UNIVERSITY OF CALIFORNIA

Santa Barbara

Stepping Up the Cybersecurity Game:

Protecting Online Services from Malicious Activity

A Dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Gianluca Stringhini

Committee in charge:
Professor Christopher Kruegel, Chair
Professor Giovanni Vigna

Professor Ben Y. Zhao

June 2014



The dissertation of Gianluca Stringhini is approved.

Professor Ben Y. Zhao

Professor Giovanni Vigna

Professor Christopher Kruegel, Chair

June 2014



Stepping Up the Cybersecurity Game:

Protecting Online Services from Malicious Activity

Copyright (©) 2014

by

Gianluca Stringhini

il



ACKNOWLEDGMENTS

Many people supported and helped me during this long journey called PhD.

I would like to thank my adviser Christopher Kruegel and Giovanni Vigna, for men-
toring me throughout my PhD. Their advice has been extremely important to teach me
what research is all about, and to overcome the many difficulties that I encountered dur-
ing my projects. I would also like to thank Ben Zhao and Dick Kemmerer for always
being there for me and providing me with great advice both in research and during
my job hunt. I am also thankful to Janet Kayfetz, who spent many hours helping me

improve my writing and presenting skills.

This work would have not been possible without my coauthors, both the ones at UCSB
and the ones far away. I would like to thank all of them for working together with
me, and for the fruitful conversations in real life or over the Internet. I would also like
to thank the folks at IBM Research, Symantec, and Yahoo! for their support, and for

showing me what research in the industry is like.

I am thankful to all the people that have been part of the Seclab during these years. It is
the best lab that one could wish for, and a great environment to work in. I will always
remember the long deadline nights, the CTF competitions, and all the conversations
that we had during my stay at UCSB. I have also been very fortunate to have great
friends (a.k.a. the Seclab extended family) who made these five years memorable. You

guys rock, thanks for all the adventures, the partying, and the good times.

v



Finally, I would like to thank my family, for always supporting and encouraging me

from far away.



EDUCATION

ACADEMIC
EXPERIENCE

VITA OF GIANLUCA STRINGHINI
June 2014

University of California, Santa Barbara
Ph.D., Computer Science

Santa Barbara, CA USA

September 2009 — June 2014

University of California, Santa Barbara
M.S., Computer Science

Santa Barbara, CA USA

September 2009 — January 2014

Universita degli Studi di Genova

Laurea Specialistica (M.S. Equivalent) in Computer Engineering
Genova, Italy

September 2006 — March 2009

Universita degli Studi di Genova

Laurea Triennale (B.S. Equivalent) in Computer Engineering
Genova, Italy

September 2003 — September 2006

University of California, Santa Barbara
Research Assistant, Computer Security Lab
Santa Barbara, CA USA

September 2009 — June 2014

Advised by Professor Christopher Kruegel

Vi



PROFESSIONAL
EXPERIENCE

Yahoo! Inc.

Research Contractor
Sunnyvale, CA USA
November 2013 — May 2014

e Developed novel techniques to detect large-scale malicious
activity on online services

Symantec Corp.

Research Intern

San Francisco, CA USA
February 2013 — May 2013

e Developed novel techniques to detect targeted email attacks

IBM T.J. Watson Research Center
Visiting Researcher

Yorktown Heights, NY USA
September 2012 — December 2012

e Developed techniques to detect targeted attacks against cor-
porate networks

vii



PUBLICATIONS

Detecting Spammers on Social Networks

Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna
In Proceedings of the 2010 Annual Computer Security Applica-
tion Conference (ACSAC), Austin, TX.

The Underground Economy of Spam: A Botmaster’s Per-
spective of Coordinating Large-Scale Spam Campaigns

Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini, and Gio-
vanni Vigna

In Proceedings of the 2011 USENIX Workshop on Large-Scale
Exploits and Emerging Threats (LEET), Boston, MA.

BotMagnifier: Locating Spambots on the Internet

Gianluca Stringhini, Thorsten Holz, Brett Stone-Gross, Christo-
pher Kruegel, and Giovanni Vigna

In Proceedings of the 2011 USENIX Security Symposium, San
Francisco, CA, 2011.

Hit ’em Where it Hurts: A Live Security Exercise on Cyber
Situational Awareness

Adam Doupe, Manuel Egele, Benjamin Caillat, Gianluca
Stringhini, Gorkem Yakin, Ali Zand, Ludovico Cavedon, and Gio-
vanni Vigna

In Proceedings of the 2011 Annual Computer Security Applica-
tions Conference (ACSAC), Orlando, FL.

B @bel: Leveraging Email Delivery for Spam Mitigation
Gianluca Stringhini, Manuel Egele, Apostolis Zarras, Thorsen
Holz, Christopher Kruegel, and Giovanni Vigna

In Proceedings of the 2012 USENIX Security Symposium, Belle-
vue, WA, 2012.

Poultry Markets: On the Underground Economy of Twitter
Followers

Gianluca Stringhini, Manuel Egele, Christopher Kruegel, and
Giovanni Vigna

In Proceedings of the 2012 SIGCOMM Workshop on Online So-
cial Networks (WOSN), Helsinki, Finland, 2012.

viii



PUBLICATIONS COMPA: Detecting Compromised Accounts on Social Net-

(CONTINUED)

works

Manuel Egele, Gianluca Stringhini, Christopher Kruegel, and
Giovanni Vigna

In Proceedings of the 2013 ISOC Network and Distributed Sys-
tems Symposium (NDSS), San Diego, CA.

Two Years of Short URLs Internet Measurement: Security
Threats and Countermeasures

Federico Maggi, Alessandro Frossi, Gianluca Stringhini, Brett
Stone-Gross, Christopher Kruegel, Giovanni Vigna, and Stefano
Zanero

In Proceedings of the 2013 International World Wide Web Con-
ference (WWW), Rio De Janeiro, Brazil.

Follow the Green: Growth and Dynamics in Twitter Follow-
ers Markets

Gianluca Stringhini, Gang Wang, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, Ben Y. Zhao, and Haitao Zheng

In Proceedings of the 2013 Internet Measurement Conference
(IMC), Barcelona, Spain.

Shady Paths: Leveraging Surfing Crowds to Detect Malicious
Web Pages

Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna
In Proceedings of the 2013 ACM Conference on Computer and
Communication Security (CCS), Berlin, Germany.

Stranger Danger: Exploring the Ecosystem of Ad-based URL
Shortening Services

Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M Zubair
Rafique, Wouter Joosen, Christopher Kruegel, Frank Piessens,
Giovanni Vigna, and Stefano Zanero

In Proceedings of the 2014 International World Wide Web Con-
ference (WWW), Seoul, Korea.

The Harvester, the Botmaster, and the Spammer: On the Re-
lations Between the Different Actors in the Spam Landscape
Gianluca Stringhini, Oliver Hohlfeld, Christopher Kruegel, and
Giovanni Vigna

In Proceedings of the 2014 ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Kyoto,

Japan. i



PUBLICATIONS The Tricks of the Trade: What Makes Spam Campaigns Suc-

(CONTINUED)

cessful?

Jane ledemska, Gianluca Stringhini, Richard Kemmerer, Christo-
pher Kruegel, and Giovanni Vigna

In Proceedings of the 2014 International Workshop on Cyber-
crime (IWCC), San Jose, CA.



ABSTRACT

Stepping Up the Cybersecurity Game:

Protecting Online Services from Malicious Activity

Gianluca Stringhini

The rise in popularity of online services such as social networks, web-based emails, and
blogs has made them a popular platform for attackers. Cybercriminals leverage such
services to spread spam, malware, and steal personal information from their victims. In
a typical cybercriminal operation, miscreants first infect their victims’ machines with
malicious software and have them join a botnet, which is a network of compromised
computers. In the second step, the infected machines are often leveraged to connect to

legitimate online services and perform malicious activities.

As a consequence, online services receive activity from both legitimate and malicious
users. However, while legitimate users use these services for the purposes they were
designed for, malicious parties exploit them for their illegal actions, which are often
linked to an economic gain. In this thesis, I show that the way in which malicious users

and legitimate ones interact with Internet services presents differences. I then develop

xi



mitigation techniques that leverage such differences to detect and block malicious par-

ties that misuse Internet services.

As examples of this research approach, I first study the problem of spamming botnets,
which are misused to send hundreds of millions of spam emails to mailservers spread
across the globe. I show that botmasters typically split a list of victim email addresses
among their bots, and that it is possible to identify bots belonging to the same botnet by
enumerating the mailservers that are contacted by IP addresses over time. I developed
a system, called BOTMAGNIFIER, which learns the set of mailservers contacted by the

bots belonging to a certain botnet, and finds more bots belonging to that same botnet.

I then study the problem of misused accounts on online social networks. I first look
at the problem of fake accounts that are set up by cybercriminals to spread malicious
content. I study the modus operandi of the cybercriminals controlling such accounts,
and I present a system to automatically flag a social network accounts as fake. I then
look at the problem of legitimate accounts getting compromised by miscreants, and I
present COMPA, a system that learns the typical habits of social network users and

considers messages that deviate from the learned behavior as possible compromises.

As alast example, I present EVILCOHORT, a system that detects communities of online
accounts that are accessed by the same botnet. EVILCOHORT works by clustering
together accounts that are accessed by a common set of IP addresses, and can work on
any online service that requires the use of accounts (social networks, web-based emails,

blogs, etc.).

xii



TABLE OF CONTENTS

I Introduction . . . . . . . . . . . ..
1.1 Anatomy of a Cybercriminal Operation. . . . . . ... ... ......
1.1.1 Infected Machines . . ... ... ... .. .. .........

1.1.2 Command and Control Infrastructure . . . . . . ... ... ...

1.1.3 Malicious Online Service Accounts . . . . .. ... ... ...

1.2 Dissertation OvVerview . . . . . . . . . . . . ..o
1.2.1 Detecting Misbehaving Hosts . . . . . . . ... .. ... ....

1.2.2  Detecting Misbehaving Accounts . . . . . ... ... ... ...

1.2.3  Studying the Relations Between Bots and Malicious Accounts .

1.3 Contributions . . . . . . . . . .. e

Related Work . . . . . . .

2.1 The Evolution of Botnets . . . . . . . . . . . . . . ... ... ....

2.1.1
2.1.2

The Evolution of Botnet Structures . . . . . . . . . . ... ...

The Evolution of the Botnet Infection Model . . . . . . . . ..

2.2 The Evolution of Mitigation Techniques . . . . . ... ... ... ...

221
222
223
224

Detecting Infections . . . . . . .. ... ... ... ...
Detecting Command and Control Activity . . . . . . . ... ..
Detecting Malicious Content . . . . . . .. .. ... ......

Detecting Malicious Online Service Accounts . . . . . . . . ..

Xiii



I Detecting Misbehaving Hosts 34

3 Locating Spambots on the Internet . . . . . . . ... ... ... ... ... 35
3.1 Introduction . . . . . . . .. ... 35
3.1.1 InputDatasets . . . . . . . . .. ... .. .. 38

3.1.2 Approach . . ... ... ... 38

32 InputDatasets . . . . . . .. . ... L 40
32.1 SeedPools . ... .. .. . ... 40

322 TransactionlLog . . . ... ... ... ... ... . ... ... . 44

3.3 Characterizing Bot Behavior . . . . . ... ... ... .00, 46
34 BotMagnification . . . . . ... ... L 48
3.4.1 Threshold Computation . . . . . .. ... ... ... ...... 49

3.5 Spam Attribution . . . . ... 53
3.5.1 Spambot Analysis Environment . . . . ... ... ....... 53

352 BotnetTags . . . . ... ... ... 55

3.5.3 BotnetClustering . . . . . . .. ... ... ... .. ..., 55

3.6 Evaluation . . . . . ... .. 59
3.6.1 Validation of the Approach . . . . . .. ... ... ... .... 60

3.6.2 Tracking Bot Populations . . . . .. ... ............ 63

3.6.3 Applicationof Results . . . . ... ... .. ... ....... 68

3.6.4 Universalityof & . . . ... ... ... ... ... ....... 73

377 Conclusions . . . . . . ... 76

X1V



II Detecting Misbehaving Accounts 77

4 Background: Online Social Networks . . . . . ... ... ... ....... 78
4.1 The Facebook Social Network . . . . ... ... ... ......... 80
4.2 The MySpace Social Network . . . . ... ... ... ... ...... 82
4.3 The Twitter Social Network . . . . . . ... ... ... ... ...... 82

5 Detecting Fake Online Social Network Accounts . . . . . . ... ... ... 84
5.1 Introduction . . . . . . . . . ... 84
52 DataCollection . . . . . .. . ... . 86

5.2.1 Honey-Profiles . .. ... ... .. ... ... ... ... ... 86
52.2 CollectionofData. . . . . ... ... ... ... ... ... 88
5.3 Analysisof Collected Data . . . . ... ... .. ............ 89
5.3.1 Identification of Spam Accounts . . . . .. ... ... ..... 92
5.32 SpamBotAnalysis . . ... ... ... ... .. 94
5.4 Spam Profile Detection . . . . . ... ... ... ... . .. 99
5.4.1 Spam Detection on Facebook . . . . . .. .. ... . ... ... 102
5.4.2 Spam Detection on Twitter . . . . . . . .. ... ... ..... 103
5.4.3 Identification of Spam Campaigns . . . .. ... ... ..... 106
5.5 Conclusions . . . . . . ... 110

6 Detecting Compromised Online Social Network Accounts . . . .. ... .. 111
6.1 Introduction . . . . . . . .. ... 111
6.2 Behavioral Profiles . . . .. ... .. .. ... ..o . 116

6.2.1 Modeling Message Characteristics . . . . . ... ... ... .. 118
6.3 Detecting Anomalous Messages . . . . . ... ... ... .. ..... 122

XV



6.3.1 Training and Evaluation of the Models . . . . . . .. ... ... 123

6.3.2 RobustnessoftheModels . . . . . ... ... ... ... .... 127
6.3.3 Novelty of the modelled features . . . . .. ... ... ..... 129
6.4 Grouping of Similar Messages . . . . . . .. ... .. ... ... ... 131
6.5 Compromised Account Detection . . . . . . .. ... .. ... ..... 135
6.6 Evaluation . . . . . .. .. .. 137
6.6.1 DataCollection . . . . .. ... ... ... ... .. ..., 138
6.6.2 Training the Classifier . . . .. ... ... ... .. ...... 140
6.6.3 Detectionon Twitter . . . . . .. ... ... ... .. ..... 143
6.6.4 Detection on Facebook . . . . ... .. ... ... ... .... 150
6.6.5 CaseStudies. . . . . . . . . ... 151
6.6.6 DetectingWorms . . . . . .. ... 154
6.7 Detecting High-profile Compromises . . . . . ... ... ........ 157
6.8 Limitations . . . . . . . ... e 161
6.9 Conclusions . . . . . . . . .. 162

III Detecting The Relations Between Malicious Hosts and On-

line Accounts 163
7 Detecting Malicious Account Communities on Online Services . . . . . . . . 164
7.1 Introduction . . . . . . . ... 164
7.2 Background: Analysis of Malicious Activity on a Webmail Service . . . 168
7.3 EVILCOHORT: OVerview . . . . . . . . . o o v v v i vt e i e 174
7.3.1 DataCollection . . . . . ... .. ... 175

7.3.2 Building the Graph Representation . . . . . ... ... ... .. 175

Xvi



7.3.3 Finding Communities . . . . . . . ... ... ... ....... 177

7.3.4 Postprocessing Step . . . . . ... .o 178

7.4 Description of the Datasets . . . . . ... ... ............. 182
7.4.1 Webmail Activity Dataset . . . . . . ... ... ... ... ... 182

7.4.2  Online Social Network Login Dataset . . . . . ... ... ... 183

7.5 Evaluation . . . . . ... oL 184
7.5.1 Threshold Selection . . . . . ... ... ... ... ....... 185

7.52 Detectioninthe Wild . . . . . .. ... 0oL 189

7.53 ResultAnalysis . . .. ... ... ... .. . ... 193

7.6 Discussion . . . . . ... e e e 199
7.7 Conclusions . . . . . . ... 201

8 Conclusions and Future Work . . . . . .. . ... ... . 0oL 204
Bibliography . . . . . . .. 207

xXvii



3.1
3.2

33
34

3.5
3.6
3.7

3.8

5.1
5.2
53
54
55

6.1

LIST OF FIGURES

Overview of BOTMAGNIFIER. . . . . . . ... ... ... ....... 39
Quality of magnification for varying k using ten Cutwail campaigns of

differentsizes. . . . . . . . . ... 51
Growth of Lethic IP addresses. . . . . . . ... ... .. ... ..... 66
Growth of the dynamic and static IP address populations for the two

majorbotnets. . . . . ... ... e 67
Cumulative Distribution Function (CDF) for the dynamic IP addresses. . 68
Cumulative Distribution Function (CDF) for the static IP addresses. . . 69
Analysis of our function for £ compared to the optimal value of % for

600 campaigns. . . . . . ... .o e e e 74

Precision vs. Recall functions for five campaigns observed in the net-

flowdataset. . . . . . . ... 75
Friend requests received by our honey-profiles on Facebook. . . . . . . 90
Messages observed by our honey-profiles on Facebook. . . . . . . . .. 91
Users starting following our honey-profiles on Twitter. . . . . .. . .. 94
Messages received by our honey-profiles on Twitter. . . . . . . . . . .. 95
Activity of campaigns overtime. . . . . . .. ... ... ... .. ... 106

Features evolving with different sizes of training sets. Each experiment
was conducted 25 times on random subsets of 25%, 50%, 70%, 90%,
and 99% of the 5,236 labeled training instances. The fraction of positive

to negative samples remained constant. . . . . . . . ... ... .. ... 142

xXviii



6.2

7.1

7.2

7.3

7.4

7.5

7.6

Probability of false positives depending on the amount of historical data

on TwWitter. . . . . . . . . .

Average time (in days) before a spamming account was suspended in
L, given the number of IP addresses accessing that account. Accounts
accessed by many IP addresses can be stealthier in their operation and
survive longer. The plot shows bumps when we reach accounts ac-

cessed by a very high number of accounts, because these accounts are

VEIY TarC. . . . . . . . o o o e e e e e e e e e e e e e e e e e e

Number of spam emails sent per day on average by accounts accessed
by a certain number of IP addresses. Accounts accessed by more [P

addresses are generally able to send more emails from their malicious

ACCOUNLS. . . . . . o o e e e e e e e e e e e e e e e e e e e e

Number of spam emails sent per IP address that accessed a certain ac-
count. If many IP addresses access the same account, each of them can

send a small number of emails and help keeping the malicious accounts

under the radar from the webmail provider. . . . . . . .. ... ... ..

Cumulative Distribution Function (CDF) of the number of IP addresses
that accessed benign accounts in T and malicious accounts in L. As

it can be seen, malicious accounts are more likely to be accessed by

multiple IP addresses than legitimate ones. . . . . . . . . .. ... ...

Overview of EVILCOHORT. The darker circles represent IP addresses,

while the lighter circles represent online accounts. . . . . . . ... ...

Number of malicious accounts detected per day by EVILCOHORT on

thedatasetDy. . . . . . . . . ..o

XiX



7.7 Number of malicious communities of accounts detected per day by
EviILCOHORT onthedatasetDy. . . . . . .. ... ... ........ 190
7.8 Correlation between user agents and IPs: legitimate accounts (left) and
malicious accounts (right). . . . . .. ... ... ... . L. 194
7.9 Time series plotting login event over time: all accounts (leftmost), legit-
imate accounts behind a NAT (middle left) and malicious communities
(middle right and rightmost). . . . . . .. .. ... ... ... .. 198
7.10 Activity of legitimate users behind a NAT: IP address usage (left) and
account usage (right). . . . . . . .. ... .. L L 202
7.11 Activity of non malicious community: IP address usage (left) and ac-
countusage (right). . . . . . .. ... ... ... 202
7.12 Activity of malicious communities: IP address usage (left) and accounts

usage (right). . . . . . ... e 203

XX



3.1

5.1

52
53

6.1
6.2

6.3

7.1
7.2

7.3

7.4

LIST OF TABLES

Overview of the BOTMAGNIFIER results. . . . . . . . . .. ... ... 64

Friend requests received by our honey-profiles on the various social
networks. . ... .. 90
Messages received by our honey-profiles on the various social networks. 91

Spam campaigns observed. . . . . . . ... Lo 107

Comparison of the features used by previouswork. . . . . . . ... .. ... 132
Evaluation Results for the Text (Twitter and Facebook) and URL (Twitter)
Similarity measure. . . . . . . . . . ... e e e e 144
Behavioral profile violations of news agency Twitter accounts within

most recent S00 tweets. . . . . . . . ... 158

Statistics of activity events on our online social network login dataset. . 183
Summary of the results reported by EVILCOHORT for different values
of thethresholds. . . . . .. ... ... ... ... ... . ... 185
Number of malicious communities detected per day by EVILCOHORT
onthedatasetDy. . . . . . . . L 191
Size of the malicious communities detected by EVILCOHORT on the
dataset D,. Numbers (Average, Median and Maximum) are expressed

Per COMMUNItY. . . . . . . . . .. e e 191

xxi



7.5 Correlating malicious communities based on the User-Agent. Com -
Number of Communities, Acc - Number of Accounts, log(c) - Average

correlation, UA Sim - User-Agent Similarity, UA string - User-Agent

xxii



Chapter 1

Introduction

Cybercrime is a serious threat for Internet users. Miscreants infect their victim comput-
ers and control them to perform malicious activities, such as sending email spam [125],
stealing their victims’ personal information [123], performing denial of service at-
tacks [59], or mining digital currencies [71]. Cybercrime operations are a successful

business, generating important revenues for attackers [77, 78].

To perform malicious activity on online services, such as online social networks, web-
based email services, and blog platforms, cybercriminals need access to three elements:
infected machines, a command and control infrastructure, and online accounts. Cyber-
criminals can either infect computers themselves to take control of them [108, 125], or
can purchase already-compromised machines on the black market [38]. After taking
control of a number of compromised machines, the attacker instructs them to connect

to a server under his control — the infected machine becomes a bot and joins a botnet,



CHAPTER 1. INTRODUCTION

which is a network of compromised computers controlled by the same cybercriminal
through a command and control (C&C) server [51]. A cybercriminal controlling a
botnet is typically referred to as a botmaster. The C&C server is then used by the cy-
bercriminal to issue commands to his bots. A common action performed by botmasters
1s to instruct their bots to connect to accounts under their control on online services,
and perform malicious activity such as spreading spam, malware, or crawling sensitive
information. These accounts can be fake ones, created specifically for malicious pur-
poses [138] or legitimate accounts that have been compromised and are now under the

cybercriminal’s control [63].

Leveraging existing services to spread malicious content provides three advantages to
the cybercriminal. First, it is easy to reach many victims, since popular online services
have many millions of users that are well connected. Consider traditional email spam
operations, where miscreants have to harvest a large number of victim email addresses
(on the web or from infected hosts) before they can start to send spam [128]. On
social networks, cybercriminals can easily find and contact their victims or leverage the
existing friends of legitimate accounts that they compromised [63]. In some cases, such
as blog and forum spam, cybercriminals do not even have to collect a list of victims,
because their malicious content will be shown to anybody who is visiting the web page
on which the spam comment is posted [101, 139]. A second advantage of using online
services to spread malicious content is that while users have become aware of the threats
associated with email, they are not as familiar with scams and spam that spreads through
more recent channels (such as social networks) [75, 35]. The third advantage is that
while online services have good defenses against threats coming from the outside, they

have a much harder time in detecting misuse that originates from accounts within the



CHAPTER 1. INTRODUCTION

service itself [136].

In this dissertation I present my contribution to fighting cybercriminal operations. My
work follows a data-driven approach to detect and block malicious activity on online
services. In my research, I observe the way in which infected machines interact with
legitimate online services, compared to regular users. Such interactions will show dif-
ferences, because malicious and legitimate users use online services for very different
purposes: while miscreants want to make a profit from interacting with legitimate ser-
vices, and therefore aim at performing as much malicious activity as they can, regular
users stick to a fair use of the online service, using it in the way the service was de-

signed.

After identifying differences in the interaction behavior that clearly distinguish mali-
cious and legitimate activity, I design systems that leverage them to detect and block
this malicious activity. As examples of this research approach, I present four projects

that fight different types of malicious activity on online services:

e BOTMAGNIFIER, a system that learns the email-sending behavior of the spam-
ming bots belonging to a botnet, and is able to find more bots belonging to the

same botnet in the wild.

e SPAMDETECTOR, a system that learns the typical modus operandi of miscre-
ants that leverage fake accounts on social networks, and is able to detect such

accounts.

e COMPA, a system that is able to detect whether an online social network account

has been compromised and is now misused by a cybercriminal.



CHAPTER 1. INTRODUCTION

e EVILCOHORT, a system that studies the relations between infected computers
and online accounts, and is able to detect communities of accounts on an online

service that are accessed by the same botnet.

In the following, I first describe the elements and the characteristics of a typical cyber-
criminal operation. Then, I provide an overview of this dissertation work in fighting

them. Finally, I present the contributions of this thesis.

1.1 Anatomy of a Cybercriminal Operation

As I mentioned, a cybercriminal operation is typically composed of three parts: a set of
infected machines, a command and control infrastructure that allows the cybercriminal
to give orders to his bots, and a set of online accounts, which are used by the bots
to connect to online services and perform malicious activity, such as spreading spam.
Although online accounts are not required in all cases, they are usually needed if the
infected machine is required to access restricted information on the service, or post
content. In the following, I describe the three elements needed by cybercriminals to run
their operations, and illustrate the options that they have for each of these elements, as

well as the challenges and drawbacks associated to them.



