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Abstract

Metadata are associated with most of the information we pro-
duce in our daily interactions and communication in the dig-
ital world. Yet, surprisingly, metadata are often still catego-
rized as non-sensitive. Indeed, in the past, researchers and
practitioners have mainly focused on the problem of the iden-
tification of a user from the content of a message.
In this paper, we use Twitter as a case study to quantify
the uniqueness of the association between metadata and user
identity and to understand the effectiveness of potential ob-
fuscation strategies. More specifically, we analyze atomic
fields in the metadata and systematically combine them in an
effort to classify new tweets as belonging to an account us-
ing different machine learning algorithms of increasing com-
plexity. We demonstrate that, through the application of a su-
pervised learning algorithm, we are able to identify any user
in a group of 10,000 with approximately 96.7% accuracy.
Moreover, if we broaden the scope of our search and con-
sider the 10 most likely candidates we increase the accuracy
of the model to 99.22%. We also found that data obfuscation
is hard and ineffective for this type of data: even after per-
turbing 60% of the training data, it is still possible to classify
users with an accuracy higher than 95%. These results have
strong implications in terms of the design of metadata obfus-
cation strategies, for example for data set release, not only for
Twitter, but, more generally, for most social media platforms.

Introduction
Platforms like Facebook, Flickr, and Reddit allow users to
share links, documents, images, videos, and thoughts. Data
has become the newest form of currency and analyzing data
is both a business and an academic endeavor. When online
social networks (OSNs) were first introduced, privacy was
not a major concern for users and therefore not a priority
for service providers. With time, however, privacy concerns
have risen: users started to consider the implications of the
information they share (Stutzman, Gross, and Acquisti 2013;
Humphreys, Gill, and Krishnamurthy 2010) and in response
OSN platforms have introduced coarse controls for users to
manage their data (De Cristofaro et al. 2012). Indeed, this
concern is heightened by the fact that this descriptive infor-
mation can be actively analyzed and mined for a variety of
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purposes, often beyond the original design goals of the plat-
forms. For example, information collected for targeted ad-
vertisement might be used to understand political and reli-
gious inclinations of a user. The problem is also exacerbated
by the fact that often these datasets might be publicly re-
leased either as part of a campaign or through information
leaks.

Previous work shows that the content of a message posted
on an OSN platform reveals a wealth of information about
its author. Through text analysis, it is possible to derive
age, gender, and political orientation of individuals (Rao
et al. 2010); the general mood of groups (Bollen, Mao,
and Pepe 2011) and the mood of individuals (Tang et al.
2012). Image analysis reveals, for example, the place a photo
was taken (Hays and Efros 2008), the place of residence
of the photographer (Jahanbakhsh, King, and Shoja 2012),
or even the relationship status of two individuals (Shoshi-
taishvili, Kruegel, and Vigna 2015). If we look at mobility
data from location-based social networks, the check-in be-
havior of users can tell us their cultural background (Silva
et al. 2014) or identify users uniquely in a crowd (Rossi
and Musolesi 2014). Finally, even if an attacker only had
access to anonymized datasets, by looking at the structure
of the network someone may be able to re-identify users
(Narayanan and Shmatikov 2009). Most if not all of these
conclusions could be considered privacy-invasive by users,
and therefore the content is what most service providers are
starting to protect. However, access control lists are not suf-
ficient. We argue that the behavioral information contained
in the metadata is just as informative.

Metadata has become a core component of the services of-
fered by OSNs. For example, Twitter provides information
on users mentioned in a post, the number of times a mes-
sage was re-tweeted, when a document was uploaded, and
the number of interactions of a user with the system, just to
name a few. These are not merely extra information: users
rely on these to measure the credibility of an account (Wang
et al. 2013) and much of the previous research in fighting
social spam relies on account metadata for detection (Ben-
evenuto et al. 2010; Stringhini, Kruegel, and Vigna 2010).

In this paper, we present an in-depth analysis of the iden-
tification risk posed by metadata to a user account. We treat
identification as a classification problem and use supervised
learning algorithms to build behavioral signatures for each



of the users. Our analysis is based on metadata associated
to micro-blogging services like Twitter: each tweet contains
the metadata of the post as well as that of the account from
which it was posted. However, it is worth noting that the
methods presented in this work are generic and can be ap-
plied to a variety of social media platforms with similar char-
acteristics in terms of metadata. In that sense, Twitter should
be considered only as a case study, but the methods proposed
in this paper are of broader applicability. The proposed tech-
niques can be used in several practical scenarios such as
when the identifier of an account changes over time, when
a single user creates multiple accounts, or in the detection
of legitimate accounts that have been hijacked by malicious
users.

