd it di�cult to keep track of
such �les due to the whitelisting process, this would make malware
operators more visible to the CDNs themselves, who could track
such malicious activity and terminate their accounts.

9 RELATEDWORK
Studying malware delivery networks. In 2011, Caballero et
al. [5] provided the �rst large scale measurement of pay-per-install
services in the wild. �is work con�rmed the previous observations
that cybercriminals are commonly using other botnets (known as
droppers) to deliver their malicious payloads [33, 34]. In 2012, Grier
et al. [8] studied the phenomenon of exploit kits, which are an
alternative way to distribute malware. Nelms et al. [24] proposed
Webwitness, a system that automatically builds the sequence of
events followed by users before downloading a malware sample.
More recently, researchers have been studying the ecosystem of
potentially unwanted so�ware (PUP), which includes toolbars and
adware. �omas et al. [37] performed a systematic study of PUP
and its prevalence and its distribution through pay-per-install ser-
vices. Kotzias et al. [17] identify PUP publishers and then study PPI
publishers and their involvement in PUP.
Leveraging malware delivery networks for malware detec-
tion. Invernizzi et al. [11] proposed Nazca, a system to detect
malware in large-scale networks. �e system builds malware dis-
tribution networks using the HTTP tra�c data generated when
shellcode downloads the actual malware binary and launches it,
and uses this graph to gain insights of various malicious activities
associated with the graphs and train a decision tree classi�er to de-
tect malicious candidates.Nazca reports 70.59% precision and 100%
recall. Marmite favors lowering the number of false detections,
and reports 93% TPR for 3.5% TPR in similar se�ings.

Abu Rajab et al. [28] proposed CAMP, a content-agnostic mal-
ware detection system which utilizes reputation-based detection to
protect users. Leveraging aggregated data sources, CAMP predicts
the likelihood that this downloaded binary is malicious. CAMP
reports a TPR of 70% and a FPR of around 2%. Accepting a similar
FPR,Marmite achieves a TPR of over 90%. Rabharinia et al. [27]
presented Mastino, a system that performs classi�cation over be-
havioral characteristics of how malicious �les are downloaded by
machines on the Internet. Mastino uses domain-speci�c features
such as characteristics of the URLs that �les are downloaded from
and characteristics of the �les themselves. By using this domain-
speci�c information, Mastino reaches 95% TPR with 0.5% FPs. As
we mentioned, Marmite does not use any contextual information,
and as we show this has the advantage that the system is still capa-
ble of e�ciently detect malware six months a�er it was trained. For
fairness though, Mastino reaches be�er results in the short term.
Including the whitelisting e�ort, Marmite reports 1.9% FPs for
93% TPR. Nachenberg et al. [23] presented Polonium, a system that
builds bipartite graphs of �les and machines on which these �les
are installed and performs belief propagation to detect malware.
�e pervasiveness of polymorphism and the subsequent di�usion

of singleton �les might limit the e�ectiveness of this system in
modern malware delivery. Polonium reported a TPR of 84% and a
FPR of 1% over 2011 malware data. �is is in line with what was
obtained with 2016 malware by Marmite during the validation
stage.

�e closest work to this paper is [19]. �e authors reconstructed
and analyzed 19 million downloader graphs from 5 million real
hosts, then identi�ed several strong indicators of malicious activ-
ity including growth rate, the diameter, and the Internet access
pa�erns of downloader graphs. Building on top of these insights,
the authors implemented and evaluated a machine learning system
using random forest for malware detection, and proved to achieve
high true positive rate and low false positive in detecting malware.
�is system has the limitation of only taking into account local
visibility for single hosts. Marmite, on the other hand, is able to
leverage a global view of malware delivery networks.

We showed thatMarmite can operate e�ectively without any
re-tuning even six months a�er the parameters were trained. For a
high level comparison, [19] reports 98% TPR with 2% FPR with the
full feature set, and 81% TPR and 21% FPR with only the features
that are related to the local download graph, and therefore do not
take domain-speci�c information into account. Marmite performs
worse than this system compared to the full feature set (88% TPR
for 2% FPR during the validation phase) but clearly outperforms it
when compared to the graph-only features.

A number of systems aim at detecting malicious hosts based on
structural properties of malware delivery networks. Although the
goal ofMarmite is to detect malicious �les, these approaches have
similarities with our system in the way they operate. Zhang et
al. [41] proposed ARROW, a system to detect drive-by download at-
tacks. �e system builds a hostname-IP mapping to identify central
servers of malware distribution networks (MDNs), and generates
corresponding signatures. �ese signatures are later used to detect
malicious webpages.