CHAPTER 1. INTRODUCTION

1.1.1 Infected Machines

Ideally, a cybercriminal would want access to as many infected machines as possible.
The first infections that happened on the Internet belonged to the class of worms [80].
In this type of threat, machines would get infected by having a vulnerability in a soft-
ware component compromised. After the machine becomes infected, it would scan
the network for other vulnerable machines, and try to exploit them. Worm infections
are characterized by the fact that they are spreading autonomously, and often time this
spread got out of control. In 1988, the first worm ever developed resulted in generat-
ing so much traffic that the Internet backbone had to be restarted [80]. This particular
threat, known as the “Morris worm,” did not aim to turn a profit or generate any ma-
licious activity other than spreading, and was designed to show the feasibility of an
Internet-wide infection. More recent threats, which had large denial of service attacks
against webservers as a goal, spread out of control too and were detected before they

could reach their goal [156].

Not only worm activity tends to be very obvious and easy to detect, but recent research
showed that a botnet can effectively manage only a certain number of bots, before the
command and control channel gets saturated [73] — a botnet composed of two many
bots results in having a part of them remaining idle. Due to these practical issues — the
lack of stealthiness and the uselessness of having more infected machines than needed
— cybercriminals stopped using the worm-like spread to collect populations of infected

computers; the last popular worm was Conficker, which dates back to 2008 [118].

The methods of collecting infected machines that were developed more recently do not



CHAPTER 1. INTRODUCTION

involve self-spreading infections. Instead, malware is installed by having users click
on a malicious attachment in spam emails [125] or by having the user visit a malicious
web page, which would try to exploit vulnerability in the user’s browser and install a
malicious program without the user noticing [108]. A third type of distribution involves
having the user visit a scam web page that convinces her to install a malware program,

disguised as a useful tool (such as an antivirus program) [122].

Nowadays, an entire economy emerged that is specialized in providing infected com-
puters to cybercriminals. Miscreants set up their own botnet, which is able to install
a malware of of their customers’ choice on demand [38]. The infections used by such
botnets are usually very resilient and difficult to eradicate — for example the mali-
cious program could reside in the master boot record (MBR) of a hard drive and patch
the operating system kernel at each reboot to remain undetected [124]. The sophisti-
cation of this market has evolved to the point that customers can specify the type of
infected machines that they want to buy, in terms of operating system, configuration,
and geographic location. Bots located in developed countries (e.g., the United States
or the United Kingdom) are more expensive than bots located in other countries [38].
This might be linked to the fact that such machines are more valuable for particular cy-
bercriminal schemes, such as stealing banking information. However, recent research
showed that for traditional cybercriminal activity, such as sending spam, there is no

advantage for a miscreant to buy bots in expensive countries [73].

Computer infections are a real problem in nowadays Internet. A recent report by
Symantec shows that in 2013 the company detected 2.3 billion infected machines [135].

In Chapter 2.2 we provide an overview of the techniques that have been proposed to



CHAPTER 1. INTRODUCTION

detect and clean up infected computers, while in Chapter 3 we present a novel system

to detect infected computers that are used to spread email spam.

1.1.2 Command and Control Infrastructure

After a cybercriminal has collected a number of infected computers, he instructs them
to connect to a command and control (C&C) infrastructure under his control. This in-

frastructure can be a single server [125], or a multitude of communicating servers [44].

Botnets that take advantage of a single server can either leverage a well-known proto-
col, such as IRC [25], or a proprietary, encrypted protocol [125]. Using a proprietary
protocol makes it more difficult for researchers to intercept the commands issued by the
botmaster, but the fact that the operation uses only one C&C server constitutes a single
point of failure, and security researchers can take down the entire botnet by seizing this
server. To be more resilient, other botnets use multiple C&C servers. In particular, a
multi-tier model is commonly used: a unique C&C server is hidden through multiple
layers of servers whose only purpose is relaying connections between the bots and the
upper levels of the C&C infrastructure [44]. The purpose of the relay servers is to hide
the actual mothership, which is the server from which the botmaster issues commands,
and make takedowns difficult: as long as a majority of relays and the mothership are

still available, the botnet remains operational.

Some botnets obfuscate their infrastructure even more, by using a peer-to-peer scheme.
In this model, the bots themselves act as relays between the infected machines and

the upper C&C infrastructure [102]. Although these schemes make it more difficult



CHAPTER 1. INTRODUCTION

for researchers to identify the C&C servers, this type of infrastructure has the problem
that a good fraction of the command and control traffic passes through the infected
machines. Researchers can then pretend to be bots and infiltrate the botnet, obtaining

important insights on the entire cybercriminal operation [44, 102, 121].

Another technique that cybercriminals can use to obfuscate their operations is modify-
ing the IP address that corresponds to a certain domain often, with a technique called
fast flux [69]. In this model, a set of relay servers is associated to the same DNS domain
in quick sequence, one at a time. The infected machines contacting the C&C infrastruc-
ture do that by issuing DNS queries to the domain, and therefore the botnet can work
regardless the relay that is active at the moment. As long as one of the relays associated
to the domain is active, the operation keeps being alive, and the bots are able to receive

their orders.

A more recent technique that makes the detection of C&C infrastructures even more
difficult is dynamically changing the DNS domain to access the infrastructure over
time. By leveraging a time-dependent algorithm, known as domain generation algo-
rithm (DGA), the bots can dynamically generate the domain that is active at a certain

point in time, and connect to the C&C infrastructure [28].

In Chapter 2.2 we discuss the different efforts conducted by the research community to
disrupt C&C infrastructures. As we mentioned previously, in this dissertation we focus
on developing mitigation systems based on the way in which infected machines inter-
act with legitimate, online services. Since C&C infrastructures are entirely composed
of servers controlled by cybercriminals, studying them goes beyond the scope of this

thesis.



CHAPTER 1. INTRODUCTION

1.1.3 Malicious Online Service Accounts

To interact with many online services, such as online social networks and web-based
email services, cybercriminals need access to accounts on such services. These ac-
counts can be used to spread malicious content on the service, such as spam and links
pointing to malware [63], or to connect to the service and crawl sensitive information,
such as user profile data [74]. The accounts that cybercriminals can take advantage of
to spread malicious content can be fake accounts, which have been specifically created
for that purpose, or compromised accounts, which belong to legitimate users but have

been taken over by the cybercriminal.

To obtain fake accounts on an online service, miscreants can either create them them-
selves, pay workers on crowdsourcing platforms to create a number of them [145], or
purchase a bulk of already-created ones on the black market [138]. These accounts can
then be used to spread malicious content on the online service. A problem with fake
accounts is that many online services, such as social networks, require users to build a
network of contacts to share content. A fake account is problematic in this regard, since
real users are less likely to accept contact requests from people they do not know [35].
Also, trying to establish a large number of social connections in a short period of time
is suspicious, and can lead to the fake account being detected and deleted by the online
service [150]. In the case of online social networks, an alternative that cybercrimi-
nals can attempt to quickly acquire contacts is purchasing friends or followers online:
there are many services that promise to provide a large number of contacts to their
customers [127, 132]. Often times, these contacts come from legitimate accounts that

have been compromised. In Chapter 5 we will present SPAMDETECTOR, our solution



CHAPTER 1. INTRODUCTION

to detect fake accounts misused by cybercriminals on online social networks.

As an alternative to fake accounts, cybercriminals can leverage legitimate online ac-
counts that have been compromised. A compromised account offers multiple advan-
tages for cybercriminals compared to a fake one. First of all, a legitimate account
already has an established network of trust, and therefore the cybercriminal does not
need to create one. In addition, the friends of the compromised account’s legitimate
owner are likely to trust her, and therefore it is more likely for them to click on the
links that the account posts [75]. As an additional advantage, from the social network
perspective dealing with compromised accounts is more difficult than dealing with fake
accounts: while a fake account can just be suspended with no consequences, a com-
promised account needs special handling, such as resetting the account password and

informing the account’s legitimate owner about what happened.

Compromised accounts can be stolen by having their owners give away credentials
through a phishing scam [22], by luring users into authorizing a rogue application to
use the accounts through social engineering [132], or by leveraging a vulnerability in
the web application that powers the online service (for example, an XSS vulnerabil-
ity) [143]; in this case, the user automatically posts some content of the attacker’s
choice by displaying the malicious content in her web browser. Due to the automatic
exploitation of such vulnerabilities, the messages generated by an XSS vulnerability
tend to spread in an uncontrollable fashion (similar to the typical worm behavior that
we discussed in Chapter 1.1.1) [41]. In chapter 6 we present COMPA, the first system
to detect legitimate online social network accounts that have been compromised. This

work represents the first step in ensuring that messages that spread on online social

10



CHAPTER 1. INTRODUCTION

networks are really authored by who they claim to come from.

1.2 Dissertation Overview

This dissertation collects the contributions of four papers: “BOTMAGNIFIER: Locating
Spambots on the Internet” [129] (USENIX Security 2011), “Detecting Spammers on
Social Networks” [130] (ACSAC 2010), “COMPA: Detecting Compromised Accounts
on Social Networks” [57] (NDSS 2013), and “EVILCOHORT: Detecting Communities
of Malicious Accounts on Online Services” (under submission). These systems detect
and block various types of malicious activity aimed at online services, at three different
levels: they either look at infected hosts, at accounts that are misused by cybercriminals,
or at the relation between infected hosts and malicious accounts. In the following, I

illustrate a summary of the aforementioned systems.

1.2.1 Detecting Misbehaving Hosts

One way of disrupting cybercriminal operations is developing techniques to detect and
block the infected machines that form botnets. A common task that cybercriminals use
botnets for is sending spam emails to their victims. Typically, a botmaster sets up a
botnet by infecting victim computers, and rents it out to spammer groups to carry out
spam campaigns, in which similar email messages are sent to a large group of Internet
users in a short amount of time. Tracking the bot-infected hosts that participate in spam

campaigns, and attributing these hosts to spam botnets that are active on the Internet, are

11



CHAPTER 1. INTRODUCTION

challenging but important tasks. In particular, this information can improve blacklist-

based spam defenses and guide botnet mitigation efforts.

In Chapter 3 I present a novel technique to support the identification and tracking of
bots that send spam. Our technique takes as input an initial set of IP addresses that are
known to be associated with spam bots, and learns their spamming behavior. This initial
set is then “magnified” by analyzing large-scale email delivery logs to identify other
hosts on the Internet whose behavior is similar to the behavior previously modeled. We
implemented our technique in a tool, called BOTM AGNIFIER, and applied it to several
data streams related to the delivery of email traffic. Our results show that it is possible
to identify and track a substantial number of spam bots by using our magnification
technique — Over a period of four months, we were able to grow the set of known bots
belonging to well-known botnets by 925,978 IP addresses, which accounts for 45.6%
of the total. We also tracked the evolution and activity of such spamming botnets over
time. Moreover, we show that our results can help to improve state-of-the-art spam

blacklists.

1.2.2 Detecting Misbehaving Accounts

An orthogonal way of disrupting threats against online services is detecting and block-
ing the accounts that are misused by cybercriminals. In this dissertation I present
two systems that detect malicious accounts on online social networks: the first one,
SPAMDETECTOR, detects accounts that are specifically created to spread spam on the

network. The second one, COMPA, detects legitimate accounts that have been taken

12



CHAPTER 1. INTRODUCTION

over by a cybercriminal and that are used to spread malicious content.

Detecting fake social network accounts. Social networking has become a popular
way for users to meet and interact online. Users spend a significant amount of time
on popular social network platforms, storing and sharing a wealth of personal infor-
mation. This information, as well as the possibility of contacting thousands of users,
also attracts the interest of cybercriminals. In particular, as we mentioned earlier in
this chapter, cybercriminals take advantage of fake accounts to disseminate malicious

content on social networks.

In Chapter 5, we first analyze to which extent spam has entered social networks. More
precisely, we analyze how spammers who target social networking sites operate. To
collect the data about spamming activity, we created a large and diverse set of “honey-
profiles” on three large social networking sites (Facebook, Twitter, and MySpace), and
logged the kind of contacts and messages that they received. We then analyze the col-
lected data and model the anomalous behavior of the fake accounts contacted our pro-
files. We developed a system, called SPAMDETECTOR, which detects fake accounts
that are misused by cybercriminals to spread malicious content on social networks
based on the typical behavior showed by these accounts. SPAMDETECTOR was one

of the first systems that were presented to detect fake accounts on social networks.

We then aggregate the messages sent by the detected accounts in large spam campaigns.
Our results show that it is possible to automatically identify the accounts used by spam-
mers, and our analysis was used for take-down efforts in a real-world social network.
More precisely, during this study, we collaborated with Twitter and correctly detected

and deleted 15,857 spam profiles.

13



CHAPTER 1. INTRODUCTION

I present SPAMDETECTOR in detail, alongside with our results, in Chapter 5.

Detecting compromised social network accounts. As the results that we obtained
with SPAMDETECTOR show, fake accounts typically exhibit highly anomalous behav-
ior, and hence, are relatively easy to detect. As a response, attackers have started to
compromise and abuse legitimate accounts. Compromising legitimate accounts is very
effective, as attackers can leverage the trust relationships that the account owners have
established in the past. Moreover, compromised accounts are more difficult to clean up

because a social network provider cannot simply delete the corresponding profiles.

In Chapter 6 of this dissertation, we present the first approach to detect compromised
user accounts in social networks, and we apply it to two popular social networking
sites, Twitter and Facebook. Our approach uses a composition of statistical modeling
and anomaly detection to identify accounts that experience a sudden change in behavior.
Since behavior changes can also be due to benign reasons (e.g., a user could switch her
preferred client application or post updates at an unusual time), it is necessary to derive
a way to distinguish between malicious and legitimate changes. To this end, we look
for groups of accounts that all experience similar changes within a short period of time,
assuming that these changes are the result of a large-scale malicious campaign that is
unfolding. We developed a tool, called COMPA, that implements our approach, and
we ran it on a large-scale dataset of more than 1.4 billion publicly-available Twitter
messages, as well as on a dataset of 106 million Facebook messages. COMPA was
able to identify compromised accounts on both social networks with high precision. In
particular, over a period of three months, COMPA was able to detect more than 300,000

compromised accounts on Twitter. We worked closely with the Twitter security team

14



CHAPTER 1. INTRODUCTION

to make sure that these accounts were cleaned up. In addition, we show that COMPA
would have helped in detecting two high-profile compromises against news agency

accounts that happened on Twitter in 2011 and in 2013.

I present COMPA in detail in Chapter 6.

1.2.3 Studying the Relations Between Bots and Malicious Accounts

So far, I have presented techniques that either focus on detecting malicious hosts or
malicious accounts on online services. In Chapter 7 I present the first system that
detects malicious accounts on online services by studying the relations between the
accounts controlled by a cybercriminal and the botnet (i.e., the set of IP addresses) that

accesses them.

We first study the accounts that were used to send spam on a large web-based email
service, and show that accounts that are accessed by botnets are particularly dangerous
because of the amount of malicious activity that they can carry out and their ability to
survive for long periods of time. Since botnets are composed by a finite number of
infected computers, we observe that cybercriminals tend to have their bots connect to
multiple online accounts to perform malicious activity. We present EVILCOHORT, a
system that detects online accounts that are accessed by the same botnet. We evaluated
EVILCOHORT on multiple online services: first, we ran it on a dataset collected on a
large web-based email service, and were able to detect 1.2 million malicious accounts
over a period of five months. We also ran the system on a dataset collected on multiple

social networks, and were able to detect 111,647 malicious accounts over a period of 8

15



CHAPTER 1. INTRODUCTION

days.

Our results show that EVILCOHORT can reliably detect malicious accounts that are
accessed by botnets. In addition, EVILCOHORT opens exciting scenarios in the area
of malicious account detection: unlike previous systems that can detect malicious ac-
counts only once they send malicious content or interact with the online service (for
example by sending a friend request to a victim), our system only looks at the set of IP
addresses that access a set of accounts. Therefore, EVILCOHORT can detect accounts
that, although controlled by cybercriminals, do not perform any ‘“clearly” malicious
activity on the online service. An example are botnets that use the online service as
command and control channel, and retrieve commands from the network without post-

ing anything.

In Chapter 7 I provide a detailed description of EVILCOHORT, and I show detailed

statistics on the communities of malicious accounts that we detected.

1.3 Contributions

In summary, this dissertation makes the following contributions:

e [ present a system to increase the knowledge on the set of bots belonging to a bot-
net. This system can be used to track the population of large botnets, and record
important events in the botnet’s lifetime (such as a takedown, or a botnet becom-
ing active again after a period of inactivity). In addition, our system is a useful aid

to improve DNS blacklists, which are known to have coverage problems [109].

16



CHAPTER 1. INTRODUCTION

o [ present one of the first systems to detect and block fake accounts that are mis-
used by cybercriminals on online social networks. The system reaches very high
precision, and is a helpful tool for social network operators to keep their networks

safe.

o [ present the first system able to detect that an online social network account has
been compromised. In addition to detecting large-scale compromises, in which
thousands of accounts are involved and misused by botnets, this system would
have been helpful in preventing two high-profile social network accounts belong-

ing to news agencies from being compromised and post unwanted content.

e [ present an analysis of the relation between the set of IP addresses accessing an
online account and its maliciousness. I show that accounts that are accessed by
botnets are particularly dangerous for the online service, and present a system to

detect and block such accounts.

17



Chapter 2

Related Work

Cybercriminals and security researchers are involved in an arms race. Every time a
new mitigation technique is deployed, a more advanced attack or botnet scheme is
developed. In this chapter, I first analyze the evolution that botnets followed over the
years. Then, I describe the detection and mitigation systems that have been developed

by the security community to fight the threat of cybercriminal operations.

2.1 The Evolution of Botnets

Since they first became a threat, in the mid-2000s, botnets evolved considerably, to
keep up with the security research being conducted to disrupt them and make sure their
operation could continue. This evolution happened in two aspects: the structure of the

botnets and the way they propagate their infections to acquire new victims.

18



CHAPTER 2. RELATED WORK

2.1.1 The Evolution of Botnet Structures

IRC botnets. The first botnets borrowed characteristics from Internet Relay Chat (IRC)
bots. After being infected, a bot would connect to an IRC server, join a specific channel,
and wait for orders [25, 54, 55]. These botnets did not use a lot of sophistication to
hide their actions. They usually used a password to protect the IRC channel where the
botmaster would give the orders, but both the server name and the password would be
in clear in the malicious binary. Therefore, researchers could retrieve this information
and join the channel to learn important information about the botnet. As an alternative,
researchers could sinkhole the DNS traffic asking for the malicious domains, so that
the infected machines would connect to them instead of going to the Command and
Control (C&C) server [25]. Another weakness of this model is that the C&C traffic

used the IRC protocol, which is easy to detect and monitor.

Proprietary botnets. To avoid using known protocols and make their activity less
evident, botmasters started using proprietary, encrypted protocols for their C&C traf-
fic [125]. This makes botnet infiltration more difficult, but researchers can still reverse
engineer the protocol, create software that implements it, and join the botnet. In addi-

tion, since the infrastructure still uses a single domain, sinkholing remains possible.

Multiple tier botnets. To make their infrastructure more resilient to attacks, botmasters
started developing multiple-tier botnets [123]. In this architecture, instead of contacting
the C&C server directly, the bots contact one of many proxies, which then forward
their request to the C&C server. By doing this cybercriminals make sure that, even

if researchers took control of a limited number of proxies, the botnet would still be

19



CHAPTER 2. RELATED WORK

operational.

In addition, botmasters developed a new technique that gives them even more reliabil-
ity on their C&C infrastructure: fast flux [69, 103]. This technique is similar to the
ones involved in Round Robin DNS and the ones used by Content Delivery Networks,
and its goal is to assign a fast-changing number of IP addresses to the domains used
by the botnet C&C infrastructure. By doing this, the botmaster ensures that even if
a very small number of proxies would survive a takedown, the botnet would still be

operational.

Even if the C&C infrastructure in this scheme uses multiple domains, it is still possible

for researchers to sinkhole or blacklist them.

Domain Generation Algorithms. To mitigate the disadvantages of having a limited
number of domains for the C&C infrastructure, cybercriminals developed algorithms
that allow both the bots and the C&C to generate domains on the fly. These algorithms,
called Domain Generation Algorithms (DGAs), are typically time-sensitive, and, at
any point in time, tell bots at which domain they can find the C&C server (or one of the
proxies associated to it) [123]. The botmaster has to register the domains that will be
used in the future, and make sure his infrastructure will respond to the bots at the right

time.

Of course, researchers could reverse engineer the domain generation algorithm, and
register the domains before the botmaster does. A countermeasure to this is making the
DGA non-deterministic, for example by using information taken from social network

trending topics. This way it is impossible to predict the DGA domains long time before

20



CHAPTER 2. RELATED WORK

they become active.

Peer-to-peer botnets. Another evolution is to make the botnet peer-to-peer [85, 121].
In this architecture, another level of relayers is deployed between the bots and the prox-
ies. Typically, those bots that do not have a public IP address (i.e., are behind a NAT)
act as regular bots, while those that have a public IP address act as relayer bots. Regular
bots find the nearest relayer by implementing some sort of Overnet protocol, which is
typical of peer-to-peer networks (e.g., Kademlia [96]). A problem of this approach is
that the botmaster gives up the control on a critical part of his infrastructure (i.e., the
relayers) to infected machines. Researchers could reverse engineer the C&C protocol
and infiltrate the botnet by pretending to be a relayer. This would allow them to collect
a wealth of information about the botnet, for example enumerate the bots, or collect the

spam templates that are delivered to the infected machines.

2.1.2 The Evolution of the Botnet Infection Model

Not only the botnet structure changed over time, but also the infection model that bot-
masters use to gain control of more machines evolved. At the beginning, bots were
behaving like Internet worms [65]. This means that an infected machine would scan
for more vulnerable hosts in her network, and try to propagate. This approach be-
came less and less used over time, with Conficker being the last large botnet using it
in 2008 [106]. The next step has been to use bots that did not propagate on their own

anymore. In this phase, the main channels of infection were two:

e Sending malicious binaries through spam emails, and luring victims into clicking

21



CHAPTER 2. RELATED WORK

on them [125].

e Setting up malicious web pages that tried to exploit vulnerabilities in the victim’s
browser and to download and install a malicious binary (a so-called drive-by

download attack [108]).

Nowadays, the trend botmasters follow to deploy their bots is to use third party services.
These services typically use pre-existing botnets to download additional components

(i.e., bots) on the infected machines for a fee [38].

2.2 The Evolution of Mitigation Techniques

To disrupt a botnet that misuses a legitimate online service, researchers can intervene
at different levels: mitigation systems can focus on detecting infected machines, on
detecting malicious C&C infrastructures, on detecting malicious content (e.g., email
spam), or on detecting malicious online service accounts. In the following, I analyze

the efforts performed by the research community in each of these four fields.

2.2.1 Detecting Infections

One way of fighting large-scale cybercriminal operations is detecting infected comput-
ers before they can cause any harm. In this section I discuss the research that has been

conducted to achieve this goal.
Host based detection. A vantage point that researchers can leverage is the victim

22



CHAPTER 2. RELATED WORK

host. By looking at the binaries that get installed, one can try to infer whether they are
malicious or not. Traditional anti-viruses build signatures (e.g., regular expressions)
from known malware, and look for the presence of those signatures in the binaries the
user downloads [24]. This technique is not very robust, and previous work showed how
the detection can be fooled by simple obfuscations such as inserting NOP instructions

and performing code transpositions [46, 47].

Remaining in the field of static analysis, a better approach is to extract semantic infor-
mation from known malware samples, and look for the same semantics in new samples
while performing detection [48, 47]. The issue here is that program equivalence is an
undecidable problem. Therefore, even if the proposed systems can cover a number of
variations that model the same behavior, it is not guaranteed that this will work for
any possible sample. In addition, modern malware comes packed (i.e., encrypted) and

decrypts itself at runtime, and this makes static analysis difficult.

Dynamic analysis makes malware analysis easier, because one can look at the program
once the decryption has happened. The techniques that have been proposed include
modelling the behavior of a program based on the system calls it executes [82], moni-
toring programs accessing sensitive information while they should not [153], or look-
ing at the buffers allocated by a malware sample to reconstruct the C&C protocol it
uses [39]. The problem of dynamic analysis is that running large amounts of malware
samples takes time and resources, and cybercriminals can realize that the malware is

being run in an analysis environment, and avoid performing any malicious activity [91].

Malicious web pages detection. Another approach used by researchers is looking at

malicious web pages that try to compromise the victims browser and automatically

23



CHAPTER 2. RELATED WORK

download a piece of malware (in a so-called drive-by download attack [108]). These
attacks are typically performed by malicious JavaScript scripts. To detect such scripts,

various approaches have been used:

e Using machine learning to detect legitimate and malicious web pages. The fea-
tures that researchers leveraged include how many HTTP redirections the web
page uses, or whether the JavaScript code included in the web page is obfus-
cated. Detection can be performed either offline, by re-visiting the page with an
instrumented browser [52], or online, by instrumenting the victim’s browser and

stopping executing the page once one detects that it is malicious [53, 68, 131].

e Looking at the changes in the victim’s system when she visits a malicious web
page. The creation of files of the changes of registry keys are indicators of the

compromise [93, 108].

e The last possibility is to look at typical attack patterns and flag as malicious any

script that shows those patterns [113].

The problem with these techniques is mostly that they rely on a static model to detect
malicious scripts, or they train on malicious behavior that might adapt and change over
time [72]. Therefore, they could miss newer attacks cybercriminals might come up

with.

Network based detection. Another vantage point that can be leveraged for detection is
the network traffic generated by infected machines. By observing the malicious traffic
generated by such machines it is possible to learn important information about botnets,

and develop effective countermeasures.