In security, there are at least two areas that look at
identity from opposite perspectives: on one hand, research
in authentication looks for methods that, while unobtru-
sive and usable, consistently identify users with low false
positive rates (Patel et al. 2016); and, on the other hand,
work on obfuscation and differential privacy aims to find
ways by which we can preserve an individual’s right to
privacy by making information about them indistinguish-
able in a set (Li, Li, and Venkatasubramanian 2007). This
study is relevant to both: we claim that in the same way
that our behavior in the physical world is used to iden-
tify us (Bailey, Okolica, and Peterson 2014; Bo et al. 2013;
Wang and Geng 2009), the interactions of a user with a sys-
tem, as represented by the metadata generated during the ac-
count creation and its subsequent use, can be used for iden-
tification. If this is true, and metadata can in fact be linked
to our identity and as it is seldom if ever protected, it con-
stitutes a risk for users’ privacy. Our goal is therefore, to
determine if the information contained in users’ metadata is
sufficient to fingerprint an account. Our contributions can be
summarized as follows:

• We develop and test strategies for user identification
through the analysis of metadata through state-of-the-art
machine learning algorithms, namely Multinomial Lo-
gistic Regression (MLR) (Bishop 2001), Random For-
est (RF) (Breiman 2001), and K-Nearest Neighbors
(KNN) (Huang, Yang, and Chuang 2008).

• We provide a performance evaluation of different classi-
fiers for multi-class identification problems, considering a
variety of dimensions and in particular the characteristics
of the training set used for the classification task.

• We assess the effectiveness of two obfuscation techniques
in terms of their ability of hiding the identity of an account
from which a message was posted.

Motivation
Formal Definition of the Study
We consider a set of users

U = {u1, u2, . . . , uk, . . . , uM}.
Each user ui is characterized by a finite set of features

Xuk = {xuk
1, x

uk
2, . . . , x

uk
R}.

In other words, we consider M users and each user is repre-
sented by means of R features. Our goal is to map this set of
users to a set of identities

I = {i1, i2, . . . , ik, . . . , iM}.

We assume that each user uk maps to a unique identity il.
Identification is framed in terms of a classification prob-

lem: in the training phase, we build a model with a known
dataset; in our case, we consider a dataset in which a user uk

as characterized by features Xuk
, extracted from the user’s

profile, is assigned an identity il. Then, in the classification
phase, we assign to each user ûk, for which we assume that
the identity is unknown, a set of probabilities over all the
possible identities.

More formally, for each user ûk (i.e., our test observation)
the output of the model is a vector of the form

PI(ûk) = {pi1(ûk), pi2(ûk), . . . , piM (ûk)},

where pi1(ûk) is the probability that the test observation re-
lated to ûk will be assigned to identity i1 and so on. We
assume a closed system where all the observations will be
assigned to users in I, and therefore,

∑
il∈I pil(ûk) = 1. Fi-

nally, the identity assigned to the observation will be the one
that corresponds to argmaxil{pil(ûk)}.

Two users with features having the same values are indis-
tinguishable. Moreover, we would like to point out that the
values of each feature can be static (constant) over time or
dynamic (variable) over time. An example of a static fea-
ture is the account creation time. An example of a dynamic
feature is the number of followers of the user at the time
the tweet was posted. Please also note that, from a practical
point of view, our objective is to ascertain the identity of a
user in the test set. In the case of a malicious user, whose
identity has been modified over time, we assume that the
‘real’ identity is the one that is found in the training set. In
this way, our method could also be used to group users with
very similar characteristics and perhaps conclude that they
belong to the same identity.

Attack Model

The goal of the study is to understand if it is possible to
correctly identify an account given a series of features ex-
tracted from the available metadata. In our evaluation, as
discussed before, the input of the classifier is a set of new
(unseen) tweets. We refer to a successful prediction of the
account identity as a hit and an unsuccessful one as a miss.
We assume that the attacker is able to access the metadata
of tweets from a group of users together with their identities
(i.e., the training set) and that the new tweets belong to one
of the users in the training set.

We present the likelihood of success of an identification
attack where the adversary’s ultimate goal is to identify a
user from a set given this knowledge about the set of ac-
counts. To achieve this, we answer this question: Is it pos-
sible to identify an individual from a set of metadata fields
from a randomly selected set of Twitter user accounts?



Table 1: Description of relevant data fields.

Feature Description
Account creation UTC time stamp of the account creation time.
Favourites count The number of tweets that have been marked as ‘favorites’ of this account.
Follower count The number of users that are following this account.
Friend count The number of users this account is following.
Geo enabled (boolean) Indicates whether tweets from this account is geo-tagged.
Listed count The number of public lists that include the account.
Post time stamp UTC time of day stamp at which the post was published.
Statuses count The number of tweets posted by this account.
Verified (boolean) Indicates that Twitter has checked the identity of the user that owns this account.