Li et al. [20] performed a large scale study on the topological
relations among hosts in the malicious Web infrastructure. �e sys-
tem constructs hostname-IP clusters (HICs) and builds topological
relationship between HICs. Utilizing the observation that there is a
higher density of interconnections among malicious infrastructures
than in the rest of the web, a variation of page-rank algorithm is
employed to detect dedicated malicious hosts. Stokes et al. [32]
proposed WebCop, a bo�om up approach to detect malware dis-
tribution sites. �e system uses the �nal destination distribution
sites as the starting point, and follows the web graph hyperlinks in
reverse to identify the higher level landing sites. WebCop further
utilizes the identi�ed landing sites to detect unknown distribution
sites that share a landing site with a known malware distribution
site. Stringhini et al. [35] presented SpiderWeb, a system that builds
graphs of HTTP redirections used in the delivery of malware, and
performs classi�cations on these graphs for malware detection.
Mekky et al. [22] expanded on this model, looking not only at auto-
mated redirections but also at the links clicked by users. Manadhata
et al. [21] presented an approach to perform belief propagation over
download graphs to detect malicious hosts. �is system is designed
to operate over proxy logs for a single organization, while Mar-
mite is designed to operate over the entire Internet. Although

Marmite could be extended to detect malicious hosts, in its current
implementation it is designed to identify malicious �les.

Compared to all these approaches,Marmite is generic as it does
not rely to particular network structures and protocols. �is is an
important advantage, because it makes our approach applicable
to se�ings di�erent than HTTP. Marmite also does not rely on
features that are typical of how cybercriminals operate (e.g., their
use of Domain Generation Algorithms of Fast Flux), and is therefore
resilient to evasion — in fact, we showed that Marmite is still able
to e�ciently detect malware six months a�er the system was tuned.

10 CONCLUSION
We presentedMarmite, a system that is able to detect malicious
�les by leveraging a global download graph and label propagation
with Bayesian con�dence. We showed that the global download
graph used byMarmite does not signi�cantly change over time,
and therefore our system can detect malware for over six months
without need of being re-tuned. We were able to grow our knowl-
edge of malware samples by up to eleven times compared to the
malicious seeds used, and we showed that 36% of our detections do
not appear on VirusTotal three months a�er they were detected by
Marmite. We presented a number of case studies that aim to shed
light on malware delivery ecosystems. We hope that these examples
will help our community be�er understand the idiosyncrasies asso-
ciated with malware delivery, and devise be�er mitigation systems
based on these observations. From our end, we showed that build-
ing a whitelist of known benign �les can be a simple and durable
solution to systematic false positives.

ACKNOWLEDGEMENTS
Wewould like to thank the anonymous reviewers for their feedback,
and our shepherd Christian Rossow for his help in improving the
�nal version of this paper. �isworkwas supported by UCL through
a BEAMS Future Leaders in Engineering and Physical Sciences
Award and by the EPSRC under grant EP/N008448/1.

REFERENCES
[1] National So�ware Reference Library. h�p://www.nsrl.nist.gov/.
[2] VirusTotal. h�ps://www.virustotal.com.
[3] Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S.,

Lee, W., and Dagon, D. From throw-away tra�c to bots: detecting the rise of
DGA-based malware. In USENIX Security Symposium (2012).

[4] Bergstra, J., and Bengio, Y. Random Search for Hyper-parameter Optimization.
Journal of Machine Learning Research (Feb. 2012).

[5] Caballero, J., Grier, C., Kreibich, C., and Paxson, V. Measuring pay-per-
install: �e commoditization of malware distribution. In USENIX Security Sym-
posium (2011).

[6] Egele, M., Scholte, T., Kirda, E., and Kruegel, C. A survey on automated
dynamic malware-analysis techniques and tools. ACM Computer Surveys 44, 2
(2012).

[7] Fawcett, T. An introduction to roc analysis. Pa�ern Recogn. Le�. 27, 8 (June
2006), 861–874.

[8] Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C. J., Levchenko,
K., Mavrommatis, P., McCoy, D., Nappa, A., Pitsillidis, A., et al. Manufactur-
ing compromise: the emergence of exploit-as-a-service. In ACM conference on
Computer and communications security (CCS) (2012).

[9] Holz, T., Gorecki, C., Rieck, K., and Freiling, F. C. Measuring and Detect-
ing Fast-Flux Service Networks. In Network and Distributed Systems Security
Symposium (NDSS) (2008).