24



CHAPTER 2. RELATED WORK

A direction researchers looked at is detecting successful infections by monitoring net-
work traffic [65]. In this research work, infections are modeled as a set of flows that
picture the different steps of the infection. Although interesting, this model cannot be
applied anymore today. The reason is that years ago botnet infections followed a well
defined, worm-like behavior (i.e., scanning for victims, exploitation, download of an

egg, connection to the command and control), which is not widely used anymore.

More recent research proposed to look at the correlation between C&C messages and
malicious activity. The idea is that any time a bot will receive a command, it will per-
form a malicious activity. By looking at this correlation, it is possible to detect bots
without any previous knowledge of the botnet [64]. The problem is how to identify
C&C traffic. Older approaches looked for commonly-misused, well-known protocols
(e.g., IRC) [66]. However, this type of techniques are not applicable anymore, since
most botnets moved to proprietary protocols for their C&C traffic. More recent work
looks for malicious activity first, and then looks for any interaction with external servers
that happened before that activity to find the actual commands [147]. Zand et al. pro-
posed a system to find strings that are typical of C&C commands, and leverage them

for detection [155].

DNS based detection. Similar to most legitimate Internet services, botnets use the
DNS infrastructure to easily connect the different components of their infrastructure
(i.e., the bots and the C&C server). Therefore, by looking at the interaction between
bots and DNS servers researchers can learn important information about the botnet,
such as which IP addresses are associated to infected machines. This can be done

by sinkholing the domains used by a botnet’s C&C infrastructure. By doing this, the

25



CHAPTER 2. RELATED WORK

infected machines will contact the researchers instead of the botmaster, and it will be
possible to enumerate them [55]. Another option is to look in local DNS servers for the
presence of cached results associated to malicious domains [25]. If such records are

found, that is an indicator of the presence of infected machines in the network.

Ramachandran et al. analyzed queries against a DNS blacklist (DNSBL) to reveal
botnet memberships [111]; the intuition behind their approach is that bots might check
if their own IP address is blacklisted by a given DNSBL. Such queries can be detected,

which discloses information about infected machines.

In Chapter 3 we present BOTMAGNIFIER, a system that can grow the set of known
infected machines belonging to a botnet by observing the set of mailservers contacted
by such machines over time. As we will see, BOTMAGNIFIER helps in integrating DNS

blacklists, significantly improving the coverage offered by these services.

2.2.2 Detecting Command and Control Activity

Other work operated at the Command and Control level. The goal is typically to learn

important information about the botnet, or to attempt a takedown.

For older botnets that were using IRC, infiltration was easy. All that researchers had
to do was joining the IRC server and a particular channel, and look for the commands
being issued by the botmaster [25]. Nowadays, this is not possible anymore, and re-
searchers need to reverse engineer the C&C protocol first. A way of doing that is by

active probing [45]. This type of techniques enable botnet infiltration, which means

26



CHAPTER 2. RELATED WORK

that researchers can create a piece of software that behaves exactly like a bot, but does

not execute any malicious activity [39, 44, 59, 84, 85, 121].

Another possibility, for those botnets that use it, is to reverse engineer the Domain Gen-
eration Algorithm (DGA) used by the botnet. By doing this, researchers can register the
C&C domains before the botmasters do, and impersonate the C&C server [110, 123].
An orthogonal approach is to take down the C&C server and perform an offline analysis

of the server to reconstruct information [102].

In the case of botnets that use fast flux, the domains that use such techniques present
very different characteristics from legitimate ones, and can be detected. For example,
the IP addresses returned for a DNS query to a fast flux domain will belong to very
different networks in various parts of the world, their Time to Live (TTL) will be low,
and two subsequent queries will return different results. Previous work focused on
building classifiers based on such characteristics, to detect fast flux domains [69, 70,

103].

Another possible way of interacting with the C&C infrastructure is by setting up honey-
pots. Honeypots are virtualized environments where it is possible to run malware, and
monitor its activity [76]. Monitoring the activity of the bots can give insights on what
the C&C IP addresses and domains are. This information can be used for blacklisting
them [126] or for performing botnet takedowns [125]. Honeypots, however, come with
some problems. First of all, malware might detect that it is running in a virtualized
environment, and do not perform any malicious activity [31]. On the other hand, while
running malware, researchers need to make sure that their environment is constrained

enough that this malware cannot damage anybody.

27



CHAPTER 2. RELATED WORK

One last approach is to detect C&C domains by observing patterns in which domains
are queried by infected machines. Proposed systems use local data from Recursive DNS
servers [26, 34], or a more comprehensive view by looking at the Top Level Domain

(TLD) level [27].

2.2.3 Detecting Malicious Content

Infected computers are commonly used to spread malicious content, such as spam,
phishing scams, or links pointing to malicious web pages. In this section I briefly

discuss the research that has been performed to detect such malicious content.

Existing work on spam filtering can be broadly classified in two categories: post-
acceptance methods and pre-acceptance methods. Post-acceptance methods receive
the full message and then rely on content analysis to detect spam emails. There are
many approaches that allow one to differentiate between spam and legitimate emails:
popular methods include Naive Bayes, Support Vector Machines (SVMs), or similar
methods from the field of machine learning [114, 56, 98, 116]. Other approaches for
content-based filtering rely on identifying the URLSs used in spam messages [148, 14],
or in looking at the content of the page pointed by such URLs looking for keywords
that are typical of spam [137]. A third method is DomainKeys Identified Mail (DKIM),
a system that verifies that an email has been sent by a certain domain by using crypto-
graphic signatures [89]. In practice, performing content analysis or computing crypto-
graphic checksums on every incoming email can be expensive and might lead to high

load on busy servers [136]. Furthermore, an attacker might attempt to bypass the con-

28



CHAPTER 2. RELATED WORK

tent analysis system by crafting spam messages in specific ways [92, 100]. In general,
the drawback of post-acceptance methods is that an email has to be received before it

can be analyzed.

Pre-acceptance methods attempt to detect spam before actually receiving the full mes-
sage. Some analysis techniques take the origin of an email into account and analyze
distinctive features about the sender of an email (e.g., the IP address or autonomous
system the email is sent from, or the geographical distance between the sender and
the receiver) [67, 142, 112]. In practice, these sender-based techniques have coverage
problems: previous work showed how IP blacklists miss detecting a large fraction of
the IP addresses that are actually sending spam, especially due to the highly dynamic

nature of the machines that send spam (typically botnets) [119, 109, 125].

In Chapter 3 I show that our system to detect infected hosts that send spam can be

effectively used to increase the coverage provided by IP blacklists.

2.2.4 Detecting Malicious Online Service Accounts

To perform their malicious activity, such as spreading malicious content, cybercrimi-
nals typically instruct their bots to connect to accounts on legitimate online services
that are under their control. To obtain such accounts, they can pay workers to create
account for them [145], purchase mass-created fake accounts [138], or buy credentials
of compromised accounts on such services [125]. Given the magnitude of the problem,
numerous approaches have been proposed to detect accounts that perform malicious

activities on online services.

29



CHAPTER 2. RELATED WORK

In Chapter 5, I will present SPAMDETECTOR, one of the first systems that was devel-
oped to detect fake accounts used to spread spam on social networks. Similar to our
system, other early detection techniques for malicious activity on social networks fo-
cused on identifying fake accounts and spam messages [32, 87] by leveraging features
that are geared towards recognizing characteristics of spam accounts (such as the pres-
ence of URLs in messages or the message similarity across user posts). Yu et al. [154]
proposed a system to detect fake social network accounts; the system looks at the net-
work structure, and flags accounts that are not well-connected with their peers in the
network as possibly malicious. The idea behind this approach is that fake accounts
will stand out compared to legitimate ones, because legitimate users will connect less
frequently to them than they do with people they know in real life. To overcome this
problem, miscreants started connecting several fake accounts with each others, creating
dense neighborhoods. Although these connections will make them look more similar
to legitimate accounts, fake accounts will still be reasonably isolated from legitimate
communities of accounts. Cai et al. [40] proposed a system that detects fake profiles on
social networks by examining densely interconnected groups of profiles. These tech-
niques work reasonably well, and both Twitter and Facebook rely on similar heuristics

to detect fake accounts [62, 140].

Yang et al. [151] performed an analysis of fake accounts on Renren, a popular Chinese
microblogging platform [21]. Their results contradict previous work; in fact, they show
that fake accounts on Renren do not typically create connections among each other, but

they tend to integrate into the regular social graph.

In response to defense efforts by social network providers, the focus of the attack-

30



CHAPTER 2. RELATED WORK

ers has shifted, and a large fraction of the accounts carrying out malicious activities
were not created for this purpose, but started as legitimate accounts that were compro-
mised [61, 63]. Since these accounts do not show a consistently malicious behavior,
previous systems will fail to recognize them as malicious. Grier et al. [63] studied the
behavior of compromised accounts on Twitter by entering the credentials of an account
they controlled on a phishing campaign site. They then observed that the account started
sending out phishing tweets, and searched Twitter for similar tweets, identifying thou-
sands of compromised accounts. This approach does not scale as it requires identifying
and joining each new phishing campaign. Also, this approach is limited to phishing
campaigns. In Chapter 6, I will present COMPA, the first system to detect that a social
network account has been compromised, and is now used by a cybercriminal to spread

malicious content.

Gao et al. [61] developed a clustering approach to detect spam wall posts on Face-
book. They also attempted to determine whether an account that sent a spam post was
compromised. To this end, the authors look at the wall post history of spam accounts.
However, the classification is very simple. When an account received a benign wall post
from one of their connections (friends), they automatically considered that account as
being legitimate but compromised. The problem with this technique is that, as we show
in Chapter 5, spam victims occasionally send messages to these spam accounts. This
would cause their approach to detect legitimate accounts as compromised. Moreover,
the system needs to know whether an account has sent spam before it can classify it
as fake or compromised. COMPA, on the other hand, detects compromised accounts
also when they are not involved in spam campaigns. As an improvement to these tech-

niques, Gao et al. [60] proposed a system that groups similar messages posted on social

31



CHAPTER 2. RELATED WORK

networks together, and makes a decision about the maliciousness of the messages based
on features of the message cluster. Although this system can detect compromised ac-
counts, as well as fake ones, their approach is focused on detecting accounts that spread
URLSs through their messages and, therefore, is not as generic as COMPA. Other ap-
proaches look at how messages propagate on social networks, looking for messages

that spread anomalously, such as worms [41, 149].

Lee et al. [88] proposed WARNINGBIRD, a system that detects spam links posted on
Twitter by analyzing the characteristics of HTTP redirection chains that lead to a final

spam page.

Xu et al. [149] present a system that, by monitoring a small number of nodes, de-
tects worms propagating on social networks. This paper does not directly address the
problem of compromised accounts, but could detect large-scale infections such as koob-
face [30]. Chu et al. [49] analyze three categories of Twitter users: humans, bots, and
cyborgs, which are software-aided humans that share characteristics from both bots and
humans. To this end, the authors use a classifier that examines how regularly an account
tweets, as well as other account features such as the application that is used to post up-
dates. Using this paper’s terminology, compromised accounts would fall in the cyborg
category. However, the paper does not provide a way of reliably detecting them, since
these accounts are often times misclassified as either bots or humans. More precisely,
their true positive rate for cyborg accounts is only of 82.8%. The system that I present
in Chapter 6 can detect such accounts much more reliably. Also, the authors in [49] do
not provide a clear distinction between compromised accounts and legitimate ones that

use third-party applications to post updates on Twitter.

32



CHAPTER 2. RELATED WORK

Yang et al. [150] studied new Twitter spammers that act in a stealthy way to avoid
detection. In their system, they use advanced features such as the topology of the
network that surrounds the spammer. They do not try to distinguish compromised from
fake accounts. For their analysis they used the features presented in Chapter 5 as a
baseline, and present additional features that are able to detect stealthier accounts used

to send spam.

Wang et al. [144] proposed a technique to detect malicious accounts on social networks,
based on the sequence of clicks that the people (or the programs) controlling such ac-
counts perform. Jacob et al. [74] presented PUBCRAWL, a system that detects accounts
that are used to crawl online services. Benevenuto et al. presented a system to detect

accounts that leverage the Youtube service to spread malicious content [33].

In Chapter 7 I present EVILCOHORT, the first system that, instead of detecting mali-
cious hosts or malicious accounts separately, observes the way in which bot-infected
machines access online accounts, and detects communities of accounts that are accessed
by the same botnet. As I will show, this allows us to flag accounts as malicious although
they do not spread any malicious content on the online service, but for example use it

as a C&C channel.

33



Part I

Detecting Misbehaving Hosts

34



Chapter 3

Locating Spambots on the Internet

3.1 Introduction

While different botnets serve different, nefarious goals, one important purpose of bot-
nets is the distribution of spam emails. Recent studies indicate that, nowadays, about
85% of the overall spam traffic on the Internet is sent with the help of botnets [97, 133].
The reason for this prevalence is that botnets provide two advantages for spammers.
First, a botnet serves as a convenient infrastructure for sending out large quantities of
messages; it is essentially a large, distributed computing system with massive band-
width. A botmaster can send out tens of millions of emails within a few hours using
thousands of infected machines. Second, a botnet allows an attacker to evade spam
filtering techniques based on the sender IP addresses. The reason is that the IP ad-

dresses of some infected machines change frequently (e.g., due to the expiration of a

35



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

DHCEP lease, or to the change in network location in the case of an infected portable
computer). Moreover, it is easy to infect machines and recruit them as new members
into a botnet. This means that blacklists need to be updated constantly by tracking the

IP addresses of spamming bots.

Tracking spambots is challenging. One approach to detect infected machines is to set
up spam traps. These are fake email addresses (i.e., addresses not associated with real
users) that are published throughout the Internet with the purpose of attracting and col-
lecting spam messages. By extracting the sender IP addresses from the emails received
by a spam trap, it is possible to obtain a list of bot-infected machines. However, this
approach faces two main problems. First, it is likely that only a subset of the bots be-
longing to a certain botnet will send emails to the spam trap addresses. Therefore, the
analysis of the messages collected by the spam trap can provide only a partial view of
the activity of the botnet. Second, some botnets might only target users located in a spe-
cific country (e.g., due to the language used in the email), and thus a spam trap located
in a different country would not observe those bots. Other approaches to identify the
hosts that are part of a spamming botnet are specific to particular botnets. For example,
by taking control of the command & control (C&C) component of a botnet [102, 110],
or by analyzing the communication protocol used by the bots to interact with other
components of the infrastructure [44, 84, 121], it is possible to enumerate (a subset of)
the IP addresses of the hosts that are part of a botnet. In these cases, however, the re-
sults are specific to the particular botnet that is being targeted (and, typically, the type
of C&C used). As a result of these problems, blacklists of computers that are known
to send spam are incomplete, and often fail in detecting spambots that have recently

appeared [109].

36



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

In this chapter, we present a novel approach to identify and track spambot populations
on the Internet. Our ambitious goal is to track the IP addresses of all active hosts
that belong to every spamming botnet. By active hosts, we mean hosts that are online
and that participate in spam campaigns. Comprehensive tracking of the IP addresses

belonging to spamming botnets is useful for several reasons:

e Internet Service Providers can take countermeasures to prevent the bots whose IP

addresses reside in their networks from sending out email messages.
e Organizations can clean up compromised machines in their networks.

e Existing blacklists and systems that analyze network-level features of emails can
be improved by providing accurate information about machines that are currently

sending out spam emails.

e By monitoring the number of bots that are part of different botnets, it is possible
to guide and support mitigation efforts so that the C&C infrastructures of the

largest, most aggressive, or fastest-growing botnets are targeted first.

Our approach to tracking spamming bots is based on the following insight: bots that
belong to the same botnet share the same C&C infrastructure and the same code base.
As a result, these bots will feature similar behavior when sending spam [64, 148, 152].
In contrast, bots belonging to different spamming botnets will typically use different
parameters for sending spam mails (e.g., the size of the target email address list, the
domains or countries that are targeted, the spam contents, or the timing of their actions).
More precisely, we leverage the fact that bots (of a particular botnet) that participate in

a spam campaign share similarities in the destinations (domains) that they target and

37



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

in the time periods they are active. Similar to previous work [84], we consider a spam
campaign to be a set of email messages that share a substantial amount of content
and structure (e.g., a spam campaign might involve the distribution of messages that

promote a specific pharmaceutical scam).

3.1.1 Input Datasets

At a high level, our approach takes two datasets as input. The first dataset contains the
IP addresses of known spamming bots that are active during a certain time period (we
call this time period the observation period). The IP addresses are grouped by spam
campaign. That is, IP addresses in the same group sent the same type of messages.
We refer to these groups of IP addresses as seed pools. The second dataset is a log
of email transactions carried out on the Internet during the same time period. This log,
called the transaction log, contains entries that specify that, at a certain time, IP address
C attempted to send an email message to IP address S. The log does not need to be
a complete log of every email transaction on the Internet (as it would be unfeasible
to collect this information). However, as we will discuss later, our approach becomes

more effective as this log becomes more comprehensive.

3.1.2 Approach

In the first step of our approach, we search the transaction log for entries in which the
sender IP address is one of the IP addresses in the seed pools (i.e., the known spambots).

Then, we analyze these entries and generate a number of behavioral profiles that capture

38



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

[ Suect]
[ Uniawe )
:
N
,/ / oS
Spam 1) Tagging 2) Learning /‘\ Epamming botnet 1
trap
7\ -V \
[ . = ° " 3)Growing © 4) Clustering
m 4 ) Growing > \‘
\\ N— \ .~
: Spamming botnet 2
Sﬁngs(’t é‘ DNS|Queries
Mail server
IP address
" Queried IP &

address

Spamming botnet 3

Figure 3.1: Overview of BOTMAGNIFIER.

the way in which the hosts in the seed pools sent emails during the observation period.

In the second step of the approach, the whole transaction log is searched for patterns
of behavior that are similar to the spambot behavior previously learned from the seed
pools. The hosts that behave in a similar manner are flagged as possible spamming

bots, and their IP addresses are added to the corresponding magnified pool.

In the third and final step, heuristics are applied to reduce false positives and to assign

spam campaigns (and the IP addresses of bots) to specific botnets (e.g., Rustock [43],

Cutwail [125], or MegaD [39, 44]).

We implemented our approach in a tool, called BOTMAGNIFIER. In order to popu-
late our seed pools, we used data from a large spam trap set up by an Internet Ser-
vice Provider (ISP). Our transaction logs were constructed by running a mirror for
Spamhaus [13], a popular DNS-based blacklist. Note that other sources of informa-
tion can be used to either populate the seed pools or to build a transaction log. As we

will show, BOTM AGNIFIER also works for transaction logs extracted from netflow data

39



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

collected from a large ISP’s backbone routers.

BOTMAGNIFIER is executed periodically, at the end of each observation period. It
outputs a list of the IP addresses of all bots in the magnified pools that were found
during the most recent period. Moreover, BOTMAGNIFIER associates with each seed
and magnified pool a label that identifies (when possible) the name of the botnet that
carried out the corresponding spam campaign. Our experimental results show that our
system can find a significant number of additional IP addresses compared to the seed
baseline. Furthermore, BOTM AGNIFIER is able to detect emerging spamming botnets.
As we will show, we identified the resurrection of the Waledac spamming botnet during
the evaluation period, demonstrating the ability of our technique to find new botnets.

An overview of BOTMAGNIFIER is shown in Figure 3.1.

3.2 Input Datasets

BOTMAGNTIFIER requires two input datasets to track spambots: seed pools and a trans-

action log. In this section, we discuss how these two datasets are obtained.

3.2.1 Seed Pools

A seed pool is a set of IP addresses of hosts that, during the most recent observation
period, participated in a specific spam campaign. The underlying assumption is that
the hosts whose IP addresses are in the same seed pool are part of the same spam-

ming botnet, and they were instructed to send a certain batch of messages (e.g., emails

40



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

advertising cheap Viagra or replica watches).

To generate the seed pools for the various spam campaigns, we took advantage of the
information collected by a spam trap set up by a large US ISP. Since the email addresses
used in this spam trap do not correspond to real customers, all the received emails are
spam. We collected data from the spam trap between September 1, 2010 and Febru-
ary 10, 2011, with a downtime of about 15 days in November 2011. The spam trap

collected, on average, 924,000 spam messages from 268,000 IP addresses every day.

Identifying similar messages. We identify spam campaigns within this dataset by
looking for similar email messages. More precisely, we analyze the subject lines of
all spam messages received during the last observation period (currently one day: see
discussion below). Messages that share a similar subject line are considered to be part

of the same campaign (during this period).

Unfortunately, the subject lines of messages of a certain campaign are typically not
identical. In fact, most botnets vary the subject lines of the message they send to avoid
detection by anti-spam systems. For example, some botnets put the user name of the
recipient in the subject, or change the price of the pills being sold in drug-related cam-
paigns. To mitigate this problem, we extract templates from the actual subject lines. To
this end, we substitute user names, email addresses, and numbers with placeholder reg-
ular expressions. User names are recognized as tokens that are identical to the first part
of the destination email address (the part to the left of the @ sign). For example, the
subject line “john, get 90% discounts!” senttouser john@example.com

12

becomes “\w+, get [0-9]+% discounts

41



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

More sophisticated botnets, such as Rustock, add random text fetched from Wikipedia
to both the email body and the subject line. Other botnets, such as Lethic, add a random
word at the end of each subject. These tricks make it harder to group emails belonging
to the same campaign that are sent by different bots, because different bots will add
unique text to each message. To handle this problem, we developed a set of custom
rules for the largest spamming botnets that remove the spurious content from the subject

lines.

Once the subjects of the messages have been transformed into templates and the spu-
rious information has been removed, messages with the same template subject line
are clustered together. This approach is less sophisticated than methods that take into
account more features of the spam messages [104, 148], but we found (by manual in-
vestigation) that our simple approach was very effective for our purpose. Our approach,
although sufficient, could be refined even further by incorporating these more sophisti-

cated schemes to improve our ability to recognize spam campaigns.

Once the messages are clustered, the IP addresses of the senders in each cluster are
extracted. These sets of IP addresses represent the seed pools that are used as input to

our magnification technique.

Seed pool size. During our experiments, we found that seed pools that contain a very
small number of IP addresses do not provide good results. The reason is that the behav-
ior patterns that can be constructed from only a few known bot instances are not precise
enough to represent the activity of a botnet. For example, campaigns involving 200

unique IP addresses in the seed pool produced, on average, magnified sets where 60%

42



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

of the IP addresses were not listed in Spamhaus, and therefore were likely legitimate
servers. Similarly, campaigns with a seed pool size of 500 IP addresses still produced
magnified sets where 25% of the IP addresses were marked as legitimate by Spamhaus.
For these reasons, we only consider those campaigns for which we have observed more
than 1,000 unique sender IP addresses. The emails belonging to these campaigns ac-
count for roughly 84% of the overall traffic observed by our spam trap. It is interesting
to notice that 8% of the overall traffic belongs to campaigns carried out by less than
10 distinct IP addresses per day. Such campaigns are carried out by dedicated servers
and abused email service providers. The aggressive spam behavior of these servers and
their lack of geographic/IP diversity makes them trivial to detect without the need for

magnification.

The lower limit on the size of seed pools has implications for the length of the obser-
vation period. When this interval is too short, the seed pools are likely to be too small.
On the other hand, many campaigns last less than a few hours. Thus, it is not useful
to make the observation period too long. Also, when increasing the length of the ob-
servation period, there is a delay introduced before BOTM AGNIFIER can identify new
spam hosts. This is not desirable when the output is used for improving spam defenses.
In practice, we found that an observation period of one day allows us to generate suffi-
ciently large seed pools from the available spam feed. To evaluate the impact that the
choice of the analysis period might have on our analysis system, we looked at the du-
ration of 100 spam campaigns, detected over a period of one day. The average duration
of these campaigns is 9 hours, with a standard deviation of 6 hours. Of the campaigns
that we analyzed, 25 lasted less than four hours. However, only two of these campaigns

did not generate large enough seed pools to be considered by BOTMAGNIFIER. On the

43



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

other hand, 8 campaigns that lasted more than 18 hours would not have generated large
enough seed pools if we used a shorter observation period. Also, by manual investiga-
tion, we found that campaigns that last more than one day typically reach the threshold
of 1,000 IP addresses for their seed pool within the first day. Therefore, we believe that
the choice of an observation period of one day works well, given the characteristics of
the transaction log we used. Of course, if the volume of either the seed pools or the
transaction log increased, the observation period could be reduced accordingly, making

the system more effective for real-time spam blacklisting.

Note that it is not a problem when a spam campaign spans multiple observation peri-
ods. In this case, the bots that participate in this spam campaign and are active during
multiple periods are simply included in multiple seed pools, one for each observation

period, for this campaign.

3.2.2 Transaction Log

The transaction log is a record of email transactions carried out on the Internet during
the same time period used for the generation of the seed pools. For the current version
of BOTMAGNIFIER and the majority of our experiments, we obtained the transaction
log by analyzing the queries to a mirror of Spamhaus, a widely-used DNS-based black-
listing service (DNSBL). When an email server S is contacted by a client C' that wants
to send an email message, server S contacts one of the Spamhaus mirrors and asks
whether the IP address of the client C' is a known spamming host. If C' is a known

spammer, the connection is closed before the actual email is sent.

44



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

Each query to Spamhaus contains the IP address of C. It is possible that S may not
query Spamhaus directly. In some cases, S is configured to use a local DNS server
that forwards the query. In such cases, we would mistakenly consider the IP address of
the DNS server as the mail server. However, the actual value of the IP address of S is
not important for the subsequent analysis. It is only important to recognize when two
different clients send email to the same server S. Thus, as long as emails sent to server
S yield Spamhaus queries that always come from the same IP address, our technique is

not affected.