Methods
Metadata and the case of Twitter
We define metadata as the information available pertaining
to a Twitter post. This is information that describes the con-
text in which the post was shared. Apart from the 140 char-
acter message, each tweet contains about 144 fields of meta-
data. Each of these fields provides additional information
about: the account from which it was posted; the post (e.g.,
time, number of views); other tweets contained within the
message; various entities (e.g., hashtags, URLs, etc); and the
information of any users directly mentioned in it. From these
features (in this work we will use features, fields, inputs to
refer to each of the characteristics available from the meta-
data) we created combinations from a selection of 14 fields
as a basis for the classifiers.

Feature Selection
Feature selection methods can be essentially grouped in
three classes following the classification proposed by Liu
and Yu in (Liu and Yu 2005): the filter approach that ranks
features based on some statistical characteristics of the pop-
ulation; the wrapper approach that creates a rank based
on metrics derived from the measurement algorithm; and a
group of hybrid methods which combine the previous two
approaches. In the same paper, the authors claim that the
wrapper method is guaranteed to find the optimal combina-
tion of inputs for classification based on the selected crite-
ria. Three years later, in (Huang, Yang, and Chuang 2008),
Huang et al. provided validation by experimentally show-
ing that for classification, the wrapper approach results in
the best possible performance in terms of accuracy for each
algorithm.

From the three proposed, the only method that allows for
fair comparison between different algorithms is the wrapper
method. Since it guarantees optimal feature combination on
a per algorithm basis, it eliminates any bias in the analysis
due to poor selection. Ultimately, we conducted a compre-
hensive stratified search over the feature space and obtained
a ranking per level for each of the algorithms. Here, a level
corresponds to the number of features used as input for the
classifier and we will use n to denote it. In the first level,
where n = 1 we looked at the predictive power of each
of the 14 features individually; for n = 2 we looked at all

combinations of pairs of features, and so on. We use the term
combinations to describe any group of n un-ordered features
throughout the paper.

The features selected were those that describe the user ac-
count and were not under direct control of the user with the
exception of the account ID which was excluded as it was
used as ground truth (i.e., label) of each observation. As an
example, the field describing the users’ profile background
color was not included in the feature list while the number
of friends and number of posts were. Table 1 contains a de-
scription of the fields selected.

Implementation of the Classifiers
We consider three state-of-the-art classification methods:
Multinomial Logistic Regression (MLR) (Bishop 2001),
Random Forest (RF) (Breiman 2001), and K-Nearest Neigh-
bors (KNN) (Huang, Yang, and Chuang 2008). Each of these
algorithms follows a different method to make the recom-
mendation and they are all popular within the community.

We use the implementation of the algorithms provided
by sci-kit learn (Pedregosa et al. 2011), a Python library.
The optimization of the internal parameters for each classi-
fier was conducted as a combination of best practices in the
field and experimental results in which we used the cross-
validated grid search capability offered by SciKit-learn. In
summary, we calculated the value of the parameters for each
classifier as follows. For KNN, we consider the single clos-
est value based on the Euclidean distance between the obser-
vations; for RF, we chose entropy as the function to measure
the effectiveness of the split of the data in a node; finally,
for MLR, we selected the limited-memory implementation
of the Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) op-
timizer as the value to optimize (Liu and Nocedal 1989).

Obfuscation and Re-Identification
Obfuscation can only be understood in the context of data
sharing. The goal of obfuscation is to protect the private indi-
vidual fields of a dataset by providing only the result of some
function computed over these fields (Mowbray, Pearson, and
Shen 2012). To succeed, the possibilities are either to ob-
fuscate the data or develop algorithms that protect it (Malik,
Ghazi, and Ali 2012). We reasoned that an attacker will have
access to any number of publicly available algorithms, this
is outside of our control. However, we could manipulate the



Table 2: KNN classification accuracy using ten
observations per user using follower count and friend count

as features in input. We ran each experiment for an
increasing number of users u.

u top result top 5

10 94.283 (±0.696) 98.933 (±0.255)
100 86.146 (±0.316) 96.770 (±0.143)

1,000 70.348 (±0.112) 90.867 (±0.076)
10,000 47.639 (±0.039) 76.071 (±0.029)
100,000 28.091 (±0.089) 55.438 (±0.192)

granularity of the information made available. Our task is to
determine whether doing so is an effective way of protect-
ing user privacy, particularly when obfuscated metadata is
released.