[10] Invernizzi, L., Comparetti, P. M., Benvenuti, S., Cova, M., Kruegel, C., and
Vigna, G. EvilSeed: A Guided Approach to Finding Malicious Web Pages. In
IEEE Symposium on Security and Privacy (2012).

http://www.nsrl.nist.gov/
https://www.virustotal.com

[11] Invernizzi, L., Miskovic, S., Torres, R., Kruegel, C., Saha, S., Vigna, G., Lee, S.,
and Mellia, M. Nazca: Detecting malware distribution in large-scale networks.
In Network and Distributed System Security Symposium (NDSS) (2014).

[12] Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., and Vigna, G.
Revolver: An automated approach to the detection of evasive web-basedmalware.
In USENIX Security Symposium (2013).

[13] Karampatziakis, N., Stokes, J. W., Thomas, A., and Marinescu, M. Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA). 2013, ch. Using
File Relationships in Malware Classi�cation.

[14] Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., and Kirda, E. Cu�ing
the gordian knot: a look under the hood of ransomware a�acks. In Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA) (2015).

[15] Kirat, D., Vigna, G., and Kruegel, C. Barecloud: bare-metal analysis-based
evasive malware detection. In USENIX Security Symposium (2014).

[16] Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In IJCAI (1995).

[17] Kotzias, P., Bilge, L., and Caballero, J. Measuring PUP Prevalence and PUP
Distribution through Pay-Per-Install Services. In USENIX Security Symposium
(2016).

[18] Kruegel, C., Robertson, W., Valeur, F., and Vigna, G. Static disassembly of
obfuscated binaries. In USENIX Security Symposium (2004).

[19] Kwon, B. J., Mondal, J., Jang, J., Bilge, L., and Dumitras, T. �e dropper e�ect:
Insights into malware distribution with downloader graph analytics. In ACM
Conference on Computer and Communications Security (CCS) (2015).

[20] Li, Z., Alrwais, S., Xie, Y., Yu, F., andWang, X. Finding the linchpins of the dark
web: A study on topologically dedicated hosts on malicious web infrastructures.
In IEEE Symposium on Security and Privacy (2013).

[21] Manadhata, P. K., Yadav, S., Rao, P., and Horne, W. Detecting malicious
domains via graph inference. In European Symposium on Research in Computer
Security (ESORICS) (2014).

[22] Mekky, H., Torres, R., Zhang, Z.-L., Saha, S., andNucci, A. Detectingmalicious
HTTP redirections using trees of user browsing activity. In INFOCOM (2014).

[23] Nachenberg, C., Wilhelm, J., Wright, A., and Faloutsos, C. Polonium:
Tera-scale graph mining and inference for malware detection.

[24] Nelms, T., Perdisci, R., Antonakakis, M., and Ahamad, M. Webwitness:
Investigating, categorizing, and mitigating malware download paths. In USENIX
Security Symposium (2015).

[25] Nguyen, G. H., Bouzerdoum, A., and Phung, S. L. Learning pa�ern classi�cation
tasks with imbalanced data sets. Tech. rep., 2009.

[26] Pitsillidis, A., Kanich, C., Voelker, G. M., Levchenko, K., and Savage, S.
Taster’s choice: A comparative analysis of spam feeds. In ACM Conference on
Internet Measurement Conference (IMC) (2012).

[27] Rahbarinia, B., Balduzzi, M., and Perdisci, R. Real-time detection of malware
downloads via large-scale url− > �le− > machine graph mining. In ACM Asia
Conference on Computer and Communications Security (ASIACCS) (2016).

[28] Rajab, M. A., Ballard, L., Lutz, N., Mavrommatis, P., and Provos, N. Camp:
Content-agnostic malware protection. InNetwork and Distributed System Security
Symposium (NDSS) (2013).

[29] Ramachandran, A., Dagon, D., and Feamster, N. Can DNS-based blacklists
keep up with bots? In CEAS (2006).

[30] Rossow, C., Dietrich, C., and Bos, H. Large-scale analysis of malware down-
loaders. In Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). 2013.

[31] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M. G., Liang,
Z., Newsome, J., Poosankam, P., and Saxena, P. Bitblaze: A new approach to
computer security via binary analysis. In Information systems security. 2008.

[32] Stokes, J. W., Andersen, R., Seifert, C., and Chellapilla, K. Webcop: Locating
neighborhoods of malware on the web. In USENIX Workshop on Large-Scale
Exploits and Emergent �reats (LEET) (2010).

[33] Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kem-
merer, R., Kruegel, C., and Vigna, G. Your botnet is my botnet: analysis of a
botnet takeover. In ACM conference on Computer and communications security
(CCS) (2009).