Each query generates an entry in the transaction log. More precisely, the entry contains
a timestamp, the IP address of the sender of the message, and the IP address of the
server issuing the query. Of course, by monitoring a single Spamhaus mirror (out of 60
deployed throughout the Internet), we can observe only a small fraction of the global
email transactions. Our mirror observes roughly one hundred million email transactions
a day, compared to estimates that put the number of emails sent daily at hundreds of

billions [79].

Note that even though Spamhaus is a blacklisting service, we do not use the information
it provides about the blacklisted hosts to perform our analysis. Instead, we use the
Spamhaus mirror only to collect the transaction logs, regardless of the fact that a sender
may be a known spammer. In fact, other sources of information can be used to either
populate the seed pools or to collect the transaction log. To demonstrate this, we also
ran BOTMAGNIFIER on transaction logs extracted from netflow data collected from a
number of backbone routers of a large ISP. The results show that our general approach

is still valid (see Section 3.6.4 for details).

45



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

3.3 Characterizing Bot Behavior

Given the two input datasets described in the previous section, the first step of our
approach is to extract the behavior of known spambots. To this end, the transaction log
is consulted. More precisely, for each seed pool, we query the transaction log to find all
events that are associated with all of the IP addresses in that seed pool (recall that the
IP addresses in a seed pool correspond to known spambots). Here, an event is an entry
in the transaction log where the known spambot is the sender of an email. Essentially,

we extract all the instances in the transaction log where a known bot has sent an email.

Once the transaction log entries associated with a seed pool are extracted, we analyze
the destinations of the spam messages to characterize the bots’ behavior. That is, the
behavior of the bots in a seed pool is characterized by the set of destination IP addresses
that received spam messages. We call the set of server IP addresses targeted by the bots

in a seed pool this pool’s farget set.

The reason for extracting a seed pool’s target set is the insight that bots belonging to
the same botnet receive the same list of email addresses to spam, or, at least, a subset
of addresses belonging to the same list. Therefore, during their spamming activity,
bots belonging to botnet A will target the addresses contained in list L4, while bots
belonging to botnet B will target destinations belonging to list L. That is, the targets
of a spam campaign characterize the activity of a botnet. This observations has been

confirmed by previous work [73, 125].

Unfortunately, the target sets of two botnets often have substantial overlap. The reason

is that there are many popular destinations (server addresses) that are targeted by most

46



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

botnets (e.g., the email servers of Google, Yahoo, large ISPs with many users, etc.)
Therefore, we want to derive, for each spam campaign (seed pool), the most character-
izing set of destination IP addresses. To this end, we remove from each pool’s target set
all server IP addresses that appear in any target set belonging to another another seed

pool during that observation period.

More precisely, consider the seed pools P = pi,ps,...,p,. Each pool p; stores the
IP addresses of known bots that participated in a certain campaign: 1, %, ..., %;,. In
addition, consider that the transaction log L contains entries in the form (¢, i,, i4), where
t is a time stamp, 7, is the IP address of the sender of an email and ¢, is the IP address
of the destination server of an email. For each seed pool p;, we build this seed pool’s

target set 1'(p;) as follows:

T(p;) := {ia|(t,is,id) € L Nis € pi}- 3.1)

Then, we compute the characterizing set C'(p;) of a seed pool p; as follows:

C(pi) = {ialia € T(pi) Nia & T(pj),J # i} (3.2)

As aresult, C'(p;) contains only the target addresses that are unique (characteristic) for
the destinations of bots in seed pool p;. The characterizing set C'(p;) of each pool is the

input to the next step of our approach.

47



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

3.4 Bot Magnification

The goal of the bot magnification step is to find the IP addresses of additional, previously-
unknown bots that have participated in a known spam campaign. More precisely, the
goal of this step is to search the transaction log for IP addresses that behave similarly to
the bots in a seed pool p;. If such matches can be found, the corresponding IP addresses
are added to the magnification set associated with p;. This means that a magnification

set stores the IP addresses of additional, previously-unknown bots.

BOTMAGNIFIER considers an IP address x; that appears in the transaction log L as
matching the behavior of a certain seed pool p; (and, thus, belonging to that spam
campaign) if the following three conditions hold:
1. Host x; sent emails to at least N destinations in the seed pool’s target set T'(p;).
2. Host x; never sent an email to a destination that does not belong to that target set.
3. Host z; has contacted at least one destination that is unique for seed pool p; (i.e.,

an address in C'(p;)).

If all three conditions are met, then IP address x; is added to the magnification set

M (p;) of seed pool p;.

48



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

More formally, if we define D(x;) as the set of destinations targeted by an IP address

x;, we have:

ri € M(pi) <= [D(x:) VT (pi)| = N A
D(z:) € T(pi) A

D(z;) N C(pi) # 0. (3.3)

The intuition behind this approach is the following: when a host i sends a reasonably
large number of emails to the same destinations that were targeted by a spam campaign
and not to any other targets, there is a strong indication that the email activity of this
host is similar to the bots involved in the campaign. Moreover, to assign a host h to at
most one campaign (the one that it is most similar), we require that h targets at least

one unique destination of this campaign.

3.4.1 Threshold Computation

The main challenge in this step is to determine an appropriate value for the threshold
N, which captures the minimum number of destination IP addresses in 7'(p;) that a host
must send emails to in order to be added to the magnification set M (p;). Setting N to a
value that is too low will generate too many bot candidates, including legitimate email
servers, and the tool would generate many false positives. Setting /V to a value that is
too high might discard many bots that should have been included in the magnification

set (that is, the approach generates many false negatives). This trade-off between false

49



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

positives and false negatives is a problem that appears in many security contexts, for

example, when building models for intrusion detection.

An additional, important consideration for the proper choice of N is the size of the
target set |T'(p;)|. Intuitively, we expect that N should be larger when the size of the
target set increases. This is because a larger target set increases the chance that a ran-
dom, legitimate email sender hits a sufficient number of targets by accident, and hence,
will be incorrectly included into the magnification set. In contrast, bots carrying out
a spam campaign that targets only a small number of destinations are easier to detect.
The reason is that as soon as a legitimate email sender sends an email to a server that is
not in the set targeted by the campaign, it will be immediately discarded by our mag-
nification algorithm. Therefore, we represent the relationship between the threshold N

and the size of the target set |T'(p;)| as:

N=k-|T(p),0<k<1, (3.4)

where k is a parameter. Ideally, the relation between N and |T'(p;)| would be linear,
and k will have a constant value. However, as will be clear from the discussion below,

k also varies with the size of | T'(p;)|.

To determine a good value for £ and, as a consequence, select a proper threshold N,
we performed an analysis based on ground truth about the actual IP addresses involved
in several spam campaigns. This information was collected from the takedown of more
than a dozen C&C servers used by the Cutwail spam botnet. More specifically, each

server stored comprehensive records (e.g., target email lists, bot IP addresses, etc.)

50



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

PR(K)

campaign with 75,681 dest. ——
campaign with 63,491 dest.
campaign with 56,113 dest. -
campaign with 42,498 dest.
campaign with 36,400 dest. -
02 campaign with 27,531 dest.
’ campaign with 26,112 dest.
campaign with 17,044 dest.
campaign with 9,342 dest. -
campaign with 7,776 dest. ——

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
k

Figure 3.2: Quality of magnification for varying k using ten Cutwail campaigns of different
sizes.

about spam activities for a number of different campaigns [125].

In particular, we applied BOTMAGNIFIER to ten Cutwail campaigns, extracted from
two different C&C servers. We used these ten campaigns since we had a precise view
of the IP addresses of the bots that sent the emails. For the experiment, we varied the
value for /V in the magnification process from 0 to 300. This analysis yielded different
magnification sets for each campaign. Then, using our knowledge about the actual bots
B that were part of each campaign, we computed the precision P and recall R values
for each threshold setting. Since we want to express the quality of the magnification

process as a function of £, independently of the size of a campaign, we use Equation 3.4

0 get k = 7,5

The precision value P(k) represents what fraction of the IP addresses that we obtain

51



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

as candidates for the magnification set for a given k£ are actually among the ground
truth IP addresses. The recall value R(k), on the other hand, tells us what fraction
of the total bot set B is identified. Intuitively, a low value of k& will produce high
R(k), but low P(k). When we increase k, P(k) will increase, but R(k) will decrease.
Optimally, both precision and recall are high. Thus, for our analysis, we use the product
PR(k) = P(k) - R(k) to characterize the quality of the magnification step. Figure 3.2
shows how P R(k) varies for different values of k. As shown for each campaign, PR(k)

first increases, then stays relatively level, and then starts to decrease.

The results indicate that k is not a constant, but varies with the size of | 7'(p;)|. In partic-
ular, small campaigns have a higher optimal value for £ compared to larger campaigns:
as | T (p;)| increases, the value of k slowly decreases. To reflect this observation, we use

the following, simple way to compute k:

«

k= kb + )
T (pi)]

(3.5)

where k;, is a constant value, « is a parameter, and |T'(p;)| is the number of destinations
that a campaign targeted. The parameters £, and « are determined so that the quality
of the magnification step PR is maximized for a given ground truth dataset. Using the

Cutwail campaigns as the dataset, this yields k;, = 8 - 10~* and o = 10.

Our experimental results show that these parameter settings yield good results for a
wide range of campaigns, carried out by several different botnets. This is because the
magnification process is robust and not dependent on an optimal threshold selection.

We found that non-optimal thresholds typically tend to decrease recall. That is, the

52



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

magnification process does not find all bots that it could possibly detect, but false posi-
tives are limited. In Section 3.6.4, we show how the equation of %, with the values we
determined for parameters k;, and «, yields good results for any campaign magnified
from our Spamhaus dataset. We also show that the computation of k can be performed
in the same way for different types of transaction logs. To this end, we study how

BOTMAGNIFIER can be used to analyze netflow records.

3.5 Spam Attribution

Once the magnification process has completed, we merge the IP addresses from the
seed pool and the magnification set to obtain a campaign set. We then apply several
heuristics to reduce false positives and to assign the different campaign sets to specific
botnets. Note that the labeling of the campaign sets does not affect the results of the
bot magnification process. BOTMAGNIFIER could be used in the wild for bot detection
without these attribution functionalities. It is relevant only for tracking the populations

of known botnets, as we discuss in Section 3.6.2.

3.5.1 Spambot Analysis Environment

The goal of this phase is to understand the behavior of current spamming botnets. That
is, we want to determine the types of spam messages sent by a specific botnet at a
certain point in time. To this end, we have built an environment that enables us to

execute bot binaries in a controlled setup similarly to previous studies [76, 147].

53



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

Our spambot analysis environment is composed of one physical system hosting several
virtual machines (VMs), each of which executes one bot binary. The VMs have full
network access so that the bots can connect to the C&C server and receive spam-related
configuration data, such as spam templates or batches of email addresses to which spam
should be sent. However, we make sure that no actual spam emails are sent out by
sinkholing spam traffic, i.e., we redirect outgoing emails to a mail server under our
control. This server is configured to record the messages, without relaying them to the
actual destination. We also prevent other kinds of malicious traffic (e.g., scanning or
exploitation attempts) through various firewall rules. Some botnets (e.g., MegaD) use
TCP port 25 for C&C traffic, and, therefore, we need to make sure that such bots can
still access the C&C server. This is implemented by firewall rules that allow C&C traffic
through, but prevent outgoing spam. Furthermore, botnets such as Rustock detect the
presence of a virtualization environment and refuse to run. Such samples are executed
on a physical machine configured with the same network restrictions. To study whether
bots located in different countries show a unique behavior, we run each sample at two
distinct locations: one analysis environment is located in the United States, while the
other one is located in Europe. In our experience, this setup enables us to reliably

execute known spambots and observe their current spamming behavior.

For this study, we analyzed the five different bot families that were the most active dur-
ing the time of our experiments: Rustock [43], Lethic, MegaD [39, 44], Cutwail [125],
and Waledac [102]. We ran our samples from July 2010 to February 2011. Some of the
spambots we ran sent out spam emails for a limited amount of time (typically, a couple
of weeks), and then lost contact with their controllers. We periodically substituted such

bots with newer samples. Other bots (e.g., Rustock) were active for most of the analysis

54



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

period.

3.5.2 Botnet Tags

After monitoring the spambots in a controlled environment, we attempt to assign botnet
labels to spam emails found in our spam trap. Therefore, we first extract the subject
templates from the emails that were collected in the analysis environment with the same
technique described in Section 3.2.1. Then, we compare the subject templates with the
emails we received in the spam trap during that same day. If we find a match, we tag
the campaign set that contains the IP address of the bot that sent the message with the

corresponding botnet name. Otherwise, we keep the campaign set unlabeled.

3.5.3 Botnet Clustering

As noted above, we ran five spambot families in our analysis environment. Of course,
it is possible that one of the monitored botnets is carrying out more campaigns than
those observed by analyzing the emails sent by the bots we execute in our analysis
environment. In addition, we are limited by the fact that we cannot run all bot binaries in
the general case (e.g., due to newly emerging botnets or in cases where we do not have
access to a sample), and, thus, we cannot collect information about such campaigns.

The overall effect of this limitation is that some campaign sets may be left unlabeled.

The goal of the botnet clustering phase is to determine whether an unlabeled campaign

set belongs to one of the botnets we monitored. If an unlabeled campaign set cannot be

55



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

associated with one of the existing labeled campaign sets, then we try to see if it can be
merged with another unlabeled campaign set, which, together, might represent a new

botnet.

In both cases, there is a need to determine if two campaign sets are “close” enough to
each other in order to be considered as part of the same botnet. In order to represent
the distance between campaign sets, we developed three metrics, namely an IP overlap

metric, a destination distance metric, and a bot distance metric.

IP overlap. The observation underlying the IP overlap metric is that two campaign
sets sharing a large number of bots (i.e., common IP addresses) likely belong to the
same botnet. It is important to note that infected machines can belong to multiple bot-
nets, as one machine may be infected with two distinct instances of malware. Another
factor that we need to take into account is network address translation (NAT) gateways,
which can potentially hide large networks behind them. As a result, the IP address of
a NAT gateway might appear as part of multiple botnets. However, a host is discarded
from the campaign set related to p; as soon as it contacts a destination that is not in
the target set (see Section 3.4 for a discussion). Therefore, NAT gateways are likely
to be discarded from the candidate set early on: at some point, machines behind the
NAT will likely hit two destinations that are unique to two different seed pools, and,
thus, will be discarded from all campaign sets. This might not be true for small NATsS,
with just a few hosts behind them. In this case, the IP address of the gateway would
be detected as a bot by BOTMAGNIFIER. In a real world scenario, this would still be

useful information for the network administrator, who would know what malware has

56



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

likely infected one or more of her hosts.

Given these assumptions, we merge two campaign sets with a large IP overlap. More
precisely, first the intersection of the two campaign sets is computed. Then, if such
intersection represents a sufficiently high portion of the IP addresses in either of the

campaign sets, the two campaign sets are merged.

The fraction of IP addresses that need to match either of the campaign sets to consider
them to be part of the same botnet varies with the size of the sets for those campaigns.
Intuitively, two small campaigns will have to overlap by a larger percentage than two
large campaigns in order to be considered as part of the same botnet. This is done to
avoid merging small campaigns together just based on a small number of IP addresses
that might be caused by multiple infections or by two different spambots hiding behind
a small NAT. Given a campaign c, the fraction of IP addresses that has to overlap with

another campaign in order to be merged together is

1

O, = ——1~,
logy (Nc)

(3.6)

where [V, is the number of hosts in the campaign set. We selected this equation because
the denominator increases slowly with the number of bots carrying out a campaign.
Moreover, because of the use of the logarithm, this equation models an exponential
decay, which decreases fast for small values of N., and much more slowly for large
values of it. Applying this equation, a campaign carried out by 100 hosts will require
an overlap of 50% or more to be merged with another one, while a campaign carried out

by 10,000 hosts will only require an overlap of 25%. When comparing two campaigns

57



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

c1 and ¢, we require the smaller one to have an overlap of at least O, with the largest

one to consider them as being carried out by the same botnet.

Destination distance. This technique is an extension of our magnification step. We
assume that bots carrying out the same campaign will target the same destinations.
However, as mentioned previously, some botnets send spam only to specific countries
during a given time frame. Leveraging this observation, it is possible to find out whether
two campaign sets are likely carried out by the same botnet by observing the country
distribution of the set of destinations they targeted. More precisely, we build a desti-
nation country vector for each campaign set. Each element of the destination country
vector corresponds to the fraction of destinations that belong to a specific country. We
determined the country of each IP address using the GEOIP tool [95]. Then, for each

pair of campaign sets, we calculate the cosine distance between them.

We performed a precision versus recall analysis to develop an optimal threshold for
this clustering technique. By precision, we mean how well this technique can discrim-
inate between campaigns belonging to different botnets. By recall, we capture how
well the technique can cluster together campaigns carried out by the same botnet. We
ran our analysis on 50 manually-labeled campaigns picked from the ones sent by the
spambots in our analysis environment. Similarly to how we found the optimal value
of k in Section 3.4, we multiply precision and recall together. We then searched for
the threshold value that maximizes this product. In our experiments, we found that the
cosine distance of the destination countries vectors is rarely lower than 0.8. This occurs

regardless of the particular country distribution of a campaign, because there will be

58



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

a significant amount of bots in large countries (e.g., the United States or India). The
precision versus recall analysis showed that 0.95 is a good threshold for this clustering

technique.

Bot distance. This technique is similar to the destination distance, except that it uti-
lizes the country distribution of the bot population of the campaign set instead of the
location of the targeted servers. For each campaign set, we build a source country

vector that contains the fraction of bots for a given country.

The intuition behind this technique comes from the fact that malware frequently prop-
agates through malicious web sites, or through legitimate web servers that have been
compromised [108, 124]. These sites will not have a uniform distribution of users (e.g.,
a Spanish web site will mostly have visitors from Spanish-speaking countries) and,
therefore, the distribution of compromised users in the world for that site will not be
uniform. For this technique, we also performed a precision versus recall analysis, in the
same way as for the destination distance technique. Again, we experimentally found

the optimal threshold to be 0.95.

3.6 Evaluation

To demonstrate the validity of our approach, we first examined the results generated
by BOTMAGNIFIER when magnifying the population of a large spamming botnet for
which we have ground truth knowledge (i.e., we know which IP addresses belong to the

botnet). Then, we ran the system for a period of four months on a large set of real-world

59



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

data, and we successfully tracked the evolution of large botnets.

3.6.1 Validation of the Approach

To validate our approach, we studied a botnet for which we had direct data about the
number and IP addresses of the infected machines. More precisely, in August 2010, we
obtained access to thirteen C&C servers belonging to the Cutwail botnet [125]. Note
that we only used nine of them for this evaluation, since two had already been used to
derive the optimal value of /V in Section 3.4, and two were not actively sending spam
at the time of the takedown. As discussed before, these C&C servers contained detailed
information about the infected machines belonging to the botnet and the spam cam-
paigns carried out. The whole botnet was composed of 30 C&C servers. By analyzing
the data on the C&C servers we had access to we found that, during the last day of
operation, 188,159 bots contacted these nine servers. Of these, 37,914 (=~ 20%) con-
tacted multiple servers. On average, each server controlled 20,897 bots at the time of
the takedown, with a standard deviation of 5,478. Based on these statistics, the servers
to which we had access managed the operations of between 29% and 37% of the entire
botnet. We believe the actual percentage of the botnet controlled by these servers was
close to 30%, since all the servers except one were contacted by more than 19,000 bots
during the last day of operation. Only a single server was controlling less than 10,000
bots. Therefore, it is safe to assume that the vast majority of the command and control

servers were controlling a similar amount of bots (= 20,000 each).

We ran the validation experiment for the period between July 28 and August 16, 2010.

60



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

For each of the 18 days, we first selected a subset of the IP addresses referenced by the
nine C&C servers. As a second step, with the help of the spam trap, we identified which
campaigns had been carried out by these IP address during that day. Then, we generated
seed and magnified pools. Finally, we compared the output magnification sets against
the ground truth (i.e., the other IP addresses referenced by the C&C servers) to assess

the quality of the results.

Overall, BOTMAGNIFIER identified 144,317 IP addresses as Cutwail candidates in the
campaign set. Of these, 33,550 (=~ 23%) were actually listed in the C&C servers’
databases as bots. This percentage is close to the fraction of the botnet we had access to
(since we considered 9 out of 30 C&C servers), and, thus, this result suggests that the
magnified population identified by our system is consistent. To perform a more precise
analysis, we ran BOTMAGNIFIER and studied the magnified pools that were given as
an output on a daily basis. The average size of the magnified pools was 4,098 per day.
In total, during the 18 days of the experiment, we grew the bot population by 73,772 IP
addresses. Of the IP addresses detected by our tool, 17,288 also appeared in the spam
trap during at least one other day of our experiment, sending emails belonging to the
same campaigns carried out by the C&C servers. This confirms that they were actually
Cutwail bots. In particular, 3,381 of them were detected by BOTMAGNIFIER before
they ever appeared in the spam trap, which demonstrates that we can use our system to

detect bots before they even hit our spam trap.

For further validation, we checked our results against the Spamhaus database, to see if
the IP addresses we identified as bots were listed as known spammers or not. 81% of

them were listed in the blacklist.

61



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

We then tried to evaluate how many of the remaining 27,421 IP addresses were false
positives. To do this, we used two techniques. First, we tried to connect to the host to
check whether it was a legitimate server. Legitimate SMTP or DNS servers can show up
in queries on Spamhaus due to several reasons (e.g., in cases where reputation services
collect information about sender IP addresses or if an email server is configured to
query the local DNS server). Therefore, we tried to determine if an IP address that was
not blacklisted at the time of the experiment was a legitimate email or DNS server by
connecting to port 25 TCP and 53 UDP. If the server responded, we considered it to be a
false positive. Unfortunately, due to firewall rules, NAT gateways, or network policies,
some servers might not respond to our probes. For this reason, as a second technique,
we executed a reverse DNS lookup on the IP addresses, looking for evidence showing
that the host was a legitimate server. In particular, we looked for strings that are typical
for mail servers in the hostname. These strings are smitp, mail, mx, post, and mta.
We built this list by manually looking at the reverse DNS lookups of the IP address
that were not blacklisted by Spamhaus. If the reverse lookup matched one of these
strings, we considered the IP address as a legitimate server, i.e., a false positive. In
total, 2,845 IP addresses resulted in legitimate servers (1,712 SMTP servers and 1,431

DNS servers), which is 3.8% of the overall magnified population.

We then tried to determine what coverage of the entire Cutwail botnet our approach
produced. Based on the number of active IP addresses per day we saw on the C&C
servers, we estimated that the size of the botnet at the time of the takedown was between
300,000 and 400,000 bots. This means that, during our experiment, we were able to
track between 35 and 48 percent of the botnet. Given the limitations of our transaction

log (see Section 3.6.2), this is a good result, which could be improved by getting access

62



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

to multiple Spamhaus servers or more complete data streams.

3.6.2 Tracking Bot Populations

To demonstrate the practical feasibility of our approach, we used BOTMAGNIFIER to
track bot populations in the wild for a period of four months. In particular, we ran the
system for 114 days between September 28, 2010 and February 5, 2011. We had a
downtime of about 15 days in November 2011, during which the emails of the spam

trap could not be delivered.

By using our magnification algorithm, our system identified and tracked 2,031,110 bot
IP addresses during the evaluation period. Of these, 925,978 IP addresses (~ 45.6%)
belonged to magnification sets (i.e., they were generated by the magnification process),

while 1,105,132 belonged to seed pools generated with the help of the spam trap.

Data Streams Limitations

The limited view we have from the transaction log generated by only one DNSBL
mirror limits the number of bots we can track each day. BOTMAGNIFIER requires an
IP address to appear a minimum number of times in the transaction log, in order to be
considered as a potential bot. From our DNSBL mirror, we observed that a medium

size campaign targets about 50,000 different destination servers (i.e.,

The value of N for such a campaign, calculated using Equation 3.5, is 50. On an

average day, our DNSBL mirror logs activity performed by approximately 4.7 million

63



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

mail senders. Of these, only about 530,000 (=~ 11%) appear at least 50 times. Thus, we
have to discard a large number of potential bots a priori, because of the limited number
of transactions our Spamhaus mirror observes. If we had access to more transaction

logs, our visibility would increase, and, thus, the results would improve accordingly.

Botnet | Total # of IP addresses | # of dynamic IP addresses | # of static IP addresses | # of events per bot
(per day)
Lethic 887,852 770,517 117,335 101
Rustock 676,905 572,445 104,460 173
Cutwail 319,355 285,223 34,132 208
MegaD 68,117 65,062 3,055 112
Waledac 36,058 32,602 3,450 140

Table 3.1: Overview of the BOTM AGNIFIER results.

Overview of Tracking Results

For each day of analysis, BOTMAGNIFIER identified the largest spam campaigns active
during that day (Section 3.2), learned the behavior of a subset of IP addresses carrying
out those campaigns (Section 3.3), and grew a population of IP addresses behaving in
the same way (Section 3.4). This provided us with the ability to track the population
of the largest botnets, monitoring how active they were, and determining which periods

they were silent.

A challenging aspect of tracking botnets with BOTMAGNIFIER has been assigning the
right label to the various spam campaigns (i.e., the name of the botnet that generated
them). Tagging the campaigns that we observed in our honeypot environment was
trivial, while for the others we used the clustering techniques described in Section 3.5.
In total, we observed 1,475 spam campaigns. We tried to assign a botnet label to each

cluster, and every time two clusters were assigned the same label, we merged them

64



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

together. After this process, we obtained 38 clusters. Seven of them were large botnets,
which generated 50,000 or more bot IP addresses in our magnification results. The
others were either smaller botnets, campaigns carried out by dedicated servers (i.e., not

carried out by botnets), or errors produced by the clustering process.