In this work, we focus on two classic obfuscation meth-
ods: data randomization and data anonymization (Agrawal
and Srikant 2000; Bakken et al. 2004; Polat and Du 2003).
Data anonymization is the process by which the values of a
column are grouped into categories and each reading is re-
placed by an index of its corresponding category. Data ran-
domization, on the other hand, is a technique that alters the
values of a subset of the data points in each column accord-
ing to some pre-determined function. We use rounding as
the function to be applied to the data points. For each of the
values that were altered, we rounded to one less than the
most significant value (i.e., 1,592 would be 1,600 while 31
would be 30). We measured the level of protection awarded
by randomization by recording the accuracy of the predic-
tions as we increased the number of obfuscated data points
in increments of 10% until we reached full anonymization
(i.e., 100% randomization) of the training set.

Inference Methods

Statistical inference is the process by which we general-
ize from a sample a characteristic of the population. Boot-
strapping is a computational method that allows us to make
inferences without making any assumptions about the dis-
tribution of the data and without the need of formulas to
describe the sampling process. With bootstrapping we as-
sume that each sample is the population and then aggre-
gate the result from a large number of runs (anywhere be-
tween 50 and 1,000 times depending on the statistic being
drawn) (Mooney and Duval 1993). In this study, we are pri-
marily interested in the precision and accuracy of each clas-
sifier as a measure of their ability to predict the correct user
given a tweet. The results we present in the paper are an
average over 200 repetitions of each experiment. In each ex-
periment, the input data was randomly split between training
and testing sets using a 7:3 proportion, which is a typical set-
ting in the evaluation of machine learning algorithms.

Figure 1: Change in accuracy for a single feature
combination and increasing number of users.
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Experimental Settings
Dataset
For data collection, we used the Twitter Streaming Public
API (Twitter, Inc. 2018). Our population is a random1 sam-
ple of the tweets posted between October 2015 and January
2016 (inclusive). During this period we collected approxi-
mately 151,215,987 tweets corresponding 11,668,319 users.
However, for the results presented here, we considered only
users for which we collected more than 200 tweets. Our final
dataset contains tweets generated by 5,412,693 users.

Ethics Considerations
Twitter is the perfect platform for this work. On one hand,
users posting on Twitter have a very low expectation of pri-
vacy: it is in the nature of the platform to be open and to
reach the widest audience possible. Tweets must always be
associated with a valid account and, since the company does
not collect demographic information about users upon reg-
istration, the accounts are not inherently linked to the phys-
ical identity of the users. Both these factors reduce but not
eliminate any ethical concerns that may arise from this work.
Nonetheless, we submitted this project for IRB approval and
proceeded with their support.

.

Experimental Variables
Number of Users As an attack, guessing is only viable for
smaller user pools: indeed, there is a 1:10 probability of ran-
domly classifying a tweet correctly for a user pool made up
of 10 users, whereas there is a 1:10,000 probability in a pool
of 10,000 users. The likelihood of guessing correctly is in-
versely proportional to the number of users. Therefore, the
first task was to compare and describe the way in which in-
creasing the number of users affects the accuracy of the clas-
sifiers. We evaluate each algorithm (i.e., MLR, RF, KNN) on
a specific configuration of training data in order to obtain a

1It is worth noting that since we use the public Twitter API we
do not have control on the sampling process. Having said that, an
attacker will most probably access the same type of information. A
typical use case is the release of data set of tweets usually obtained
in the same way.



trained model. We trained models for all feature combina-
tions, however, we present only the results for the best com-
bination of parameters for each classifier.

We first analyze the impact of the number of classes. In
Figure 1 we present with fixed parameters the effect of in-
creasing only the number of outputs for each of the clas-
sifiers. Each model was built with two input features (i.e.,
n = 2 where the features are number of friends and num-
ber of followers) and 10 observations per user. Some of the
results we present are independent of the underlying classifi-
cation algorithm. For these instances, we present results us-
ing only KNN. As it will be shown later in the paper, KNN
shows the best performance in terms of prediction and re-
source consumption.

Figure 1 shows that the loss in accuracy is at worst linear.
In a group of 100,000 users, the number of friends and of
followers was sufficient to identify 30% of the users (around
30,000 times better than random). However, while the accu-
racy of the classification gradually declines, there is a dra-
matic increase in the cost (in terms of time) when building
the model. As we will discuss in the last part of the Results
section, the greatest obstacle with multi-class classification
is the number of classes included in the model.

Number of Entries per User The next variable we con-
sider is the number of observations per user per model. Our
objective is to visualize the relationship between accuracy
and the number of observed tweets to set a minimum value
for the rest of the study.