[34] Stone-Gross, B., Holz, T., Stringhini, G., and Vigna, G. �e underground
economy of spam: A botmaster’s perspective of coordinating large-scale spam
campaigns. InWorkshop on lage-scale exploits and emerging threats (LEET) (2011).

[35] Stringhini, G., Kruegel, C., and Vigna, G. Shady paths: Leveraging sur�ng
crowds to detect malicious web pages. In ACM conference on Computer and
communications security (CCS) (2013).

[36] Tamersoy, A., Roundy, K., and Chau, D. H. Guilt by association: Large scale
malware detection by mining �le-relation graphs. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2014).

[37] Thomas, K., Crespo, J., Picod, J.-M., Phillips, C., Sharp, C., Decoste, M.-A.,
Tofigh, A., Courteau, M.-A., Ballard, L., Shield, R., Jagpal, N., Abu Rajab,
M., Mavrommatis, P., Provos, N., Bursztein, E., and McCoy, D. Investigating
Commercial Pay-Per-Install and the Distribution of Unwanted So�ware. In
USENIX Security Symposium (2016).

[38] Vadrevu, P., Rahbarinia, B., Perdisci, R., Li, K., and Antonakakis, M. Mea-
suring and detecting malware downloads in live network tra�c. In ESORICS.
2013.

[39] Willems, C., Holz, T., and Freiling, F. Toward automated dynamic malware
analysis using cwsandbox. In IEEE Symposium on Security & Privacy (2007).

[40] Yamaguchi, Y., Faloutsos, C., and Kitagawa, H. PAKDD. 2015, ch. SocNL:
Bayesian Label Propagation with Con�dence.

[41] Zhang, J., Seifert, C., Stokes, J. W., and Lee, W. Arrow: Generating signatures
to detect drive-by downloads. In International World Wide Web Conference
(WWW) (2011).

[42] Zhu, X., Ghahramani, Z., and Lafferty, J. Semi-supervised learning using
gaussian �elds and harmonic functions. In ICML (2003).

A PUP OPERATION
As an additional experiment, we also wanted to study PUP binaries
as discussed in Section 6.1. We use a download graph from January
3rd in this study. Figure 11 illustrates one of these cases. �e site
balancer1.amber1glue.com was hosted by three IP addresses in
the course of the day. �e �rst two belong to web hosting company
CloudFlare, and the last is from MTS PJSC, registered in Russia.
In total, 72 �les dropped from this URL were previously identi�ed
and con�rmed to belong to the Mizenota family (via VirusTotal).
811 �les are marked as PUP by Symantec. Both 72 con�rmed mali-
cious and 811 newly discovered �les share the same naming pat-
tern: ‘string 10924 i<10-digit> il<7-digit>.exe’, e.g. ‘MS
+Office+2010+Crack+Prod 10924 i18078 21319 il2622354.ex
e’, ‘Structural+analysis +hibbe 10924 i1807858669 il2 64
0857.exe’. Another binary (classi�ed as Amonetize) with SHA2
9A91B... also dropped �ve PUP �les with the same name but
di�erent SHA2s. �is case study shows that di�erent PUP-related
PPI services, already studied in previous work [17, 37], o�en share
the same delivery infrastructure.

{…

72 confirmed from
Mizenota Family

{

811 shady binaries

http://balancer1.amber1glue.com/download.php
{

5 shady binaries

104.24.98.90 104.24.99.90192.162.0.103
CloudFlare, Inc. (CLOUD14)CloudFlare, Inc. (CLOUD14) MTS PJSC

Amonetize

Figure 11: PUP case study detected byMarmite.

�is case study illustrates the blurry line between malware and
PUP �les. While some �les are classi�ed as malware by VirusTotal,
some other are not, and are considered as PUP by Symantec. �e
label propagation performed byMarmite is able to �ag all of them
as malicious.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Methodology
	3.1 Building Download Graph
	3.2 Label Propagation with Bayesian Confidence
	3.3 Marmite: Inference Example
	3.4 Scalability

	4 Datasets
	5 Validation
	5.1 Ground Truth
	5.2 Choose Optimal Parameters
	5.3 Time and Memory Performance
	5.4 Labeling Performance
	5.5 Modifying the Observation Interval

	6 Evaluation
	6.1 Malware Detection In the Wild
	6.2 Early Detection of Unknown Malware

	7 Lessons Learned and Case Studies
	7.1 Malicious programs download legitimate libraries.
	7.2 Legitimate content delivery networks are used to deliver malware.
	7.3 Malware operation.
	7.4 Combined malware and PUP operation.

	8 Discussion
	9 Related work
	10 Conclusion
	References
	A PUP operation