We could not assign a cluster to 107 campaigns (= 7% of all campaigns), and we
magnified these campaigns independently from the others. Altogether, the magnified
sets of these campaigns accounted for 20,675 IP addresses (= 2% of the total magnified
hosts). We then studied the evolution over time and the spamming capabilities of the

botnets that we were able to label.

Analysis of Magnification Results

Table 3.1 shows some results from our tracking. For each botnet, we list the number
of IP addresses we obtained from the magnification process. Interestingly, Lethic, with
887,852 IP addresses, was the largest botnet we found. This result is in contrast with the
common belief in the security community that, at the time of our experiment, Rustock
was the largest botnet [94]. However, from our observation, Rustock bots appeared to be
more aggressive in spamming than the Lethic bots. In fact, each Rustock bot appeared,
on average, 173 times per day on our DNSBL mirror logs, whereas each Lethic bot

showed up only 101 times.

For each botnet population we grew, we distinguished between static and dynamic IP
addresses. We considered an IP address as dynamic if, during the testing period, we

observed that IP address only once. On the other hand, if we observed the same IP ad-

65



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

800000

dynamic IPs
700000 Statlc IPS .........................

600000
500000
400000
300000
200000

100000 | 7

Figure 3.3: Growth of Lethic IP addresses.

dress multiple times, we consider it as static. The fraction of static versus dynamic IP
addresses for the botnets we tracked goes from 15% for Rustock to 4% for MegaD. Note
that smaller botnets exceeded the campaign size thresholds required by BOTMAGNI-
FIER (see Section 3.5) less often than larger botnets, and therefore it is possible that
our system underestimates the number of IP addresses belonging to the MegaD and

Waledac botnets.

Figures 3.3 and 3.4 show the growth of IP addresses over time for the magnification sets
belonging to Lethic and Rustock (note that we experienced a downtime of the system
during November 2010). The figures show that dynamic IP addresses steadily grow
over time, while static IP addresses reach saturation after some time. Furthermore, it is
interesting to notice that we did not observe much Rustock activity between December

24, 2010 and January 10, 2011. Several sources reported that the botnet was (almost)

66



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

600000

dynamic IPs
static IPs -

500000

400000

300000

200000

100000

Days

Figure 3.4: Growth of the dynamic and static IP address populations for the two major botnets.

down during this period [83, 134]. BOTMAGNIFIER confirms this downtime of the
botnet, which indicates that our approach can effectively track the activity of botnets.
After the botnet went back up again in January 2011, we observed a steady growth in

the number of Rustock IP addresses detected by BOTM AGNIFIER.

Figures 3.5 and 3.6 show the cumulative distribution functions of dynamic IP addresses
and static IP addresses tracked during our experiment for the five largest botnets. It is
interesting to see that we started observing campaigns carried out by Waledac on Jan-
uary 1, 2011. This is consistent with the reports from several sources, who also noticed
that a new botnet appeared at the same time [90, 117]. We also observed minimal spam
activities associated with MegaD after December 7, 2011. This was a few days after

the botmaster was arrested [115].

67



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

i lethic
i rustock
. cutwall
megad
waledac

Figure 3.5: Cumulative Distribution Function (CDF) for the dynamic IP addresses.

3.6.3 Application of Results

False positives. In Section 3.4, we showed how the parameter £ minimizes the ratio
between true positives and false positives. We initially tolerated a small number of false
positives because these do not affect the big picture of tracking large botnet populations.
However, we want to quantify the false positive rate of the results, i.e., how many of
the bot candidates are actually legitimate machines. This information is important,
especially if BOTMAGNIFIER is used to inform Internet Service Providers or other
organizations about infected machines. Furthermore, if we want to use the results to
improve spam filtering systems, we need to be very careful about which IP addresses
we consider as bots. We use the same techniques outlined in Section 3.6.1 to check for
false positives. We remove each IP address that matches any of these techniques from

the magnified sets.

68



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

Figure 3.6: Cumulative Distribution Function (CDF) for the static IP addresses.

We ran this false positive detection heuristic on all the magnified IP addresses identified
during the evaluation period. This resulted in 35,680 (~=1.6% of the total) IP addresses
marked as potential false positives. While this might sound high at first, we also need
to evaluate how relevant this false positive rate is in practice: our results can be used
to augment existing systems and thus we can tolerate a certain rate of false positives.
In addition, while deploying BOTMAGNIFIER in a production system, one could add a
filter that applies the techniques from Section 3.6.1 to any magnified pool, and obtain

clean results that he could use for spam reduction.

Improving existing blacklists. We wanted to understand whether our approach can
improve existing blacklists by providing information about spamming bots that are cur-

rently active. To achieve this, we analyzed the email logs from the UCSB computer sci-

69



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

ence department over a period of two months, from November 30, 2010 to February 8,
2011. As a first step, the department mail server uses Spamhaus as a pre-filtering mech-
anism, and therefore the majority of the spam gets blocked before being processed. For
each email whose sender is not blacklisted, the server runs SpamAssassin [29] for con-
tent analysis, to find out if the message content is suspicious. SpamAssassin assigns a
spam score to each message, and the server flags it as spam or ham according to that
value. These two steps are useful to evaluate how BOTMAGNIFIER performs, for the

following reasons:

e If a mail reached the server during a certain day, it means that at that time its

sender was not blacklisted by Spamhaus.

e The spam ratios computed by SpamAssassin provide a method for the evaluation

of BOTMAGNIFIER’s false positives.

During the analysis period, the department mail server logged 327,706 emails in total,
sent by 228,297 distinct IP addresses. Of these, 28,563 emails were considered as spam
by SpamAssassin, 1.e., they bypassed the first filtering step based on Spamhaus. These
emails had been sent by 10,284 IP addresses. We compared these IP addresses with the
magnified sets obtained by BOTMAGNIFIER during the same period: 1,102 (= 10.8%)
appeared in the magnified sets. We then evaluated how many of these IP addresses
would have been detected before reaching the server if our tool would have been used
in parallel with the DNSBL system. To do this, we analyzed how many of the spam
sender IP addresses were detected by BOTMAGNIFIER before they sent spam to our

server. We found 295 IP addresses showing this behavior. All together, these hosts sent

70



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

1,225 emails, which accounted for 4% of the total spam received by the server during

this time.

We then wanted to quantify the false positives in the magnified pools generated by
BOTMAGNIFIER. To do this, we first searched for those IP addresses that were in one
of the magnification pools, but had been considered sending ham by SpamAssassin.
This resulted in 28 matches. Of these, 15 were blacklisted by Spamhaus when we
ran the tests, and therefore we assume they are false negatives by SpamAssassin. Of
the remaining 13 hosts, 12 were detected as legitimate servers by the filters described
in Section 3.6.1. For the remaining one IP address, we found evidence of it being
associated with spamming behavior on another blacklist [107]. We therefore consider

it as a false negative by SpamAssassin as well.

In summary, we conclude that BOTMAGNIFIER can be used to improve the spam fil-
tering on the department email server: the server would have been reached by 4%
less spam emails, and no legitimate emails would have been dropped by mistake within
these two months. Having access to more Spamhaus mirrors would allow us to increase

this percentage.

Resilience to evasion. If the techniques introduced by BOTM AGNIFIER become pop-
ular, spammers will modify their behavior to evade detection. In this section, we discuss

how we could react to such evasion attempts.

The first method that could be used against our system is obfuscating the email subject

lines, to prevent BOTMAGNIFIER from creating the seed pools. If this was the case,

71



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

we could leverage previous work [104, 148] that takes into account the body of emails
to identify emails that are sent by the same botnet. As an alternative, we could use
different methods to build the seed pools, such as clustering bots based on the IPs of

the C&C servers that they contact.

Another evasion approach that spammers might try is to reduce the number of bots
associated with each campaign. The goal would be to stay under the threshold required
by BOTMAGNIFIER (i.e., 1,000) to work. This would require more management effort
on the botmaster’s side, since more campaigns would need to be run. Moreover, we
could use other techniques to cluster the spam campaigns. For example, it is unlikely
that the spammers would set up a different website for each of the small campaigns
they create. We could then cluster the campaigns by looking at the web sites the URLs

in the spam emails point to.

Other evasion techniques might be to assign a single domain to each spamming bot, or
to avoid evenly distributing email lists among bots. In the first case, BOTMAGNIFIER
would not be able to unequivocally identify a bot as being part of a specific botnet.
However, the attribution requirement could be dropped, and these bots would still be
detected as generic spamming bots. The second case would be successful in evading
our current system. However, this behavior involves something that spammers want to
avoid: having the same bot sending thousands of emails to the same domain within a

short amount of time would most likely result in the bot being quickly blacklisted.

72



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

3.6.4 Universality of £

In Section 3.4, we introduced a function to determine the optimal /N value according
to the size of the seed pool’s target |T'(p;)|. To do this, we analyzed the data from
two C&C servers of the Cutwail botnet. One could argue that this parameter will work
well only for campaigns carried out by that botnet. To demonstrate that the value of %
(and subsequently of V) estimated by the function produces good results for campaigns
carried out by other botnets, we ran the same precision versus recall technique we used
in Section 3.4 on other datasets. Specifically, we analyzed 600 campaigns observed in
the wild, which had been carried out by the other botnets we studied (Lethic, Rustock,
Waledac, and MegaD). Since we did not have access to full ground truth for these
campaigns, we used the IP addresses from the seed pools as true positives, and the set
of IP addresses not blacklisted by Spamhaus as false positives. For the purpose of this
analysis, we ignored any other IP address returned by the magnification process (i.e.,

magnified IP addresses already blacklisted by Spamhaus).

The results are shown in Figure 3.7. The figure shows the function plot of % in relation
to the size of |T'(p;)|. The dots show, for each campaign we analyzed, where the optimal
value of £ lies. As it can be seen, the function of k£ we used approximates the optimal
values for most campaigns well. This technique for setting £ might also be used to set

up BOTMAGNIFIER in the wild, when ground truth is not available.

Data stream independence. In Section 3.2.2, we claimed that BOTMAGNIFIER can
work with any kind of transaction log as long as this dataset provides information about

which IP addresses sent email to which destination email servers at a given point in

73



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

0.01 k function
optimal k
0.008
0.006 |
4
0.004
0.002 |

PAY

1) i) 3 k2 % % 2) %

2 2 2 2 2 2 2 2

> > > > > > > >
TPl

Figure 3.7: Analysis of our function for k£ compared to the optimal value of k& for 600 cam-
paigns.

time. To confirm this claim, we ran BOTM AGNIFIER on an alternative dataset, extracted
from netflow records [50] collected by the routers of a large Internet service provider.
The netflow data is collected with a sampling rate of 1 out of 1,000. To extract the
data in a format BOTMAGNIFIER understands, we extracted each connection directed
to port 25 TCP and considered the timestamp in which the connection initiated as the
time the email was sent. On average, this transaction log contains 1.9 million entries

per day related to about 194,000 unique sources.

To run BOTMAGNIFIER on this dataset, we first need to correctly dimension k. As
explained in Section 3.4, the equation for k is stable for any transaction log. However,
the value of the constants k; and « changes for each dataset. To correctly dimension

these parameters, we ran BOTMAGNIFIER on several campaigns extracted from the

74



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

! campaign with 23,524 dest.
campaign with 14,439 dest.
campaign with 12,054 dest.

0.8 campaign with 10,348 dest.

campaign with 3,048 dest.

=
@
[a
0.4
02
0

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014
k

Figure 3.8: Precision vs. Recall functions for five campaigns observed in the netflow dataset.

netflow records. The PR(k) analysis is shown in Figure 3.8. The optimal point of the
campaigns is located at a lower £ for this dataset compared to the ones analyzed in
Section 3.4. To address this difference, we set k; to 0.00008 and « to 1 when dealing
with netflow records as transaction logs. After setting these parameters, we analyzed
one week of data with BOTMAGNIFIER. The analysis period was between January 20
and January 28, 2011. During this period, we tracked 94,894 bots. Of these, 36,739
(= 38.7%) belonged to the magnified sets of the observed campaigns. In particular,
we observed 40,773 Rustock bots, 20,778 Lethic bots, 6,045 Waledac bots, and 1,793

Cutwail bots.

75



CHAPTER 3. LOCATING SPAMBOTS ON THE INTERNET

3.7 Conclusions

In this chapter we presented BOTMAGNIFIER, a tool for tracking and analyzing spam-
ming botnets. The tool is able to “magnify” an initial seed pool of spamming IP ad-
dresses by learning the behavior of known spamming bots and matching the learned
patterns against a (partial) log of the email transactions carried out on the Internet.
We have validated and evaluated our approach on a number of datasets (including the
ground truth data from a botnet’s C&C hosts), showing that BOTM AGNIFIER is indeed
able to accurately identify and track botnets. We showed BOTM AGNIFIER can be ef-
fectively used to reduce the amount of spam received by email servers, as well as to

complement existing IP blacklists.

76



Part 11

Detecting Misbehaving Accounts

77



Chapter 4

Background: Online Social Networks

Online social networks (OSNs) offer a way for users to keep track of their friends
and communicate with them. To this end, a network of trust typically regulates which
personal information is visible to whom. For example, users can establish friend re-
lationships with each other, and start seeing the content that their friends post on the

social network.

Online social networks witnessed an exponential growth over the last years. Early plat-
forms such as Livejournal were created in the late nineties, and were fairly simple [8].
At the time of writing, there are many large social networks with hundreds of mil-
lions users each, and this count keeps growing. Even sites that were not born as social
networks, such as Youtube [19], include “social” elements, with users who can connect
with each other and comment on each other’s content. In general, the boundary between

social networks and regular websites is blurring. For example, news sites include on

78



CHAPTER 4. LOCATING SPAMBOTS ON THE INTERNET

their pages buttons to easily share or like content on social networks.

From a security point of view, social networks have unique characteristics. First, in-
formation access and interaction is based on trust. Users typically share a substantial
amount of personal information with their friends. This information may be public or
not. If it is not public, access to it is regulated by a network of trust. In this case, a
user allows only her friends to view the information regarding herself. Unfortunately,
social networking sites do not provide strong authentication mechanisms, and it is easy
to impersonate a user and sneak into a person’s network of trust [99]. Moreover, it
often happens that users, to gain popularity, accept any friendship request they receive,
exposing their personal information to people they do not know in real life. In other
cases, such as MySpace, the information displayed on a user’s page is public by design.
Therefore, anyone can access it, friend or not. Networks of trust are important from a
security point of view, because they are often the only mechanism that protects users

from being contacted by unwanted entities.

Another distinguishing characteristic of social networks is that Internet users present a
different awareness to threats on social networks than on other types of online services.
While most users have become aware of the common threats that affect the Internet,
such as e-mail spam and phishing, they usually do not show an adequate understanding
of the threats hidden in social networks. For example, a previous study showed that
45% of users on a social networking site readily click on links posted by their “friend”
accounts, even if they do not know that person in real life [35]. This behavior might
be abused by spammers who want to advertise web sites, and might be particularly

harmful to users if spam messages contain links to web pages serving malware.

79



CHAPTER 4. LOCATING SPAMBOTS ON THE INTERNET

As part of my research I develop systems to detect and block malicious activity on
online social networks. In this thesis I focused on malicious activity carried on three
social networks: Facebook, Twitter, and MySpace. The reason of this choice is that
these social networks were the largest ones when this research work started. Facebook
and Twitter are still the largest social networks, while MySpace witnessed a steady
decline in users. Although our studies are limited to three social networks, other social
networking sites present similar characteristics, and therefore our detection approaches

can be adapted to them.

In the remainder of this chapter I briefly describe the social networks that we analyzed

in our work.

4.1 The Facebook Social Network

Facebook is currently the largest social network on the Internet. Measurement studies
reported that the social network had 721 million million active users in 2011 [141],

with over 2 billion media items (videos and pictures) shared every week [4].

User profiles are not public by default, and the right to view a user’s page is granted
only after having established a relationship of trust (paraphrasing the Facebook termi-
nology, becoming friends) with the user. When a user A wants to become friend with
another user B, the platform first sends a request to B, who has to acknowledge that
she knows A. When B confirms the request, a friendship connection with A is estab-

lished. Previous research showed that the perception of Facebook friendship by users

80



CHAPTER 4. LOCATING SPAMBOTS ON THE INTERNET

is different from their perception of a relationship in real life [35]. Most of the time,
Facebook users accept friendship requests from people they barely know, while in real

life a person would be stricter on who she considers a “friend.”

When they visit the Facebook website, users are presented with a timeline, which con-
tains the updates recently shared by the user’s friends on the social network. A user

can separate their friends in groups, and specify what type of content is visible to each

group.

In the past, most Facebook users were grouped in networks, where people coming from
a certain country, town, or school could find their neighbors or peers. The default
privacy setting for Facebook was to allow all people in the same network to view each
other’s profiles. Thus, a malicious user could join a large network to crawl data from
the users on that network. Among the rest, this data allowed an adversary to carry
out targeted attacks. For example, a spammer could run a campaign that targets only
those users whose profiles have certain characteristics (e.g., gender, age, interests) and
who, therefore, might be more responsive to that campaign. For this reason, Facebook
deprecated geographic networks in October 2009. School and company networks are
still available, but their security is better, since to join one of these networks, a user has

to provide a valid e-mail address from that institution (e.g., a university e-mail address).

81



CHAPTER 4. LOCATING SPAMBOTS ON THE INTERNET

4.2 The MySpace Social Network

MySpace used to be the largest social network on the Internet. Over the last years, the
side steadily lost users, who mostly moved to Facebook [2]. In 2013 the site witnessed

a major restyling, and it became mostly focused on sharing music and videos.

When we performed the studies described in this thesis, in 2009, MySpace was still a
“traditional” online social network. The basic idea of this network was to provide each
user with a web page, which the user was able to personalize with information about
herself and her interests. Even though MySpace also had the concept of “friendship,”
like Facebook, MySpace pages were public by default. Therefore, it was easier for a
malicious user to obtain sensitive information about a user on MySpace than on Face-
book. It was possible to profile users by gender, age, or nationality, and an aimed spam

campaign could target a specific group of users to enhance its effectiveness.

4.3 The Twitter Social Network

Twitter is a much simpler social network than Facebook and MySpace. It is designed
as a microblogging platform, where users send short text messages (i.e., tweets) that

appear on their friends’ feeds (similar to Facebook’s timeline).

Unlike Facebook and MySpace, no personal information is shown on Twitter pages by
default. Users are identified only by a profile name and, optionally, by a real name.

To profile a user, it is possible to analyze the tweets she sends, and the feeds to which

82



CHAPTER 4. LOCATING SPAMBOTS ON THE INTERNET

she is subscribed. However, this is significantly more difficult than on the other social

networks.

A Twitter user can start “following” another user. As a consequence, she starts receiving
the user’s tweets on her own page. The user who is “followed” can, if she wants, follow
the other one back. This makes Twitter different from other social networks, because

the “friend” relation does not have to be mutual, but actually it is often unilateral.

Tweets can be grouped by hashtags, which are popular words, beginning with a “#”
character. This allows users to efficiently search who is posting topics of interest at a
certain time. When a user likes someone’s tweet, she can decide to retweet it. As a
result, that message is shown to all her followers. By default, profiles on Twitter are
public, but a user can decide to protect her profile. If she chooses to do so, the user will

have to authorize people before they can follow her.

Although it is usually considered a social network, the asymetry of user relations on
Twitter makes this service very different from other OSN sites. Previous research

showed that many users consider this network as a news platform instead [86].

Twitter witnessed a constant growth over the last years. At the time of writing, Twitter

is used by more than 240 million active users every month.

In the next chapter I present our approach to detecting fake accounts that are misused
by cybercriminals on online social networks. Then, in Chapter 6, I present a system
able to detect that a legitimate online social network account has been compromised

and is now misused by a cybercriminal.

83



Chapter 5

Detecting Fake Online Social Network

Accounts

5.1 Introduction

As any popular online service, social networks have to deal with misuse too. One way
that miscreants misuse social networks is by creating fake accounts and using them to
spread spam or other malicious content on the site [63]. In this chapter, we present the
results of a year-long study of spam activity on social networks. By leveraging these
observations, we developed SPAMDETECTOR, a system to automatically flag fake ac-
counts that are misused by cybercriminals. SPAMDETECTOR was one of the first tools

developed in the research community to detect malicious accounts on social networks.

In this chapter we make the following contributions:

84



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

e We created a set of honeypot accounts (honey-profiles) on three major social
networks, and we logged all the activity (malicious or not) that these accounts
were able to observe over a one-year period for Facebook and an eleven-month

period for Twitter and MySpace.

e We investigate how spammers are using social networks, and we examine the
effectiveness of the countermeasures that are taken by the major social network

portals to prevent spamming on their platforms.

e We identify characteristics that allow us to detect fake accounts controlled by

spammers on a social network.

e We built SPAMDETECTOR, a tool to detect spammers, and used it on a Twitter
and Facebook dataset. We obtained some promising results. In particular, we
correctly detected 15,857 on Twitter and, after our submission to the Twitter spam

team, these accounts were suspended.

This chapter is structured as follows: In Section 5.2, I describe the setup of our exper-
iment, focusing on the parameters we used to create the honey-profiles, as well as the
kind of data that we collected. In Section 5.3, I analyze the collected data and describe
our findings about spamming activity. In Section 5.4, I introduce SPAMDETECTOR and

the techniques for the detection of spam profiles on social networks that it uses.

85



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

5.2 Data Collection

Our first goal is to understand the extent to which spam is a problem on social networks,
as well as the characterization of accounts used to spread spam. To this end, we created
900 profiles on Facebook, MySpace, and Twitter, 300 on each platform. The purpose
of these accounts was to log the traffic (e.g., friend requests, messages, invitations)
they received from other users of the network. Due to the similarity of these profiles to

honeypots [7], we call these accounts honey-profiles.

5.2.1 Honey-Profiles

Our goal was to create a number of honey-profiles that reflect a representative selection
of the population of the social networks we analyzed. To this end, we first crawled each

social network to collect common profile data.

On Facebook, we joined 16 geographic networks, using a small number of manually-
created accounts. This was possible because, at the time, geographic networks were

still available; as we mentioned in Chapter 4, this feature was discontinued in 2009.

Since we wanted to create profiles reflecting a diverse population, we joined networks
on all continents (except Antarctica and Oceania): the Los Angeles and New York
networks for North America, the London, France, Italy, Germany, Russia, and Spain
ones for Europe, the China, Japan, India, and Saudi Arabia ones for Asia, the Algeria
and Nigeria ones for Africa, and the Brazil and Argentina networks for South Amer-

ica. For each network, we crawled 2,000 accounts at random, logging names, ages,

86



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

and gender (which is the basic information required to create a profile on Facebook).
Afterwards, we randomly mixed this data (names, surnames, and ages) and created the
honey-profiles. Gender was determined by the first name. Each profile was assigned
to a network. Accounts created using data from a certain network were assigned either
to this network or to a network where the main language spoken was the same (e.g.,
profiles created from accounts in the France network were used in networks associated
with francophone countries). This was a manual process. For larger networks (e.g.,
New York, Germany, Italy) up to three accounts were created, while only one account

was set up for smaller ones. In total, we created 300 accounts on the Facebook platform.

On MySpace, we crawled 4,000 accounts in total. This was easier than on Facebook
because, as mentioned in Chapter 4, most profile pages are public. Similar to Facebook,
our aim was to generate “average” profiles based on the user population of the social
network. After data collection, we looked for common names and ages from profiles
with different languages, and created profiles in most nations of the world. We created

300 accounts on MySpace for our experiment.

On Facebook and MySpace birth date and gender are needed for registration. On Twit-
ter, on the other hand, the only information required for signing up is a full name and
a profile name. Therefore, we did not find it necessary to crawl the social network for
“average” profile information, and we simply used first names and surnames from the
other social networks. For each account, the profile name has been chosen as a concate-
nation of the first and last name, plus a random number to avoid conflicts with already

existing accounts. Similarly to the other networks, we created 300 profiles.

We did not create more than 300 profiles on each network because registration is a semi-

87



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

automated process. More precisely, even though we could automatically fill the forms
required for registration, we still needed a human to solve the CAPTCHAs involved in

the process.

5.2.2 Collection of Data

After having created our honey-profiles, we ran scripts that periodically connected to
those accounts and checked for activity. We decided that our accounts should act in a
passive way. Therefore, we did not send any friend requests, but accepted all the ones

that were received.

In a social network, the first action a malicious user would likely execute to get in touch
with his victims is to send them a friend request. This might be done to attract the user
to the spammer’s profile to view the spam messages (on MySpace), lure the victim into
following back the fake accounts (on Twitter), or to invite her to accept the friendship

and start seeing the spammer’s messages in her own feed (on Facebook).

After having acknowledged a request (i.e., accepted the friendship on Facebook and
MySpace or started following the user on Twitter), we logged all the information needed
to detect malicious activity. More precisely, we logged every email notification received
from the social networks, as well as all the requests and messages seen on the honey-
profiles. On some networks, such as Facebook, the notifications and messages might be
of different types (e.g., application and group invitations, video posts, status messages,
private messages), while on other platforms, they are more uniform (e.g., on Twitter,

they are always short text messages). We logged all types of requests on Facebook, as

88



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

well as wall posts, status updates, and private messages. On MySpace, we recorded
mood updates, wall posts, and messages. On Twitter, we logged tweets and direct

messages.