To set this parameter, we fixed the number of input fea-
tures at n = 2 and u = 1, 000 then we ran models with 10,
100, 200, 300, and 400 tweets per user. Figure 2 shows the
aggregated results for the 20% most accurate feature combi-
nations over 400 iterations. As the figure shows, 10 entries
are not enough to build robust models. For all classifiers we
see that the behavior is almost asymptotic. There is a sig-
nificant increase in accuracy as the number of observations
per user reaches 100. However, for all subsequent observa-
tions, the variation is less apparent. Each of the points in the
graph contains the confidence interval associated with the
measurement. However, for RF the largest error is 0.2. It is
worth noting that with our data set we could only scale as
far as 10,000 users.

Each experiment presented in the remainder of the paper
was repeated 200 times (each time with a different config-
uration in terms of users and number of tweets). By stan-
dardizing the number of observations per user at 200 tweets,
we preempt two problems: first, by forcing all users to have
the same number of tweets we reduce the likelihood of any
user not having a sufficient number of entries in the train-
ing set; and second, it prevents our results from being biased
towards any user with a disproportionate number of observa-
tions. This might be considered as potentially artificial, but
we believe it represents a realistic baseline for evaluating
this attack.

Figure 2: Performance of the top 20% of combinations per
classifier for increasing observations per user.

70

80

90

100

0 100 200 300 400
Number of Observations per User

M
ea

n 
A

cc
ur

ac
y 

(t
op

 2
0%

)

classifier
KNN

LOGIT

RF

Table 3: Entropy calculation for feature list.

feature entropy

ACT 20.925
statuses count 16.132
follower count 13.097
favorites count 12.994

friend count 11.725
listed count 6.619

second 5.907
minute 5.907

day 4.949
hour 4.543

month 3.581
year 2.947

post time 1.789
geo enabled 0.995

verified 0.211

Results
Identification
In building and comparing models we are interested in the
effects and interactions of the number of variables used for
building the models. We denote the number of input features
with n and the number of output classes which we refer to
as u.

We define accuracy as the correct assignment of an obser-
vation to a user. In a multi-class algorithm, the predicted re-
sult for each observation is a vector containing the likelihood
of that observation belonging to each of the users present in
the model. A prediction is considered correct if the user as-
signed by the algorithm corresponds to the true account ID.
In the rest of the paper, we report aggregated results with
95% confidence intervals.

In our analysis, the account creation time was found to
be highly discriminative between users. We present results
with the dynamic features, defined below. Then we present
our findings with the account creation time. Finally, we give
a comprehensive analysis of the task of identification given
combinations of both static and dynamic features for three
different classifiers.

Static Attribute: Account Creation Time Twitter in-
cludes the Account Creation Time (ACT) in every published



Table 4: KNN Classification using dynamic features.

u n features accuracy

10,000
3 friend, follower, listed count 92.499 (±0.0008)

friend, follower, favorite count 91.158 (±0.0006)

2 friend, follower count 83.721 (±0.0005)
friend, favorite count 78.547 (±0.0006)

1,000
3 friend, follower, listed count 95.702 (±0.0037)

friend, follower, favorite count 93.474 (±0.0015)

2 friend, follower count 91.565 (±0.0026)
friend, listed count 89.904 (±0.0028)

100
3 friend, follower, listed count 98.088 (±0.0037)

friend, follower, favorite count 97.425 (±0.0058)

2 friend, follower count 97.099 (±0.0051)
friend, listed count 95.938 (±0.0073)

10
3 friend, follower, favorite count 99.790 (±0.0014)

friend, favorites, listed count 99.722 (±0.0015)

2 friend, favorites count 99.639 (±0.0016)
follower, friend count 99.483 (±0.0022)

Table 5: RF Classification using dynamic features.

u n features accuracy

10,000
3 friend, follower, favorite count 94.408 (±0.0008)

friend, follower, status count 94.216 (±0.0006)

2 friend, follower count 81.105 (±0.0005)
friend, favorite count 75.704 (±0.0006)

1,000
3 friend, follower, favorite count 96.982 (±0.0008)

friend, follower, status count 96.701 (±0.0008)

2 friend, follower count 90.889 (±0.003)
friend, favorite count 89.271 (±0.004)

100
3 friend, follower, favorite count 99.286 (±0.0014)

friend, listed, favorite count 99.149 (±0.0017)

2 friend, follower count 97.690 (±0.0029)
listed, friend count 97.275 (±0.00363)

10
3 friend, listed, favorite count 99.942 (±0.0005)

follower, favorites, friend count 99.930 (±0.00061)