Our scripts ran continuously for 12 months for Facebook (from June 6, 2009 to June
6, 2010), and for 11 months for MySpace and Twitter (from June 24, 2009 to June
6, 2010), periodically visiting each account. The visits had to be performed slowly
(approximately one account visited every 2 minutes) to avoid being detected as a bot

by the social networking site and, therefore, having the accounts deleted.

5.3 Analysis of Collected Data

As mentioned previously, the first action that a spammer would likely execute is to send
friend requests to her victims. Only a fraction of the contacted users will acknowledge
a request, since they do not know the real-life person associated with the account used
by the bot'. On Twitter, the concept of friendship is slightly different, but the modus
operandi of the spammers controlling fake accounts is the same: they start following
victims, hoping that they will follow them back, starting to receive the spam content.
From the perspective of our analysis, friendships and mutual follow relationships are
equivalent. When a user accepts one of the friend requests, she lets the spammer enter
her network of trust. In practice, this action has a major consequence: The victim
starts to see messages received from the spammer in her own news/message feed. This

kind of spamming is very effective, because the spammer has to write a single message

'"We assume that most spam accounts are managed in an automated fashion. Therefore, from this
point on, we will use the terms fake account and bots interchangeably.

89



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

25 Friend Requests From Spammers
Ham Friend Requests
20
]
o 15
>
o
Q
° 10
pd
5 L
%
o LV ANV /'\/\/_LV\_/\ AA I |
08/01/09 11/01/09 02/01/10 05/01/10
Day

Figure 5.1: Friend requests received by our honey-profiles on Facebook.

(e.g., a status update on Facebook), and the message appears in the feeds of all the
victims. Depending on the social network, the nature of these messages can change:
they are status updates on Facebook, status or mood updates on MySpace, and tweets

on Twitter.

During our study, our honey-profiles received a total of 4,250 friend requests. As can

be seen in Table 5.1, the amount of requests varies from network to network. This

Network | Overall | Spammers
Facebook 3,831 173
MySpace 22 8
Twitter 397 361

Table 5.1: Friend requests received by our honey-profiles on the various social networks.

90



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

800

Spam messages —i—
Ham messages

700

600

500

400

N. of messages

300

200 I

100

08/01/09 11/01/09 02/01/10 05/01/10
Day

Figure 5.2: Messages observed by our honey-profiles on Facebook.

might be caused by the different characteristics of the various social networks. As one
would expect, we observed the largest amount of requests on Facebook, since it has
the largest user base. Surprisingly, however, the majority of these requests proved not
to come from spam bots, but from real users, looking for popularity or for real people
with the same name as one of our honey-profiles. Another surprising finding is that, on

MySpace, we received a very low number of friend requests. It is not clear what the

Network | Overall | Spammers
Facebook | 72,431 3,882
MySpace 25 0
Twitter 13,113 11,338

Table 5.2: Messages received by our honey-profiles on the various social networks.

91



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

reason of the disparity between this social network and Facebook is, since MySpace
also provided a mechanism to easily post messages on users’ pages. Daily statistics for
friend requests received by our honey-profiles on Facebook and Twitter are shown in

Figures 5.1 and 5.3.

Information about the logged messages is shown in Table 5.2. Overall, we observed
85,569 messages. Again, there is a big disparity between the three social networks.
On Twitter, interestingly, we recorded the largest amount of spam messages. Given the
smaller size of the network’s user base, this is surprising. Daily statistics for messages
received on Facebook are shown in Figure 5.2, while those for Twitter are reported in
Figure 5.4. We do not show a graph for MySpace because the number of messages we

received was very low.

On Facebook, we also observed a fair amount of invitations to applications, groups, and
events, as well as posting of photos and videos in our honey-profiles’ feeds. However,
since none of them were spam, but were coming from legitimate accounts that mistak-

enly connected to our honey-profiles, we ignored them for the subsequent analysis.

5.3.1 Identification of Spam Accounts

Tables 5.1 and 5.2 show the breakdown of requests that were received by our honey-
profiles. We can see that the honey-profiles did not only receive friend requests and
messages from spammers, but also a surprising amount from legitimate accounts. Even
if friend requests are unsolicited, they are not always the result of spammers who reach

out. In particular, many social network users aim to increase their popularity by adding

92



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

as friends people they do not know. On Facebook, since all our honey-profiles were
members of a geographic network (as long as these were available), it is also possible
that people looking for local “friends” would have contacted some of our accounts. In
particular, we observed that this occurs with more frequency on smaller networks (in
particular, some Middle Eastern and African ones). Moreover, since we picked random
combinations of first and last names, it happened that some of our honey-profiles had
the same name as a real person, and, as a consequence, the account was contacted by
real friends of this person. Since not all friend requests and messages are malicious, we

had to distinguish between spammers and benign users.

To discriminate between real users and spam bots, we started to manually check all the
profiles that contacted us. During this process, we noticed that fake accounts used to
spread spam share some common traits, and formalized them in features that we then
used for automated spam detection. We will describe these features in detail in Section

54.

We found that, of the original 3,831 accounts that contacted us on Facebook, 173 were
spammers. Moreover, on Facebook, during the last months of logging, the ratio of
spam messages compared to legitimate ones dramatically dropped. The reason is that
when a legitimate user adds our honey-profile to her friend list, this honey-profile starts
appearing on her friends’ pages as a friend suggestion. This leads to a number of
additional friend requests (and messages) from real users. On MySpace, we detected 8
spammers. On Twitter, we detected 361 spammers out of 397 accounts that contacted

our honey-profiles.

93



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

40

Adds by spammers
Legitimate adds

35

30

25

20

N. of requests

15

10

o A Cl
; WS s oo MV

08/01/09 11/01/09 02/01/10 05/01/10
Day

Figure 5.3: Users starting following our honey-profiles on Twitter.

5.3.2 Spam Bot Analysis

The fake accounts that we identified showed different levels of activity and different
strategies to deliver spam. Based on their spam strategy, we distinguish four categories

of bots:

1. Displayer: Bots that do not post spam messages, but only display some spam
content on their own profile pages. In order to view spam content, a victim has to
manually visit the profile page of the bot. This kind of bots is likely to be the least
effective in terms of people reached. All the detected MySpace bots belonged to

this category, as well as two Facebook bots.

94



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

250 ‘
Spam messages
Ham messages -
200
3
2 150
7
(O]
S
S 100 |
pzd
O - i n"'.—‘." ) s Pagines’ MW PoPr ¥ 4o 6 | :'."';-_v-
08/01/09 11/01/09 02/01/10 05/01/10
Day

Figure 5.4: Messages received by our honey-profiles on Twitter.

2. Bragger: Bots that post messages to their own feed. These messages vary ac-
cording to the networks: on Facebook, these messages are usually status updates,
while on Twitter these are tweets. The result of this action is that the spam mes-
sage is distributed and shown on all the victims’ feeds. However, the spam is not
shown on the victim’s profile when the page is visited by someone else (i.e., one
of the victim’s friends). Therefore, the spam campaign reaches only victims who
are directly connected with the spam bot. 163 bots on Facebook belonged to this

category, as well as 341 bots on Twitter.

3. Poster: Bots that send a direct message to each victim. This can be achieved in
different ways, depending on the social network. On Facebook, for example, the

message might be a post on a victim’s wall. The spam is shown on the victims

95



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

feed, but, unlike the case of a “bragger,” can be viewed also by the victim’s
friends visiting her profile page. This is the most effective way of spamming,
because it reaches a greater number of users compared to the previous two. Eight
bots from this category have been detected, all of them on the Facebook network.

Koobface-related messages also belong to this category (see [30]).

4. Whisperer: Bots that send private messages to their victims. As for “poster”
bots, these messages have to be addressed to a specific user. The difference,
however, is that this time the victim is the only one seeing the spam message. This
type of bots is fairly common on Twitter, where spam bots send direct messages
to their victim. We observed 20 bots of this kind on this network, but none on

Facebook and MySpace.

We then examined the message-sending activity of spam bots on different networks. On
Facebook, we observed an average of 11 spam messages per day, while, on Twitter, the
average number of messages observed was 34. On MySpace, we did not observe any
spam message. The reason is that all the spam bots on MySpace are “displayers.” The
difference between Twitter and Facebook activity is caused by the apparently different
responses of the two social networks to spam. More precisely, we observed that, at the
time of this study, Facebook seemed to be much more aggressive in fighting spam. This
is demonstrated by the fact that, on Facebook, the average lifespan of a spam account
was four days. On Twitter, on the other hand, this lifespan it was 31 days. No spam

accounts were deleted during our observation on MySpace.

As shown in Figures 5.1 and 5.3, many spam requests arrived during the first days of our

experiment, especially on Facebook. All the early-days spammers have been quickly

96



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

deleted by Facebook (the one with the longest life lasted one month), while most of the

Twitter ones were deleted only after we reported them to their spam team.

It is also interesting to look at the time of the day when messages and friend requests
are sent. The reason is that fake accounts might be accessed periodically or at specific
times to send their messages. Benign activity, on the other hand, follows the natural
diurnal pattern. During our observation, we noticed that some bots showed a higher
activity around midnight (GMT -7), while in the same period of time, the legitimate

messages registered a low.

Another way to study the effectiveness of spam activity is to look at how many users
acknowledged friend requests on the different networks. On Facebook, the average
number of confirmed friends of spam bots is 21, on MySpace it is 31, while on Twitter
it is 350. We assume that the difference in number of people reached is probably due
to the different lifetime of the bots in the different networks. The low activity of the
bots on MySpace might be the cause of both the low numbers of bots detected on that

network and their longer lifetime.

We identified two kinds of bot behavior: stealthy and greedy bots. Greedy ones include
spam content in every message they send. They are easier to detect, and might lead
users to flag bots as spammers or to revoke their friendship status. Stealthy bots, on
the other hand, send messages that look legitimate, and only once in a while inject a
message containing spam content. Since they look like legitimate profiles, they might

convince more people to accept and maintain friendships.

97



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

Of the 534 spam bots detected, 416 were greedy and 98 were stealthy (note that ten
spam profiles were “displayers,” and 20 were “whisperers.” These bots, therefore, did

not use status updates or tweets to spam).

Another interesting observation is that spam bots are usually less active than legitimate
users. This probably happens because sending out too many messages would make de-
tection by the social network too easy. For this reason, most spam profiles we observed,

both on Facebook and Twitter, sent less than 20 messages during their life span.

While observing Facebook spammers, we also noticed that many of them did not seem
to pick victims randomly, but, instead, they seemed to follow certain criteria. In particu-
lar, most of their victims happened to be male. This was particularly true for campaigns
advertising adult websites. Since Facebook does not provide an easy way to search for
people based on gender, the only way spammers can identify their victims is by looking
for male first names. This intuition led us to another observation. The list of victims
targeted by these bots usually shows an anomalous repetition of people with the same
first name (e.g., tens of profiles with only four different given names). This might hap-
pen because spam bots are given lists of common first names to target. In addition,
Facebook people search does not make a difference between first and last name while
searching. For this reason, these gender-aware bots sometimes targeted female users

who happened to have a male name as last name (e.g., Wayne).

Mobile Interface Most social networking sites have introduced techniques to prevent
automatic account generation and message sending. For example, at the time of this

study a Facebook user was required to solve a CAPTCHA [12] every time she tries to

98



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

send a friend request. A CAPTCHA has to be solved also every time an account is
created. Moreover, the site uses a very complicated JavaScript environment that makes
it difficult for bots to interact with the pages. On the other hand, the complexity of these
sites made them not very attractive to mobile Internet users, who use less powerful

devices and slower connections.

To attract more users and to make their platform more accessible from any kind of de-
vice, major social networks launched mobile versions of their sites. These versions of-
fer the main functionality of the complete social networking sites, but in a simpler fash-
ion. To improve usability, no JavaScript is present on these pages, and no CAPTCHAs
are required to send friend requests. This has made social networks more accessible
from everywhere. However, the mobile environment provides spammers with an easy
way to interact with these sites and carry out their tasks. This is confirmed by our
analysis: 80% of the bots we detected on Facebook used the mobile site to send their
spam messages. However, to create a fake account, it is still necessary to go through
the non-mobile version of the site. For Twitter spam, there is no need for the bots to use
the mobile site, since an API to interact with the network is provided, and, in any case,

there is no need to solve CAPTCHA s other than the one needed to create a profile.

5.4 Spam Profile Detection

Based on our understanding of spam activity on social networks, the next goal was
to leverage these insights to develop techniques to detect spammers in the wild. To

this end, we developed a system, called SPAMDETECTOR. We decided to focus on

99



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

detecting “bragger” and “poster” spammers, since they do not require real profiles for
detection, but are just detectable by looking at their own feeds. We used machine
learning techniques to classify spammers and legitimate users. To detect whether a

given profile belongs to a spammer or not, we developed six features, which are:

FF ratio (R): The first feature compares the number of friend requests that a user sent
to the number of friends she has. Since a bot is not a real person, and, therefore, nobody
knows him/her in real life, only a fraction of the profiles contacted would acknowledge
a friend request. Thus, one would expect a distinct difference between the number of
friend requests sent and the number of those that are acknowledged. More precisely,
we expect the ratio of friend requests to actual friends to be large for spammers and
low for regular users. Unfortunately, the number of friend requests sent is not public
on Facebook and on MySpace. On Twitter, on the other hand, the number of users a
profile started to follow is public. Therefore, we can compute the ratio R = following /
followers (where following, in the Twitter jargon, is the number of friend requests sent,

and followers is the number of users who accepted the request).

URL ratio (U): The second feature to detect a bot is the presence of URLs in the
logged messages. To attract users to spam web pages, bots are likely to send URLs in

their messages. Therefore, we introduce the ratio U as:

U = messages_containing urls / total_messages.

Since, in the case of Facebook, most messages with URLs (link and video share, group
invitations) contain a URL to other Facebook pages, we only count URLs pointing to a

third party site when computing this feature.

100



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

Message Similarity (S): The third feature consists in leveraging the similarity among
the messages sent by a user. Most bots we observed sent very similar messages, con-
sidering both message size and content, as well as the advertised sites. Of course, on
Twitter, where the maximum size of the messages is 140 characters, message simi-
larity is less significant than on Facebook and MySpace, where we logged messages
up to 1,100 characters. We introduced the similarity parameter S, which is defined as

follows:

S — Zpep c(p)

lalpy  °

where P is the set of possible message-to-message combinations among any two mes-
sages logged for a certain account, p is a single pair, ¢(p) is a function calculating the
number of words two messages share, [, is the average length of messages posted by
that user, and [, is the number of message combinations. The idea behind this formula

is that a profile sending similar messages will have a low value of S.

Friend Choice (F): The fourth feature attempts to detect whether a profile likely used

a list of names to pick its friends or not. We call this feature F', and we define it as:

T
F:D_Z’

where 7, is the total number of names among the profiles’ friend, and D,, is the number
of distinct first names. Our observation showed that legitimate profiles have values of

this feature that are close to 1, while spammers might reach values of 2 or more.

Messages Sent (M): We use the number of messages sent by a profile as a feature. This

is based on the observation that profiles that sent out hundreds of messages are less

101



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

likely to be spammers, given that, in our initial analysis, most spam bots sent less that

20 messages.

Friend Number (FN): Finally we look at the number of friends a profile has. The idea
is that profiles with thousands of friends are less likely to be spammers than the ones

with a few.

Given our general set of features, we built two systems to detect spam bots on Face-
book and Twitter. Since there are differences between these two social networks, some
features had to be slightly modified to fit the characteristics of the particular social net-
work. However, the general approach remains the same. We used the Weka framework
[17] with a Random Forest algorithm [37] for our classifier. We chose this algorithm
because it was the one that gave the best accuracy and lowest false positive ratio when

we performed a ten-fold cross-validation on the training set.

5.4.1 Spam Detection on Facebook

The main issue when analyzing Facebook is to obtain a suitable amount of data to ana-
lyze. Most profiles are private, and only their friends can see their walls. At the begin-
ning of this study, geographic networks were still available, but they were discontinued
in October 2009. Therefore, we used data from various geographic networks, crawled
between April 28 and July 8 2009, to test our approach. This dataset was described in

detail in [146].

Since on Facebook the number of friend requests sent out is not public, we could not

102



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

apply the R feature.

We trained our classifier using 1,000 profiles. We used the 173 spam bots that contacted
our honey-profiles as samples for spammers, and 827 manually checked profiles from
the Los Angeles network as samples for legitimate users. A 10-fold cross validation on
this training data set yielded an estimated false positive ratio of 2% and a false negative
ratio of 1%. We then ran SPAMDETECTOR on 790,951 profiles, belonging to the Los
Angeles and New York networks. We detected 130 spammers in this dataset. Among
these, 7 were false positives. The reason for this low number of detected spammers
might be that spam bots typically do not join geographic networks. This hypothesis is
corroborated by the fact that among the spam profiles that contacted out honey profiles,
none was a member of a geographic network. We then randomly picked 100 profiles,
classified as legitimate. We manually looked at them looking for false negatives. None

of them turned out to be a spammer.

5.4.2 Spam Detection on Twitter

On Twitter, it is much easier to obtain data than on Facebook, since most profiles are
public. This gave us the possibility to deploy SPAMDETECTOR in the wild, and detect
spammers in real time. The results of our analysis were then sent to Twitter, who

verified that the accounts were indeed sending spam and removed them.

To train our classifier, we picked 500 spam profiles, coming either from the ones that
contacted our honey profiles, or manually selected from the public timeline. We in-

cluded profiles from the public timeline to increase diversity among spam profiles in

103



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

our training dataset. Among the profiles from the public timeline we chose the ones that
stood out from the average for at least one of the R, U, and S features. We also picked
500 legitimate profiles from the public timeline. This was a manual process, to make
sure that no spammers were miscategorized in the training set. The R feature was mod-
ified to reflect the number of followers a profile has. This was done because legitimate
profiles with a fairly high number of followers (e.g., 300), but following thousands of
other profiles, have a high value of 12. This is a typical situation for legitimate accounts
following news profiles, and would have led to false positives in our system. Therefore,
we defined a new feature R’, which is the R value divided by the number of followers

a profile has. We used it instead of R for our classification.

After having trained the classifier, it was clear that the F' feature is not useful to detect
spammers on Twitter, since both spammers and legitimate profiles in the training set
had very similar values for this parameter. This suggests that Twitter spam bots do not
pick their victims based on their name. Therefore, we removed the F' feature from the
Twitter spam classifier. A 10-fold cross validation for the classifier with the updated
feature set yielded an estimated false positive ratio of 2.5% and a false negative ratio of

3% on the training set.

Given the promising results on the training set and the possibility to access most pro-
files, we decided to use SPAMDETECTOR to detect spammers in real time on Twitter.
The main problem that we faced while building our system was the crawling speed.
Twitter limited our machine to execute only 20,000 API calls per hour. Thus, to avoid
wasting our limited API calls, we performed Google searches for the most common

words in tweets sent by the already detected spammers, and we crawled those profiles

104



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

that were returned as results. This approach has the problem that we can only detect
profiles that send tweets similar to those of previously observed bots. To address this
limitation, we created a public service where Twitter users can flag profiles as spam-
mers. After a user flagged an account as a spammer, we ran our classifier on this profile
data. If the profile is detected as a spammer, we add this profile to our detected spam

set, enabling our system to find other profiles that sent out similar tweets.

Every time we detected a spam profile, we submitted it to Twitter’s anti-spam team.
During a period of three months, from March 06, 2010 to June 06, 2010, we crawled
135,834 profiles, detecting 15,932 of those as spammers. We sent this list of profiles
to Twitter, and only 75 were reported by them to be false positives. All the other
submitted profiles were suspended. In order to evaluate the false negative ratio, we
randomly picked 100 profiles, classified as legitimate by our system. We then manually

looked at them, finding out that 6 were false negatives.

To show that our targeted crawling did not affect our accuracy or false positive ratio,
but just narrowed down the set of profiles to crawl, we picked 40,000 profiles at random
from the public timeline and crawled them. Among these, we detected 102 spammers,
with a single false positive. We can see that our crawling is effective, since the percent-
age of spammers in our targeted (crawled) dataset is 11%, whereas in the random set it

1s 0.25%. On the other hand, the false positive ratio on in both datasets is similarly low.

105



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

Campaign 1
Campaign 2
Campaign 3
Campaign 4
Campaign 5
Campaign 6
Campaign 7
Campaign 8

Campaign

o Emenrcw 0 @ - e e e o em—— @ e - e O O e e

Y e Y . o ) ‘ -.....’..-

05/01/09 07/01/09 09/01/09 11/01/09 01/01/10 03/01/10 05/01/10
Day

Figure 5.5: Activity of campaigns over time.

5.4.3 Identification of Spam Campaigns

After having identified single accounts used to send spam with SPAMDETECTOR, we
analyzed the data to identify large-scale spam campaigns. With “spam campaign,” we

refer to multiple spam profiles that act under the coordination of a single spammer.

We consider two bots posting messages with URLs pointing to the same site as being
part of the same campaign. Most bots hide the real URL that their links are pointing
to by using URL shortening services (for example, tinyurl [15]). This is typically done
to avoid easy detection by social network administrators and by the users, as well as
to meet the message length requirements of some platforms (in particular, Twitter). To

determine the actual site that a shortened URL points to, we visited all the URLs that

106



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

# | SN | Bots | # Mes. | Mes./day | Avg. vic. | Avg. lif. | G, Site adv.

1| T | 485 | 1,020 0.79 52 25 0.28 | Adult Dating
21 T | 282 | 9,343 0.08 94 135 0.60 | Ad Network
3| T,F| 2430 | 28,607 0.32 36 52 0.42 | Adult Dating
4| T 137 | 3,213 0.15 87 120 0.56 | Making Money
5| TF| 5530 | 83,550 1.88 18 8 0.16 Adult Site

6 | TF| 687 | 7,298 1.67 23 10 0.18 | Adult Dating
71 T | 80 | 4,929 0.05 112 198 0.88 | Making Money
8| T 103 | 5,448 0.4 43 33 0.37 | Ad Network

Table 5.3: Spam campaigns observed.

we observed. Then, we clustered all the profiles that advertised the same page. We
list the top eight campaigns, based on the number of observed messages, in Table 5.3.
Since we had most detections on Twitter, these campaigns targeted that network. It is
interesting to notice, however, that bots belonging to three of them were observed on

Facebook as well.

Some campaigns showed a large number of bots, each sending a few messages per day,
while others send many messages using few bots. In addition, the fact that bots of a
campaign can act in a stealthy or greedy way (see Section 5.3.2) leads to significantly
different outcomes. Greedy bots that send spam with each message are easier to detect
by the social network administrators. On the other hand, a low-traffic spam campaign is
more difficult to detect. For example, the bots from Campaign 1 sent 0.79 messages per
day, while the bots from the second campaign sent 0.08 messages per day on average.
The result was that the bots from Campaign 1 have an average lifetime of 25 days, while
the bots of Campaign 2 lasted 135 days on average. In addition, Campaign 2 reached
more victims, as shown by an average of 94 friends (victims) per bot, while Campaign

1 only reached 52. This suggests that a relationship exists between the lifetime of bots

107



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

and the number of victims targeted. Clearly, an effective campaign should be able to
reach many users, and having bots that live longer might be a good way to achieve this

objective.

From the point of view of victims reached, stealthy campaigns are more effective. Cam-
paigns 4 and 7 both used a stealthy approach. Of the messages sent, only 20-40% con-
tained spam content. As a result, bots from Campaign 4 had an average lifetime of
120 days, and started following 460 profiles each. Among these, 87 users on average
followed the bots back. Campaign 7 was the most effective among Twitter campaigns,
both considering the number of victims and the average bot lifetime. To achieve this,
this campaign combined a low rate of messages per day with a stealth way of operating.
The bots in this campaign have an average lifetime of 198 days and 1,787 victims, of

which, on average, 112 acknowledged the friend request.

From the observations of the various campaigns, we developed a metric that allows us
to predict the success of a campaign. We consider a campaign successful if the bots
belonging to it have a long lifetime. For this metric, we introduce the parameter G.,

defined as follows:

-1
My _5a <G, <1.

G.=——27°2 __
(W M7h8)+1)27 7 —

In the above formula, M, is the average number of messages per day sent and .Sy is the
ratio of actual spam messages (0 < S; < 1). Empirically, we see that campaigns with
a value of GG, close to 1 have a long lifetime (for example, Campaign 7 has G, = 0.88,
while Campaign 2 has G. = 0.60), while for campaigns with a lower value of this

parameter, the average lifetime decreases significantly (Campaign 1 has G, = 0.28 and

108



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

Campaign 5 has G. = 0.16). Thus, we can infer that a value of 0.5 or higher for G,
indicates that a campaign has a good chance to be successful. Of course, if a campaign
is active for some time, a social network might develop other means to detect spam bots

belonging to it (e.g., a blacklist of the URLs included in the messages).

Activity of bots from different campaigns is shown in Figure 5.5. Each row represents
a campaign. For each day in which we observed some activity from that campaign, a
circle is drawn. The size of circles varies according to the number of messages observed
that day. As can be seen, some campaigns have been active over the entire period of the

study, while some have not been so successful.

We then tried to understand how bots choose their victims. The behavior seems not to
be uniform for the various campaigns. For example, we noticed that many victims of
Campaign 2 shared the same hashtag (i.e., “#iloveitwhen”) in their tweets. Bots might
have been crawling for people sending messages with such tag, and started following
them. On the other hand, we noticed that Campaigns 4 and 5 targeted an anomalous
number of private profiles. Looking at their victims, 12% of them had a private profile,
while for a random picked set of 1,000 users from the public timeline, this ratio was
4%. This suggests that bots from these campaigns did not crawl any timeline, since

tweets from users with a private profile do not appear on them.