2 friend, listed count 99.885 (±0.0008)
follower, friend count 99.776 (±0.0013)

tweet. The time stamp represents the moment in which the
account was registered, and as such, this value is constant for
all tweets from the same account. Each time stamp is com-
posed of six fields: day, month, year, hour, minute, and sec-
ond of the account creation. For perfect classification (i.e.,
uniqueness), we look for a variable whose value is constant
within a class but distinct across classes (as explained be-
fore, each user is a class). An example is the account creation
time. We tested the full ACT using KNN and found that,
even for 10,000 users, classifying on this feature resulted
in 99.98% accuracy considering 200 runs. Nonetheless, the
ACT is particularly interesting because while it represents
one unique moment in time (and thus infinite and highly en-
tropic), it is composed of periodic fields with a limited range
of possible values. As we see in Table 3, each of the fields
has at least a 75% decrease in entropy as compared to the
combined ACT. Since full knowledge of the ACT can be
considered as the trivial case for our classification problem,
in the following sections we will consider the contribution
of each field of the ACT separately.

Table 6: Accuracy of the top combination for n number of
inputs for the KNN classifier.

u n features accuracy(%)

10,000
3 day, minute, second 96.737(±0.019)
2 follower, friend count 83.719(±0.021)
1 friend count 14.612(±0.036)

1,000
3 listed count, minute, second 99.648(±0.022)
2 friend, listed count 92.809(±0.050)
1 friend count 40.151(±0.089)

100
3 month, minute, second 100.00 (±0.000)
2 minute, second 98.836(±0.101)
1 friend count 78.650(±0.330)

10
3 month, minute, second 100.00 (±0.000)
2 month, minute 100.00 (±0.000)
1 friend count 96.428(±0.312)

Table 7: Accuracy of the top combination for n number of
inputs for the RF classifier.

u n features accuracy(%)

10,000
3 listed count, day, second 94.234(±0.022)
2 friend count, minute 81.352(±0.347)
1 friend count 23.958(±0.089)

1,000
3 friend count, minute, second 99.881(±0.008)
2 friend count, second 97.28(±0.032)
1 friend count 49.538(±0.086)

100
3 day, minute, second 100.00 (±0.000)
2 friend count, minute 99.595(±0.023)
1 friend count 81.489(±0.299)

10
3 day, minute, second 100.00 (±0.000)
2 day, second 100.00 (±0.000)
1 friend count 96.858(±0.256)

Dynamic Attributes By dynamic attributes we mean all
those attributes that are likely to change over time. From
Table 1 these are the counts for: friends, followers, lists, sta-
tuses, and favorites, as well as a categorical representation
of the time stamp based on the hour of each post.

Table 4 presents the two best performing combinations in
terms of accuracy for each of the values we consider for n
and u. In 10,000 users there is a 92% chance of finding the
correct account given the number of friends, followers, and
the number of times an account has been listed.

Table 5 presents similar results for the RF algorithm. Even
without the ACT, we are able to achieve 94.41% accuracy in
a group of 10,000 users. These results are directly linked to
the behavior of an account and are obtained from a multi-
class model.

Combining Static and Dynamic Attributes As we ex-
pected from our feature selection, the top combinations per
value of n inputs are different per classifier. Tables 6, 7, 8
show the accuracy and the error obtained for the best per-
forming pair of features aggregated over all runs for the three
classifiers. We can see that the least accurate predictions are
those derived by means of the MLR algorithm. Then, prob-
ably for its robustness against noise, RF performs best for
the smaller user-groups, but it is KNN that provides the best
performance for the case where u = 10, 000.

In general, the classification task gets incrementally more
challenging as the number of users increases. We are able to



Table 8: Accuracy of the top combination for n number of
inputs for the MLR classifier.

u n features accuracy(%)

10,000
3 day, minute, second 96.060(±0.060)
2 day, minute 29.571(±5.11)
1 second 2.241(±0.080)

1,000
3 hour, minute, second 99.329(±0.060)
2 day, minute 61.77(±5.11)
1 hour 3.105(±0.080)

100
3 day, minute, second 100.00 (±0.000)
2 second, minute 98.494(±0.116)
1 second 26.303(±0.536)

10
3 day, minute, second 100.00 (±0.000)
2 day, minute 100.00 (±0.000)
1 second 94.129(±0.702)

achieve a 90% accuracy over all the classifiers with respect
to a 0.01% baseline offered by the random case. If we con-
sider the 10 most likely output candidates (i.e., the top-10
classes), for the 10,000 user group there is a 99.22% proba-
bility of finding the user.

Finally, we looked at how the best performing combina-
tions across all algorithms performed in models for each
classifier. The top three combinations per value of n are pre-
sented in Figures 6, 7, 8. For the same value of u as we
increase n the accuracy increases.

Obfuscation
The final analysis looks at the effects of data anonymization
and data randomization techniques on the proposed method-
ology. As we state in the Method section we start with the
original data set then apply a rounding algorithm to change
the values of each reading. The number of readings given
in input to the algorithm increase in steps of 10% from no
anonymization to 100% perturbation where we show full
randomization. To test obfuscation, we selected the 3 most
accurate combinations of features for n = 2 and u = 1, 000
for each of the classification methods.

While we are not working with geospatial data, we find
that similar to (Quan, Yin, and Guo 2015), the level of pro-
tection awarded by perturbation is not very significant until
we get to 100% randomization. Figures 9, 10, and 11 show
how each algorithm performs with an increasing number of
obfuscated points. RF is the best performing providing the
most accurate result despite data anonymity. MLR is the
most sensitive of the three. Even with 20% randomization
there is a steep decrease in terms of prediction accuracy.

Execution Time
To compare the performance of the classifiers in terms of ex-
ecution time we used a dedicated server with eight core Intel
Xeon E5-2630 processors with 192GB DDR4 RAM running
at 2,133MHz. For the implementation of the algorithms, we
used Python 2.7 and Sci-kit learn release 0.17.1.

Figure 12 shows execution time as a function of the num-
ber of output classes in each model. Note that the perfor-
mance gap between MLR and the other two is significant.
While KNN and RF show a linear increase over the number

of users, the rate of change for MLR is much more rapid.
At u = 1, 000 and n = 3, for example, MLR is 105 times
slower than RF and 210 times slower than KNN. The perfor-
mance bottleneck for multi-class classifiers is the number of
output classes. Finding a viable solution is fundamental for
this project and for the general applicability of the method.

To address this, we implemented a divide and conquer al-
gorithm where we get intermediate predictions over smaller
subsets of classes and build one final model with the (inter-
mediate) results. This method allows for faster execution and
lower memory requirements for each model and parallel ex-
ecution resulting in further performance enhancements. Fig-
ure 13 shows the effectiveness of the proposed method for
u = 100, 1, 000, and 10, 000. We also observe that the accu-
racy is independent from the number of subsets.

Discussion and Limitations
In this paper we have presented a comparison of three clas-
sification methods in terms of accuracy and execution time.
We reported their performance with and without input ob-
fuscation. Overall, KNN provides the best trade-off in terms
of accuracy and execution time with both the original and
the obfuscated data sets. We tested each of the algorithms
following the wrapper method by increasing the number of
input features in each model in steps of one. The results,
summarized in Tables 6, 7, and 8, show that the metadata can
be effectively exploited to classify individuals inside a group
of 10,000 randomly selected Twitter users. While both KNN
and RF are similar in terms of accuracy and execution, MLR
is consistently outperformed. Moreover, as shown in Figures
3, 4, and 5, as the number of output classes increases, the dif-
ference in performance becomes more pronounced. It is also
important to note that, as shown in Table 8, the accuracy ex-
hibited by MLR depends entirely on the six constituent fea-
tures of the account creation time. Finally, the performance
of MLR is the most sensitive to obfuscation. As shown in
Figure 11, the rounding algorithm results in a monotonic
drop in accuracy for the best performing combinations.

One challenge in multi-class classification lies in the scal-
ability of the algorithm. We found that while both the num-
ber of input features and the number of output classes have
a detrimental impact on performance, the bottleneck of the
algorithm is caused by the number of output classes. To ad-
dress this, we implemented a divide and conquer algorithm
that partitions the users and creates models with fewer out-
put classes. The intermediate outputs of each of the smaller
models are then combined to produce a single result. Fig-
ure 13 shows that this implementation does not affect the
accuracy of the classification algorithms. As shown in the
figure, varying the size of the partitions results in the same
precision and recall for the same total number of users as
compared to the results obtained from a single model. Hav-
ing shown that the results are equivalent the implementa-
tion becomes a contribution from our work: partitioning the
number of output classes in intermediate steps results in less
memory consumption and faster execution times.

We now discuss the implications of our findings on devis-
ing techniques for data privacy and anonymization. Previous
studies have proposed numerous techniques for privacy in
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Figure 3: Overall accuracy u = 100.
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Figure 4: Overall accuracy u = 1, 000.
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Figure 7: Performance of the most
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Figure 8: Performance of the most
popular features for n=3.

social-media data mining by focusing on the content of data
rather than its metadata (Patel et al. 2016; Rao et al. 2010;
Tang et al. 2012; Jahanbakhsh, King, and Shoja 2012). In
this study we have demonstrated that the metadata could also
play a significant role in revealing user identities. Our find-
ings demonstrate that generic information such as the num-
ber of friends, the number of favorited tweets, the number of
followers is sufficient to distinguish a user from another with
an accuracy of over 90%. These results have implications
for researchers and practitioners that share datasets: great
care has to be taken not only in obfuscating identities in pri-
mary data (such as posts and profile information) but also
in the metadata (auxiliary fields) associated to them. More
specifically, special attention has to be devoted to the fact
that combinations of input features reveal user’s identities as
was shown in this work.