109



CHAPTER 5. DETECTING FAKE ONLINE SOCIAL NETWORK ACCOUNTS

5.5 Conclusions

In this chapter we showed that spam sent by fake accounts on social networks is a prob-
lem. For our study, we created a population of 900 honey-profiles on three major social
networks and observed the traffic they received. We then developed SPAMDETECTOR,
a system able to identify fake accounts used to spread spam, as well as large-scale cam-
paigns. We also showed that our techniques help to detect spam profiles even when
they do not contact a honey-profile. We believe that these techniques can help social
networks to improve their security and detect malicious users. In fact, thousands of
spamming accounts were shut down by Twitter after we reported them to their anti-

Spam team.

110



Chapter 6

Detecting Compromised Online Social

Network Accounts

6.1 Introduction

In the previous chapter I introduced SPAMDETECTOR, a system to automatically detect
fake accounts created to spread malicious content on online social networks. Although
SPAMDETECTOR can detect fake accounts with very high accuracy, it is helpless in
detecting legitimate accounts that have been compromised. A compromised account is
an existing, legitimate account that has been taken over by an attacker. Accounts can
be compromised in a number of ways, for example, by exploiting a cross-site scripting
vulnerability or by using a phishing scam to steal the user’s login credentials. Also, bots

have been increasingly used to harvest login information for social networking sites on

111



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

infected hosts [123]. These credentials can then be used by miscreants to log into these

accounts.

While dedicated, malicious accounts are easier to create, compromised accounts are
more valuable to cyber-criminals. The reason is that these accounts allow attackers to
leverage the associated account history and network of trust to spread malicious content
more effectively [35]. As a result, attackers increasingly abuse legitimate accounts to
distribute their malicious messages [61, 63]. To identify campaigns that involve both
compromised and fake accounts, the focus of the analysis has shifted to the messages
themselves. In particular, researchers have proposed techniques that search a social
network for the presence of similar messages [60, 61]. The intuition is that attackers
send many similar messages as part of campaigns. Similarity is typically defined in

terms of overlap in message content or shared URLs.

Of course, it is not sufficient to simply group similar messages to detect malicious
campaigns. The reason is that many such clusters (groups) will contain benign mes-
sages, which range from simple “happy birthday” wishes to template-based notifica-
tions sent by popular applications such as Foursquare [5]. To distinguish benign from
malicious clusters, some systems utilize features that are solely based on the URLs in
messages [61, 88, 137]. Clearly, these techniques suffer from limited scope, because
they cannot find malicious messages that do not contain URLs (we found instances of
such messages during our experimental evaluation). Other systems [60] consider ad-
ditional features such as the size of clusters or the average number of connections for
each user. While this broadens their coverage to include campaigns that do not rely

on URLs, the reported accuracy of less than 80% is rather sobering. Moreover, and

112



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

equally important, previous systems can only determine whether a cluster of messages
is malicious. That is, they cannot distinguish between messages sent by compromised
accounts and those sent by fake accounts. This information is crucial for social network
operators to initiate appropriate mitigation procedures. Specifically, fake accounts can
be safely deleted without affecting legitimate users. To address compromised accounts,
however, the social network provider has to notify the victims, reset their passwords,

and engage the users in a password recovery process.

In this chapter I present a novel approach to detect compromised accounts on social
networks. Our approach offers a combination of three salient features. First, it does
not depend on the presence of URLs in messages. As a result, we can detect a broad
range of malicious messages, including scam messages that contain telephone numbers
and instant messaging contacts. Second, our system is accurate and detects compro-
mised accounts with very low false positives. Third, we focus on finding compromised
accounts and leave the detection of fake accounts to specialized systems such as the
one we presented in Chapter 5. By identifying compromised accounts, social network

providers can focus their mitigation efforts on real users.

The core idea underlying our approach is that it is possible to model the regular activi-
ties of individual users. If, at any point, a user’s account gets compromised, it is likely
that there will be a noticeable change in the account’s behavior (and our experiments
confirm this assumption). To capture the past behavior of a user, we introduce a col-
lection of statistical models, which we call a behavioral profile. Each of our models
corresponds to a characteristic feature of a message (e.g., the time of the day when it

was sent or the language in which it was written in). These models capture generic user

113



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

activity on social networks and are not tied to a particular platform (as our experiments
on Twitter and Facebook demonstrate). Behavioral profiles make it possible to assess
future messages. A message that appears to be very different from a user’s typical

behavior might indicate a compromise.

Of course, a single message that violates the profile of a user does not necessarily
indicate that this account is compromised. The message might be an outlier or merely
reflect a normal change in behavior. For this reason, like in previous work, our approach
looks for other, similar messages that have recently been posted on the social network
and that also violate the behavioral profiles of their respective users. This means that
we cannot detect cases in which an attacker posts just one malicious message through
a single compromised account. We feel that this is reasonable as attackers typically
aim to distribute their malicious messages to a broader victim population. Moreover,
our experiments demonstrate that we can detect compromised accounts even in case of
small campaigns (in our experiments on Twitter, for example, we require as little as
ten similar messages per hour), and that in the very particular case in which accounts
typically show consistent behaviors, such as social network profiles belonging to news

agencies, our approach can detect single anomalous messages.

In a nutshell, our approach (i) checks for a set of similar messages, and (ii) requires that
a significant subset of these messages violate the behavioral profiles of their senders.
These two steps can be executed in any order: We can check for messages that violate
their respective behavioral profiles first and then group those messages into clusters
of similar ones. This would allow us to implement similarity metrics that are more

sophisticated than those presented in previous work (i.e., simple checks for similar

114



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

content or URLs). Alternatively, we can first group similar messages and then check
whether a substantial fraction of these messages violates the corresponding behavioral
profiles. Using this order is more efficient as the system has to inspect a smaller number

of messages.

We implemented our approach in a system called COMPA. Our system can be used by
social network operators to identify compromised accounts and take appropriate coun-
termeasures, such as deleting the offending messages or resetting the passwords of the
victims’ accounts. Since COMPA relies on behavioral patterns of users and not, like
related work, on suspicious message content (URLs [137] or typical features of Sybil
profiles [35]) it is able to detect types of malicious messages that are missed by recently-
proposed techniques. In particular, our approach identified scam campaigns that lure
their victims into calling a phone number, and hence, the corresponding messages do

not contain links (URLs).

We applied COMPA to two large-scale datasets from Twitter and Facebook. The Twit-
ter dataset consists of messages we collected from May 13, 2011 to August 12, 2011,
while the Facebook dataset is the same that we used in Chapter 5. Our results show
that COMPA is effective in detecting compromised accounts with very few false posi-
tives. In particular, we detected 383,613 compromised accounts on Twitter, by analyz-
ing three months of data consisting of over 1.4 billion tweets. Furthermore, COMPA
detected 11,087 compromised accounts on Facebook, by analyzing 106 million mes-

sages posted by users in several large geographic networks.

In this chapter we make the following contributions:

115



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

e We are the first to introduce an approach that focuses on detecting compro-
mised accounts on social networks. This provides crucial input to social network

providers to initiate proper mitigation efforts.

e We propose a novel set of features to characterize regular user activity based
on the stream of messages that each user posts. We use these features to create
models that identify messages that appear anomalous with respect to a user’s

account (message) history.

e We demonstrate that our approach is able to effectively detect compromised ac-
counts with very low false positives. To this end, we applied our approach to two
large-scale datasets obtained from two large social networking sites (Twitter and

Facebook).

6.2 Behavioral Profiles

A behavioral profile leverages historical information about the activities of a social
network user to capture this user’s normal (expected) behavior. To build behavioral
profiles, our system focuses on the stream of messages that a user has posted on the
social network. Of course, other features such as profile pictures or friend activity
could be useful as well. Unfortunately, social networks typically do not offer a way to
retrieve historical data about changes in these features, and therefore, we were unable

to use them.

A behavioral profile for a user U is built in the following way: Initially, our system ob-

116



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

tains the stream of messages of U from the social networking site. The message stream
is a list of all messages that the user has posted on the social network, in chronologi-
cal order. For different social networks, the message streams are collected in slightly
different ways. For example, on Twitter, the message stream corresponds to a user’s
public timeline. For Facebook, the message stream contains the posts a user wrote on
her own wall, but it also includes the messages that this user has posted on her friends’

walls.

To be able to build a comprehensive profile, the stream needs to contain a minimum
amount of messages. Intuitively, a good behavioral profile has to capture the breadth
and variety of ways in which a person uses her social network account (e.g., different
client applications or languages). Otherwise, an incomplete profile might incorrectly
classify legitimate user activity as anomalous. Therefore, we do not create behavioral
profiles for accounts whose stream consists of less than a minimum number S of mes-
sages. In our experiments, we empirically determined that a stream consisting of less
than S' = 10 messages does usually not contain enough variety to build a representative
behavioral profile for the corresponding account. Furthermore, profiles that contain less
then § messages pose a limited threat to the social network or its users. This is because
such accounts are either new or very inactive and thus, their contribution to large scale

campaigns is limited. A detailed discussion of this threshold is provided in Section 7.5.

Once our system has obtained the message stream for a user, we use this information to
build the corresponding behavioral profile. More precisely, the system extracts a set of
feature values from each message, and then, for each feature, trains a statistical model.

Each of these models captures a characteristic feature of a message, such as the time

117



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

the message was sent, or the application that was used to generate it. The features used

by these models, as well as the models themselves, are described later in this section.

Given the behavioral profile for a user, we can assess to what extent a new message
corresponds to the expected behavior. To this end, we compute the anomaly score for a
message with regard to the user’s established profile. The anomaly score is computed
by extracting the feature values for the new message, and then comparing these feature
values to the corresponding feature models. Each model produces a score (real value) in
the interval [0, 1], where 0 denotes perfectly normal (for the feature under consideration)
and 1 indicates that the feature is highly anomalous. The anomaly score for a message

is then calculated by composing the results for all individual models.

6.2.1 Modeling Message Characteristics

Our approach models the following seven features when building a behavioral profile.

Time (hour of day). This model captures the hour(s) of the day during which an
account is typically active. Many users have certain periods during the course of a day
where they are more likely to post (e.g., lunch breaks) and others that are typically quiet
(e.g., regular sleeping hours). If a user’s stream indicates regularities in social network
usage, messages that appear during hours that are associated with quiet periods are

considered anomalous.

Message Source. The source of a message is the name of the application that was used

to submit it. Most social networking sites offer traditional web and mobile web access

118



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

to their users, along with applications for mobile platforms such as iOS and Android.
Many social network ecosystems provide access to a multitude of applications created

by independent, third-party developers.

Of course, by default, a third-party application cannot post messages to a user’s account.
However, if a user chooses to, she can grant this privilege to an application. The state-
of-the-art method of governing the access of third-party applications is OAUTH [10].
OAUTH is implemented by Facebook and Twitter, as well as numerous other, high-
profile web sites, and enables a user to grant access to her profile without revealing her

credentials.

By requiring all third-party applications to implement OAUTH, the social network op-
erators can easily shut down individual applications, should that become necessary.
In fact, our evaluation shows that third-party applications are frequently used to send

malicious messages.

This model determines whether a user has previously posted with a particular appli-
cation or whether this is the first time. Whenever a user posts a message from a new
application, this is a change that could indicate that an attacker has succeeded to lure a

victim into granting access to a malicious application.

Message Text (Language). A user is free to author her messages in any language.
However, we would expect that each user only writes messages in a few languages
(typically, one or two). Thus, especially for profiles where this feature is relatively

stable, a change in the language is an indication of a suspicious change in user activity.

To determine the language that a message was written in, we leverage the 1ibtextcat

119



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

library. This library performs n-gram-based text categorization, as proposed by Cavnar
and Trenkle [42]. Of course, for very short messages, it is often difficult to determine
the language. This is particularly problematic for Twitter messages, which are lim-
ited to at most 140 characters and frequently contain abbreviated words or uncommon

spelling.

Message Topic. Users post many messages that contain chatter or mundane informa-
tion. But we would also expect that many users have a set of topics that they frequently
talk about, such as favorite sports teams, music bands, or TV shows. When users
typically focus on a few topics in their messages and then suddenly post about some

different and unrelated subject, this new message should be rated as anomalous.

In general, inferring message topics from short snippets of text without context is dif-
ficult. However, some social networking platforms allow users to label messages to
explicitly specify the topics their messages are about. When such labels or tags are
available, they provide a valuable source of information. A well-known example of a
message-tagging mechanism are Twitter’s hashtags. By prefixing the topic keyword
with a hash character a user would use #Olympics to associate her tweet with the

Olympic Games.

More sophisticated (natural language processing) techniques to extract message topics

are possible. However, such techniques are outside the scope of this project.

Links in Messages. Often, messages posted on social networking sites contain links
to additional resources, such as blogs, pictures, videos, or news articles. Links in mes-

sages of social networks are so common that some previous work has strongly focused

120



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

on the analysis of URLs, often as the sole factor, to determine whether a message is
malicious or not. We also make use of links as part of the behavioral profile of a user,
but only as a single feature. Moreover, recall that our features are primarily concerned
with capturing the normal activity of users. That is, we do not attempt to detect whether
a URL is malicious in itself but rather whether a link is different than what we would

expect for a certain user.

To model the use of links in messages, we only make use of the domain name in the
URL of links. The reason is that a user might regularly refer to content on the same
domain. For example, many users tend to read specific news sites and blogs, and fre-
quently link to interesting articles there. Similarly, users have preferences for a certain
URL shortening service. Of course, the full link differs among these messages (as the
URL path and URL parameters address different, individual pages). The domain part,
however, remains constant. Malicious links, on the other hand, point to sites that have
no legitimate use. Thus, messages that link to domains that have not been observed in
the past indicate a change. The model also considers the general frequency of messages

with links, and the consistency with which a user links to particular sites.

Direct User Interaction. Social networks offer mechanisms to directly interact with
an individual user. The most common way of doing this is by sending a direct message
that is addressed to the recipient. Different social networks have different mechanisms
for doing that. For example, on Facebook, one posts on another user’s wall; on Twitter,
it is possible to directly “mention” other users by putting the @ character before the
recipient’s user name. Over time, a user builds a personal interaction history with other

users on the social network. This feature aims to capture the interaction history for

121



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

a user. In fact, it keeps track of the users an account ever interacted with. Direct
messages are sent to catch the attention of their recipients, and thus are frequently used

by spammers.

Proximity. In many cases, social network users befriend other users that are close to
them. For example, a typical Facebook user will have many friends that live in the
same city, went to the same school, or work for the same company. If this user sud-
denly started interacting with people who live on another continent, this could be suspi-
cious. Some social networking sites (such as Facebook) express this proximity notion
by grouping their users into networks. The proximity model looks at the messages sent
by a user. If a user sends a message to somebody in the same network, this message is
considered as local. Otherwise, it is considered as not local. This feature captures the

fraction of local vs. non-local messages.

If COMPA is implemented directly by a social network provider, the geo-locations
of the users’ IP addresses can be used to significantly improve the proximity feature.

Unfortunately, this information is not available to us.

6.3 Detecting Anomalous Messages

In this section we first describe how we train our behavioral models. We then analyze
the robustness of the models generated by COMPA, and evaluate the novelty of our

features compared to previous work.

122



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

6.3.1 Training and Evaluation of the Models

In this section, we first discuss how we train models for each of the previously-introduced
features. We then describe how we apply a model to a new message to compute an
anomaly score. Finally, we discuss how the scores of the different models are com-
bined to reach a final anomaly score that reflects how the new message is different from

the historic messages used when building the model.

Training. The input for the training step of a model is the series of messages (the
message stream) that were extracted from a user account. For each message, we extract

the relevant features such as the source application and the domains of all links.

Each feature model is represented as a set M. Each element of M is a tuple < fv,c >.
fvis the value of a feature (e.g., English for the language model, or example.com
for the link model). ¢ denotes the number of messages in which the specific feature
value fv was present. In addition, each model stores the total number N of messages

that were used for training.

Our models fall into two categories:

e Mandatory models are those where there is one feature value for each message,
and this feature value is always present. Mandatory models are time of the day,

source, proximity, and language.

e Optional models are those for which not every message has to have a value. Also,
unlike for mandatory models, it is possible that there are multiple feature values

for a single message. Optional models are links, direct interaction, and topic.

123



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

For example, it is possible that a message contains zero, one, or multiple links.
For each optional model, we reserve a specific element with fv = null, and
associate with this feature value the number of messages for which no feature

value is present (e.g., the number of messages that contain no links).

The training phase for the time of the day model works slightly differently. Based on
the previous description, our system would first extract the hour of the day for each
message. Then, it would store, for each hour fv, the number of messages that were
posted during this hour. This approach has the problem that hour slots, unlike the
progression of time, are discrete. Therefore, messages that are sent close to a user’s

“normal” hours could be incorrectly considered as anomalous.

To avoid this problem, we perform an adjustment step after the time of the day model
was trained (as described above). In particular, for each hour ¢, we consider the values
for the two adjacent hours as well. That is, for each element < 7,c; > of M, a new
count ¢/; is calculated as the average between the number of messages observed during
the i hour (¢;), the number of messages sent during the previous hour (¢;_), and the
ones observed during the following hour (c; ). After we computed all ¢/;, we replace

the corresponding, original values in M.

As we mentioned previously, we cannot reliably build a behavioral profile if the mes-
sage stream of a user is too short. Therefore, the training phase is aborted for streams

shorter than S = 10, and any message sent by those users is not evaluated.

Evaluating a new message. When calculating the anomaly score for a new message,

we want to evaluate whether this message violates the behavioral profile of a user for

124



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

a given model. In general, a message is considered more anomalous if the value for a
particular feature did not appear at all in the stream of a user, or it appeared only a small
number of times. For mandatory features, the anomaly score of a message is calculated

as follows:

1. The feature fov for the analyzed model is first extracted from the message. If M
contains a tuple with fuv as a first element, then the tuple < fuv, ¢ > is extracted
from M. If there is no tuple in M with fv as a first value, the message is con-
sidered anomalous. The procedure terminates here and an anomaly score of 1 is

returned.

2. As asecond step, the approach checks if fv is anomalous at all for the behavioral

profile being analyzed. c is compared to M, which is defined as M = %,

where ¢; 1s, for each tuple in M, the second element of the tuple. If c is greater or
equal than M, the message is considered to comply with the learned behavioral
profile for that model, and an anomaly score of 0 is returned. The rationale behind
this is that, in the past, the user has shown a significant number of messages with

that particular fv.

3. If cis less than A/, the message is considered somewhat anomalous with respect

Cfv

to that model. Our approach calculates the relative frequency f of fv as f = 7.

The system returns an anomaly score of 1 - f.

The anomaly score for optional features is calculated as:

1. The feature fv for the analyzed model is first extracted from the message. If M

125



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

contains a tuple with fuv as a first element, the message is considered to match

the behavioral profile, and an anomaly score of 0 is returned.

2. If there is no tuple in M with fv as a first element, the message is considered
anomalous. The anomaly score in this case is defined as the probability p for the
account to have a null value for this model. Intuitively, if a user rarely uses
a feature on a social network, a message containing an fov that has never been
seen before for this feature is highly anomalous. The probability p is calculated
asp = % If M does not have a tuple with null as a first element, ¢, 1S

considered to be 0. p is then returned as the anomaly score.

As an example, consider the following check against the language model: The stream
of a particular user is composed of 21 messages. Twelve of them are in English, while

nine are in German. The M of the user for that particular model looks like this:

(<English,12>,<German,9>).

The next message sent by that user will match one of three cases:

e The new message is in English. Our approach extracts the tuple <English,12>
from M, and compares ¢ = 12 to M = 10.5. Since c is greater than M, the

message is considered normal, and an anomaly score of 0 is returned.

e The new message is in Russian. Since the user never sent a message in that lan-
guage before, the message is considered very suspicious, and an anomaly score

of 1 is returned.

126



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

e The new message is in German. Our approach extracts the tuple <German, 9>
from M, and compares ¢ = 9 to M = 10.5. Since ¢ < M, the message is
considered slightly suspicious. The relative frequency of German tweets for the
useris f = ~ = 0.42. Thus, an anomaly score of 1 — f = 0.58 is returned. This
means that the message shows a slight anomaly in the user average behavior.
However, as explained in Section 7.5.2, on its own this score will not be enough

to flag the message as malicious.

Computing the final anomaly score. Once our system has evaluated a message against
each individual model, we need to combine the results into an overall anomaly score
for this message. This anomaly score is a weighted sum of the values for all models.
We use Sequential Minimal Optimization [105] to learn the optimal weights for each
model, based on a training set of instances (messages and corresponding user histo-
ries) that are labeled as malicious and benign. Of course, different social networks
will require different weights for the various features. A message is said to violate
an account’s behavioral profile if its overall anomaly score exceeds a threshold. In
Section 7.5.2, we present a more detailed discussion on how the threshold values are
determined. Moreover, we discuss the weights (and importance) of the features for the

different social networks that we analyzed (i.e., Twitter and Facebook).

6.3.2 Robustness of the Models

Malicious campaigns that are executed through compromised accounts will, in general,

fail to match the expected behavior of a vast majority of their victims. One reason is

127



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

that it is very difficult for an attacker to make certain features look normal, even if the
attacker has detailed knowledge about the history of a victim account. In particular, this
is true for the application source and the links features. Consider a user who always
posts using her favorite Twitter client (e.g., from her iPhone). Since the attacker does
not control this third-party application, and the social network (Twitter) automatically
appends the source information to the message, a malicious message will not match
the victim’s history. Furthermore, to send messages from an iPhone application, the
attacker would have to instrument a physical iPhone device to log into the victims’
accounts and post the malicious messages. Clearly, such an attack model does not
scale. To satisfy the link model, an attacker would need to host his malicious page on
a legitimate, third-party domain (one of the domains that the user has linked to in the
past). It is very unlikely that an attacker can compromise arbitrary third-party sites that

the different victims have referenced in the past.

Other feature models can be matched more easily, assuming that the attacker has full
knowledge about the history of a victim account. In particular, it is possible to post at an
expected time, use a language that the victim has used in the past, and craft the message
so that both the topic and direct user interactions match the observed history. However,
crafting customized messages is very resource-intensive. The reason is that this would
require the attacker to gather the message history for all victim users. Since social
network sites typically rate-limit the access to user profiles, gathering data for many
victims is a non-trivial endeavor (we initially faced similar limitations when performing
our experiments; and we had to explicitly asked the social networks to white-list our IP

addresses).

128



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

The need to customize messages makes it also more difficult to coordinate large-scale
attacks. First, it requires delaying messages for certain victims until an appropriate
time slot is reached. This could provide more time for the social network to react
and take appropriate countermeasures. Second, when messages have different topics,
attackers cannot easily perform search engine optimizations or push popular terms,
simply because victim users might not have used these terms in the past. Also, the
proximity feature can help limiting the spread of a campaign. If a user always messages
users that are close to her, the number of possible victims is reduced. Of course, the
burden for the attacker to blend his messages into the stream of his victims decreases
with the number of victims. That is, targeted attacks against individuals or small groups
are more challenging to detect. However, the precision of the behavioral profiles that
COMPA generates makes us confident that similar mechanisms can contribute to the

problem of identifying such small-scale targeted attacks.

Overall, given the challenges to make certain features appear normal and the practical
difficulties to craft customized messages to satisfy the remaining models, our feature
set is robust with regard to large-scale attacks that leverage compromised accounts.
Our experiments show that COMPA is successful in identifying campaigns that use

compromised accounts to distribute malicious messages.

6.3.3 Novelty of the modelled features

We also compared our features with respect to existing work. However, the purpose of

our system is very different from the goals of the ones proposed in previous work. These

129



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

systems generally aim at detecting accounts that have been specifically created to spread
spam or malicious content [32, 87, 130, 150]. Since these accounts are controlled in an
automated fashion, previous systems detect accounts that always act in a similar way.
Instead, we look for sudden changes in behavior of legitimate but compromised social
network accounts. Table 6.1 lists in detail the features previous systems used to achieve
their goals, and compares them to the features used by our system. In particular, we
studied the works from Benevenuto et al. [32], Gao et al. [60], Grier et al. [63], Lee et
al. [87], Stringhini et al. (SPAMDETECTOR from Chapter 5 [130]), Yang et al. [150],
Cai et al. [40], and Song et al. [120].

As it can be seen, our system does not use any of the Network Features or any of
the Friends Features. Such features aim to detect whether a certain account has been
created automatically, therefore, they are not useful for our purpose. The reason is that,
since the profiles we want to detect are legitimate ones that got compromised, these
features would look normal for such profiles. Also, we do not use any of the Single
Message Features. These features aim to detect a malicious message when it contains
words that are usually associated with malicious content (e.g., cheap drugs), or when
the URL is listed in a blacklist such as SURBL [14]. Since we did not want to limit
our approach to flagging messages that contain known malicious sites or well-known
words, we did not include such features in our models. In the future, we could use these

features to improve our system.

In COMPA, we focus on Stream Features. These features capture the characteristics
of a user’s message stream, such as the ratio of messages that include links, or the

similarity among the messages. Looking at Table 6.1, it seems that five of our features

130



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

(except the Language and Proximity features) have been previously used by at least
one other system. However, the way these systems use such features is the opposite
of what we do: Previous work wants to detect similarity, while we are interested in
anomalies. For example, the message timing feature has been used by Grier et al. [63],
by Gao et al. [60], and by COMPA for building the time of the day model. However,
what previous work is looking for are profiles that show a high grade of automation (by
looking for profiles that send messages at the same minute every hour), or for short-
lived, bursty spam campaigns. Instead, we want to find profiles that start posting at

unusual times.