Related Work
Privacy
“Privacy is measured by the information gain of an ob-
server” (Li, Li, and Venkatasubramanian 2007). If an at-
tacker is able to either trace an entry to an account, or an
account to a user, that attacker gains information and the
user loses of privacy. With regards to online social networks,
the risks to privacy presented in (Alterman 2003) are magni-
fied when considering the temporal dimension. In contrast,
the privacy controls that have been introduced are incom-

plete. Studies have shown that often times these controls
are lacking in terms of safeguarding against a dedicated ad-
versary (Narayanan and Shmatikov 2009) but, most impor-
tantly, they are difficult to use and are yet to be adopted
by the majority of users (Bonneau, Anderson, and Church
2009). This results in a wealth of information about users
openly available on the Web. Primary personal data might
be anonymized, but little attention has been devoted to meta-
data. This paper shows the privacy risks associated to meta-
data in terms of user identification. We demonstrate that ob-
fuscation is often insufficient to protect users and the trade-
off between obfuscation and utility compounds the problem.

Identification of Individuals through Metadata
Various identification methods have been developed to ex-
ploit existing information about physical attributes, behavior
and choices of a user. For example, in (Patel et al. 2016) the
authors describe an active authentication system that uses
both physical and behavioral attributes to continuously mon-
itor the identity of the user. In (Peacock, Ke, and Wilkerson
2004) the authors give an overview and present the advan-
tages and disadvantages of keystroke characterization for au-
thentication, identification, and monitoring. Finally, in (Frey,
Xu, and Ilic 2016) the authors use smartphone metadata,
namely the apps that have been installed on a phone, to cre-
ate a signature achieving a 99.75% accuracy. In this work,
for the first time we present an in-depth analysis of the risks
associated to online social networks metadata. We would



0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of Obfuscated Training Data

P
re

di
ct

io
n 

A
cc

ur
ac

y

features
follower_count, friend_count

friend_count, listed_count

minute, second

Figure 9: KNN Change in predictive
accuracy with obfuscated training data.
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Figure 10: RF Change in predictive
accuracy with obfuscated training data.
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Figure 11: MLR Change in predictive
accuracy with obfuscated training data.

Figure 12: Mean execution time as a function of features.
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like to stress that metadata is more easily available and/or
accessible, it represents a significant risk for user privacy.

Identification of Devices through Metadata
In (Quattrone et al. 2014) the authors use phone diagnostics,
i.e., information such as hardware statistics and system set-
tings, to uniquely identify devices. Instead, the method pre-
sented in (Kohno, Broido, and Claffy 2005) relies on small
but measurable differences of a device’s hardware clock.
In (Bojinov et al. 2014) the authors exploit some characteris-
tics of hardware components, in this case the accelerometer,
the microphone and the speaker to create a fingerprint with-
out consent or knowledge of users. This is information about
the sensors and not the measurements collected with them:
for this reason, we characterize each of these as metadata.

Conclusions
In this paper, we have used Twitter as a case study to quan-
tify the uniqueness of the association between metadata and
user identity, devising techniques for user identification and
related obfuscation strategies. We have tested the perfor-
mance of three state-of-the-art machine learning algorithms,

Figure 13: F-score for increasing intermediate sample sizes.
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MLR, KNN and RF using a corpus of 5 million Twitter
users. KNN provides the best performance in terms of ac-
curacy for an increasing number of users and obfuscated
data. We demonstrated that through this algorithm, we are
able to identify 1 user in a group of 10,000 with approxi-
mately 96.7% accuracy. Moreover, if we broaden the scope
of our search and consider the best 10 candidates from a
group of 10,000 users, we achieve a 99.22% accuracy. We
also demonstrated that obfuscation strategies are ineffective:
after perturbing 60% of the training data, it is possible to
classify users with an accuracy greater than 95%.

We believe that this work will contribute to raising aware-
ness of the privacy risks associated to metadata. It is worth
underlining that, even if we focused on Twitter for the exper-
imental evaluation, the methods described in this work can
be applied to a vast class of platforms and systems that gen-
erate metadata with similar characteristics. This problem is
particularly relevant given the increasing number of organi-
zations that release open data with metadata associated to it
or the popularity of social platforms that offer APIs to access
their data, which is often accompanied by metadata.
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