Only the user interactions feature has been used in a similar fashion by another system.
Gao et al. [61] use it as indication of possibly compromised accounts. Similarly to our
system, they flag any account that ever had a legitimate interaction with another user,
and started sending malicious content at a later time. However, they identify “malicious
content” based only on URL blacklists and suspicious words in the messages. Thus,
they are much more limited in their detection capabilities, and their approach mislabels

fake profiles that try to be stealthy by sending legitimate-looking messages.

6.4 Grouping of Similar Messages

A single message that violates the behavioral profile of a user does not necessarily
indicate that this user is compromised and the message is malicious. The message might
merely reflect a normal change of behavior. For example, a user might be experimenting

with new client software or expanding her topics of interest. Therefore, before we flag

131



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

] \ [32] \ [61] \ [63] \ [87] \ [130] \ [150] \ [40] \ [120] \ COMPA \
Network Features
Avg # conn. of neighbors v
Avg messages of neighbors v
Friends to Followers (F2F) v v v
F2F of neighbors v
Mutual links v v v
User distance v

Single Message Features
Suspicious content v
URL blacklist v
Friends features
Friend name entropy v
Number of friends v v
Profile age v

Stream Features
Activity per day v
Applications used v v
Following Rate v
Language v
Message length v
Messages sent v
Message similarity v v v v v
Message timing v v v
Proximity v
Retweet ratio v
Topics v v
URL entropy v
URL ratio v v v v v
URL repetition v v
User interaction v v v v

Table 6.1: Comparison of the features used by previous work.

an account as compromised, we require that we can find a number of similar messages

(within a specific time interval) that also violate the accounts of their respective senders.

This means that we cannot detect cases in which an attacker posts a single, malicious
message through one compromised account. While it is very possible that our models

would correctly identify that message as suspicious, alerting on all behavioral profile

132



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

violations results in too many false positives. Hence, we use message similarity as a
second component to distinguish malicious messages from spurious profile violations.
This is based on the assumption that attackers aim to spread their malicious messages
to a larger victim population. However, it is important to note that this does not limit
COMPA to the detection of large-scale campaigns. In our experiments on the Twitter
platform, for example, we only require ten similar messages per hour before reporting

accounts as compromised.

As mentioned previously, we can either first group similar messages and then check all
clustered messages for behavioral profile violations, or we can first analyze all messages
on the social network for profile violations and then cluster only those that have resulted
in violations. The latter approach offers more flexibility for grouping messages, since
we only need to examine the small(er) set of messages that were found to violate their
user profiles. This would allow us to check if a group of suspicious messages was sent
by users that are all directly connected in the social graph, or whether these messages
were sent by people of a certain demographics. Unfortunately, this approach requires
to check all messages for profile violations. While this is certainly feasible for the
social networking provider, our access to these sites is rate-limited in practice. Hence,
we need to follow the first approach: More precisely, we first group similar messages.
Then, we analyze the messages in clusters for profile violations. To group messages,

we use the two simple similarity measures, discussed in the following paragraphs.

Content similarity. Messages that contain similar text can be considered related and
grouped together. To this end, our first similarity measure uses n-gram analysis of a

message’s text to cluster messages with similar contents. We use entire words as the

133



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

basis for the n-gram analysis. Based on initial tests to evaluate the necessary computa-
tional resources and the quality of the results, we decided to use four-grams. That is,
two messages are considered similar if they share at least one four-gram of words (i.e.,

four consecutive, identical words).

URL similarity. This similarity measure considers two messages to be similar if they
both contain at least one link to a similar URL. The naive approach for this similarity
measure would be to consider two messages similar if they contain an identical URL.
However, especially for spam campaigns, it is common to include identifiers into the
query string of a URL (i.e., the part in a URL after the question mark). Therefore, this
similarity measure discards the query string and relies on the remaining components of
a URL to assess the similarity of messages. Of course, by discarding the query string,
the similarity measure might be incorrectly considering messages as similar if the target
site makes use of the query string to identify different content. Since YouTube and
Facebook use the query string to address individual content, this similarity measure

discards URLs that link to these two sites.

Many users on social networking sites use URL shortening services while adding links
to their messages. In principle, different short URLs could point to the same page,
therefore, it would make sense to expand such URLs, and perform the grouping based
on the expanded URLs. Unfortunately, for performance reasons, we could not expand
short URLSs in our experiments. On Twitter, we observe several million URLs per day
(most of which are shortened). This exceeds by far the limits imposed by any URL

shortening service.

We do not claim that our two similarity measures represent the only ways in which

134



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

messages can be grouped. However, as the evaluation in Section 7.5 shows, the simi-
larity measures we chose perform very well in practice. Furthermore, our system can

be easily extended with additional similarity measures if necessary.

6.5 Compromised Account Detection

Our approach groups together similar messages that are generated in a certain time
interval. We call this the observation interval. For each group, our system checks
all accounts to determine whether each message violates the corresponding account’s
behavioral profile. Based on this analysis, our approach has to make a final decision

about whether an account is compromised or not.

Suspicious groups. A group of similar messages is called a suspicious group if the
fraction of messages that violates their respective accounts’ behavioral profiles exceeds
a threshold ¢h. In our implementation, we decided to use a threshold that is dependent
on the size of the group. The rationale behind this is that, for small groups, there might
not be enough evidence of a campaign being carried out unless a high number of similar
messages violate their underlying behavioral profiles. In other words, small groups of
similar messages could appear coincidentally, which might lead to false positives if
the threshold for small groups is too low. This is less of a concern for large groups that
share a similar message. In fact, even the existence of large groups is already somewhat
unusual. This can be taken into consideration by choosing a lower threshold value for
larger groups. Accordingly, for large groups, it should be sufficient to raise an alert if

a smaller percentage of messages violate their behavioral profiles. Thus, the threshold

135



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

th is a linear function of the size of the group n defined as th(n) = max (0.1, kn + d).

Based on small-scale experiments, we empirically determined that the parameters £ =
—0.005 and d = 0.82 work well. The max expression assures that at least ten percent of
the messages in big groups violate their behavioral profiles. Our experiments show that
these threshold values are robust, as small modifications do not influence the quality of
the results. Whenever there are more than th messages in a group (where each message

violates its profile), COMPA declares all users in the group as compromised.

Bulk applications. Certain popular applications, such as Nike+ or Foursquare,
use templates to send similar messages to their users. Unfortunately, this can lead to
false positives. We call these applications bulk applications. To identify popular bulk
applications that send very similar messages in large amounts, COMPA needs to dis-
tinguish regular client applications (which do not automatically post using templates)
from bulk applications. To this end, our system analyzes a randomly selected set of
S messages for each application, drawn from all messages sent by this application.
COMPA then calculates the average pairwise Levenshtein ratios for these messages.
The Levenshtein ratio is a measure of the similarity between two strings based on the
edit distance. The values range between O for unrelated strings and 1 for identical
strings. We empirically determined that the value 0.35 effectively separates client from

bulk applications.

COMPA flags all suspicious groups produced by client applications as compromised.
For bulk applications, a further distinction is necessary, since we only want to discard
groups that are due to popular bulk applications. Popular bulk applications constantly

recruit new users. Also, these messages are commonly synthetic, and they often violate

136



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

the behavioral profiles of new users. For existing users, on the other hand, past mes-
sages from such applications contribute to their behavioral profiles, and thus, additional
messages do not indicate a change in behavior. If many users made use of the appli-
cation in the past, and the messages the application sent were in line with these users’

behavioral profiles, COMPA considers such an application as popular.

To assess an application’s popularity, COMPA calculates the number of distinct ac-
counts in the social network that made use of that application before it has sent the first
message that violates a user’s behavioral profile. This number is multiplied by an age
factor (which is the number of seconds between the first message of the application as
observed by COMPA and the first message that violated its user’s behavioral profile).
The intuition behind this heuristics is the following: An application that has been used
by many users for a long time should not raise suspicion when a new user starts using
it, even if it posts content that differs from this user’s established behavior. Manual
analysis indicated that bulk applications that are used to run spam and phishing cam-
paigns over compromised accounts have a very low popularity score. Thus, COMPA
considers a bulk application to be popular if its score is above 1 million. We assume that
popular bulk applications do not pose a threat to their users. Consequently, COMPA
flags a suspicious group as containing compromised accounts only if the group’s pre-

dominant application is a non-popular bulk application.

137



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

6.6 Evaluation

We implemented our approach in a tool, called COMPA and evaluated it on Twitter and
Facebook; we collected tweets in real time from Twitter, while we ran our Facebook

experiments on a large dataset crawled in 2009.

We show that our system is capable of building meaningful behavioral profiles for indi-
vidual accounts on both networks. By comparing new messages against these profiles,
it is possible to detect messages that represent a (possibly malicious) change in the be-
havior of the account. By grouping together accounts that contain similar messages,
many of which violate their corresponding accounts’ behavioral profiles, COMPA is
able to identify groups of compromised accounts that are used to distribute malicious
messages on these social networks. We continuously ran COMPA on a stream of 10%
of all public Twitter messages on a single computer (Intel Xeon X3450, 16 GB ram).
The main limitation was the number of user timelines we could request from Twitter,
due to the enforced rate-limits. Thus, we are confident that COMPA can be scaled
up to support online social networks of the size of Twitter with moderate hardware

requirements.

6.6.1 Data Collection

Twitter Dataset

We obtained elevated access to Twitter’s streaming and RESTful API services. This al-

lowed us to collect around 10% of all public tweets through the streaming API, resulting

138



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

in roughly 15 million tweets per day on average. We collected this data continuously
starting May 13, 2011 until Aug 12, 2011. In total, we collected over 1.4 billion tweets
from Twitter’s stream. The stream contains live tweets as they are sent to Twitter. We
used an observation interval of one hour. Note that since the stream contains randomly
sampled messages, COMPA regenerated the behavioral profiles for all involved users
every hour. This was necessary, because it was not guaranteed that we would see the

same user multiple times.

To access the historical timeline data for individual accounts, we rely on the RESTful
API services Twitter provides. To this end, Twitter whitelisted one of our IP addresses,
which allowed us to make up to 20,000 RESTful API calls per hour. A single API
call results in at most 200 tweets. Thus, to retrieve complete timelines that exceed 200
tweets, multiple API requests are needed. Furthermore, Twitter only provides access to
the most recent 3,200 tweets in any user’s timeline. To prevent wasting API calls on
long timelines, we retrieved timeline data for either the most recent three days, or the

user’s 400 most recent tweets, whatever resulted in more tweets.

On average, we received tweets from more than 500,000 distinct users per hour. Unfor-
tunately, because of the API request limit, we were not able to generate profiles for all
users that we saw in the data stream. Thus, as discussed in the previous section, we first
cluster messages into groups that are similar. Then, starting from the largest cluster, we
start to check whether the messages violate the behavioral profiles of their senders. We
do this, for increasingly smaller clusters, until our API limit is exhausted. On average,
the created groups consisted of 30 messages. This process is then repeated for the next

observation period.

139



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

Facebook Dataset

We tested COMPA on the same Facebook dataset that we described in Chapter 5. As
we already mentioned, the dataset was crawled from geographic networks on Facebook.
Geographic networks were used to group together people that lived in the same area.
The default privacy policy for these networks was to allow anybody in the network to
see all the posts from all other members. Therefore, it was easy, at the time, to collect
millions of messages by creating a small number of profiles and join one of these ge-
ographic networks. For privacy reasons, geographic networks have been discontinued
in late 2009. The dataset we used contains 106,373,952 wall posts collected from five
geographic networks (i.e., London, New York, Los Angeles, Monterey Bay, and Santa
Barbara). These wall posts are distributed over almost two years (Sept. 2007 - July

2009).

6.6.2 Training the Classifier

To determine the weights that we have to assign to each feature, we applied Weka’s

SMO [17] to a labeled training dataset for both Twitter and Facebook.

While the Facebook dataset contains the network of a user, Twitter does not provide
such a convenient proximity feature. Therefore, we omitted this feature from the eval-
uation on Twitter. For Twitter, the weights for the features are determined from our
labeled training dataset consisting of 5,236 (5142 legitimate, 94 malicious) messages
with their associated feature values as follows: Source (3.3), Personal Interaction (1.4),

Domain (0.96), Hour of Day (0.88), Language (0.58), and Topic (0.39).

140



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

To manually determine the ground truth for an account in our training set, we examined
the tweets present in that account’s timeline. If an account under analysis uses URLSs
in tweets, we follow these links and inspect the landing pages. Should we find that the
URL lead to a phishing page, we classify the account as compromised. As we discuss
in Section 6.6.5, phishing campaigns frequently make use of URLs to guide potential
victims to phishing websites that prompt the visitor to disclose her account credentials.
Another source of information we used to assess whether an account was compromised
are application description pages. Each tweet sent by a third-party application contains
a link to a website chosen by the developer. If such a link leads to a malicious page, we
also consider the account as compromised . Finally, we exploit the fact that humans
can extract the topic of a message from small amounts of information. That is, we
would flag an account as compromised if the topic of tweets in the timeline abruptly
switches from personal status updates to tweets promoting work from home opportuni-
ties and free electronic gadgets (common scams). As we will show later in this section,
a significant portion of the tweets that indicate that an account is compromised get re-
moved. This makes it time consuming to manually identify compromised accounts on
Twitter. Although the number of malicious samples in our training dataset is limited,

the feature values turned out to be stable over different training set sizes.

Figure 6.1 illustrates how the weights for each feature vary with different sizes of the
training set. Each set of five bars corresponds to one feature. Each bar within a set
represents the observed weights for this feature (i.e., average, min, and max) that were

produced by 25 iterations with a fixed training set size. For each iteration, the contents

'While Twitter has been filtering links to potentially malicious URLs in posted messages for a while, they only started filtering
these application pages after we informed Twitter that an attacker can choose this page to be a malicious site.

141



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

Jbr—r————————"——— T T T T T T T T T T T T T T

3.0 J I I
|
251 {

: i,

ool o e
Time Source Topic Domain Personal Language

Interaction

Figure 6.1: Features evolving with different sizes of training sets. Each experiment was con-
ducted 25 times on random subsets of 25%, 50%, 70%, 90%, and 99% of the 5,236
labeled training instances. The fraction of positive to negative samples remained
constant.

of the training set were randomly chosen. Overall, this experiment was repeated five
times with different training set sizes. It can be seen that when smaller training sets are

used, the observed weights vary heavily. This variance becomes small for lager training

datasets indicating that the weights are fairly stable.

On Facebook, based on a labeled training dataset of 279 messages (181 legitimate, 122
malicious), the weights were: Source (2.2), Domain (1.1), Personal Interaction (0.13),
Proximity (0.08), and Hour of Day (0.06). Weka determined that the Language feature
has no effect on the classification. Moreover, as discussed earlier, assessing the message
topic of an unstructured message is a complicated natural language processing problem.
Therefore, we omitted this feature from the evaluation on the Facebook dataset. Similar

to analyzing Twitter messages, we also assessed changes of topic across wall posts in

142



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

the Facebook dataset to identify compromised accounts for the training data. Addition-
ally, we inspected Facebook application pages and their comment sections where users
can leave feedback. As the Facebook dataset was collected in 2009, we would also
consider an account as compromised if the application that sent that post was blocked

by Facebook in the meantime.

6.6.3 Detection on Twitter

The overall results for our Twitter evaluation are presented in Table 6.2. Due to space
constraints, we will only discuss the details for the text similarity measure here. How-
ever, we found considerable overlap in many of the groups produced by both similarity
measures. More precisely, for over 8,200 groups, the two similarity measures (content
and URL similarity) produced overlaps of at least eight messages. COMPA found, for
example, phishing campaigns that use the same URLs and the same text in their mali-

cious messages. Therefore, both similarity measures produced overlapping groups.

The text similarity measure created 374,920 groups with messages of similar content.
365,558 groups were reported as legitimate, while 9,362 groups were reported as com-
promised. These 9,362 groups correspond to 343,229 compromised accounts. Inter-
estingly, only 12,238 of 302,513 applications ever produced tweets that got grouped
together. Furthermore, only 257 of these applications contributed to the groups that

were identified as compromised.

For each group of similar messages, COMPA assessed whether the predominant ap-

plication in this group was a regular client or a bulk application. Our system identi-

143



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

\ Network & Similarity Measure \ Twitter Text \ Twitter URL \ Facebook Text \

Groups Accounts Groups Accounts Groups Accounts

Total Number 374,920 14,548 48,586
# Compromised 9,362 343,229 1,236 54,907 671 11,499
False Positives 4% (377) | 3.6% (12,382) 5.8% (72) 3.8% (2,141) | 3.3% (22) | 3.6% (412)
# Bulk Applications 12,347 1,569 N/A N/A
# Compromised Bulk Applications 1,647 178,557 251 8,254 N/A N/A
False Positives 8.9% (146) 2.7% (4,854) | 14.7% (37) | 13.3% (1,101) N/A N/A
# Client Applications 362,573 12,979 N/A N/A
# Compromised Client Applications 7,715 164.672 985 46,653 N/A N/A
False Positives 3.0% (231) | 4.6% (7,528) 3.5% (35) 2.2% (1,040) N/A N/A

Table 6.2: Evaluation Results for the Text (Twitter and Facebook) and URL (Twitter) Similarity
measure.

fied 12,347 groups in the bulk category, of which 1,647 were flagged as compromised.

Moreover, COMPA identified a total of 362,573 groups that originated from client

applications. Of these, 7,715 were flagged as compromised.

Overall, our system created a total of 7,250,228 behavioral profiles. COMPA identified
966,306 messages that violate the behavioral profiles of their corresponding accounts.
Finally, 400,389 messages were deleted by the time our system tried to compare these

messages to their respective behavioral profiles (i.e., within an hour).

False Positives

Using the text similarity measure, COMPA identified 343,229 compromised Twitter
accounts in 9,362 clusters. To analyze the accuracy of these results, we need to answer
two questions: First, do we incorrectly label non-compromised accounts as compro-
mised (false positives)? We try to answer this question in this subsection. Second,
do we miss accounts that have been compromised (false negatives)? We discuss this

question in the next subsection.

144



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

False positives might arise in two cases: First, legitimate users who change their habits
(e.g., a user experiments with a new Twitter client) might be flagged as compromised.
Second, fake accounts, specifically created for the purpose of spreading malicious con-
tent, might trigger our detection, but these are not compromised accounts. Arguably,
the second source of false positives is less problematic than the first one, since the
messages that are distributed by fake accounts are likely malicious. However, since
social network providers need to handle compromised accounts differently from fake
accounts (which can be simply deleted), we want our system to only report compro-

mised accounts.

To address the first reason for false positives, we analyzed the groups that our similarity
measures generated. First, we aggregated similar (repeated) groups into long-lasting
campaigns. Two groups belong to the same campaign if all pairwise Levenshtein ratios
between ten randomly-chosen messages (five messages from each group) is at least
0.8. We could aggregate 7,899 groups into 496 campaigns. We then manually analyzed
a subset of the accounts present for each campaign. Additionally, 1,463 groups did
not belong to any campaign, and we assessed each of these manually. During manual
analysis, we opted to err on the conservative side by counting groups whose accounts

contain messages written in non-Latin based languages as false positives.

In total, 377 of the 9,362 groups (4%) that COMPA flagged as containing compromised
accounts could not be verified as such, and thus, constitute false positives. Note that
each group consists of multiple tweets, each from a different Twitter account. Thus,
the above mentioned results are equivalent to flagging 343,229 user as compromised,

where 12,382 (3.6%) are false positives.

145



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

Three months after we finished our experiments, we tried to retrieve all messages that
we found were indicative of compromised accounts. Only 24% were still available.
Furthermore, we would expect that the majority of messages sent by legitimate ac-
counts are persistent over time. Thus, we also tried to retrieve a random sample of
160,000 messages contained in clusters that COMPA found to be benign. 82% of
these messages were still reachable. Additionally, we also tried to access 64,368 ran-
dom messages that we collected during our experiments as described in the following

subsection. Of these, 84% were still accessible.

This means that for 76% of the messages that COMPA identified as being sent by a
compromised account, either Twitter or the user herself removed the message. How-
ever, 96.2% of the accounts that sent these tweets were still accessible. For less than one
percent (0.6%) of the accounts, Twitter states that they were suspended. The remain-
ing 3.2% return a “Not found” error upon access. These percentages are almost per-
fectly in line with accounts that COMPA did not flag as compromised (95.5%, 0.5%,
and 4%, respectively), and a random sample of 80,000 accounts (94%, 4%, and 2%).
Twitter actively suspends spam accounts on their network. Thus, these results indicate
that Twitter does not consider the accounts flagged by COMPA as fake. However,
the significant amount of removed messages for such accounts leads us to believe that

COMPA was successful in detecting compromised accounts.

To estimate the second source of false positives, we tested our results against SPAMDE-
TECTOR. This allows us to detect accounts that were fake accounts as opposed to com-
promised. As we explained in Chapter 5, SPAMDETECTOR detects fake accounts that

are likely spammers, based on features related to automatically created and managed

146



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

accounts (such as the ratio between the friend requests that are sent and the requests
that are accepted, the fraction of messages with URLs, and how similar the messages
are that a single user sends). This system proved to be effective in detecting accounts
that have been specifically created to spread malicious content. However, the system
does not usually detect compromised accounts. This is because such accounts usually
have a long history of legitimate Twitter usage, and, hence, the few tweets that are sent

out after the compromise do not affect the features their classifier relies on.

We used this classifier to analyze a random sample of 94,272 accounts that COMPA
flagged as compromised. The idea is that any time an account is detected as a spam-
mer, this is likely to be an account specifically created with a malicious intent, and
not a legitimate, yet compromised account. Out of the analyzed accounts, only 152
(0.16%) were flagged as spammers. We then manually checked these accounts to ver-
ify if they were actually false positives of COMPA. 100 of these 152 accounts turned
out to be compromised, and thus, true positives of COMPA. The reason for flagging
them as spam accounts is that they have not been very active before getting compro-
mised. Therefore, after the account was compromised, the spam messages had more
influence on the features than the legitimate activity before the compromise. The re-
maining 52 accounts were not compromised but had been specifically created to spam.
However, these 52 accounts were distributed over 34 clusters with an average cluster
size of 30. Furthermore, no cluster consisted solely of false positives. The main reason
why they were detected as behavior violations by COMPA is that they posted an up-
date in an hour during which they had never been active before. This result underlines
that the compromised accounts that COMPA reports are substantially different than the

dedicated, fake accounts typically set up for spamming.

147



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

0.035

0.030 |

0.025 -

positive

0.020 -

Probability for a false:
o
o
o

0.010

0.005 -

0000 50 100 150 200

Amount of historical data (i.e., # of tweets)

Figure 6.2: Probability of false positives depending on the amount of historical data on Twitter.

Historical information. We also investigated how the length of a user’s message
stream influences the quality of the behavioral profiles COMPA builds (recall that
COMPA does not build a behavioral profile when a user has posted fewer than 10
messages). To this end, we calculated the probability of a false positive depending on
the number of tweets that were available to calculate the behavioral profile. As Fig-
ure 6.2 illustrates, COMPA produces less false positives for accounts whose historical
data is comprehensive. The reason for this is that the models become more accurate

when more historical data is available.

False Negatives

To assess false negatives, we used COMPA to create 64,368 behavioral profiles for

randomly selected users over a period of 44 days. To this end, every minute, COMPA

148



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

retrieved the latest tweet received from the Twitter stream and built a behavioral profile
for the corresponding user. 2,606 (or 4%) of these profiles violated their account’s
behavioral profile. 415 of these were sent by known, popular bulk applications. We
manually inspected the remaining 2,191 tweets that violated their accounts’ behavioral
profiles (we performed the same manual analysis that was previously used to determine
the ground truth for our training set). We did not find evidence of any malicious activity

that COMPA missed.

In a next step, we extracted all URLs posted on Twitter during one day, and we checked
them against five popular blacklists. The idea behind this is that if a URL is known to
be malicious, it is likely to be posted either by a compromised or by a fake account.
We extracted 2,421,648 URLs (1,956,126 of which were unique) and checked them
against the Spamhaus Domain Blacklist [13], Google Safebrowsing [6], PhishTank [11],
Wepawet [18], and Exposure [3]. We first expanded shortened URLs before checking
the landing page against the blacklists. In total, 79 tweets contained links that were
present in at least one blacklist (these 79 tweets contained 46 unique URLs). We ran
COMPA on each of the 79 messages to see if they were actually sent by compromised

accounts.

Our system flagged 33 messages as violating their user’s profile. The reason COMPA
did not flag these accounts in the first place is that the clusters generated by these
messages were too small to be evaluated, given the API limit we mentioned before. If
we did not have such a limit, COMPA would have correctly flagged them. Seven more
messages contained URLSs that were similar to those in the 33 messages. Even though

these compromised accounts did not violate their behavioral profiles, they would have

149



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

been detected by COMPA, because they would have been grouped together with other

messages that were detected as violating their behavioral profiles.

Of the remaining 39 accounts that COMPA did not flag as compromised, 20 were
detected as fake accounts by the classifier by SPAMDETECTOR, and are therefore con-
sidered as fake accounts. We manually investigated the remaining 19 results. 18 of
them contained links to popular news sites and blogs, which were mainly blacklisted
by Google Safebrowsing. We think users posted legitimate links to these pages, which
might have become compromised at a later point in time (or are false positives in
Google Safebrowsing). Thus, we do not consider accounts that linked to such pages

as either compromised or fake.

The remaining message linked to a phishing page, but did not violate the profile of the
account that posted it. We consider this as a message by a compromised account, and,

therefore, a false negative of COMPA.

6.6.4 Detection on Facebook

As the Facebook dataset spans almost two years we increased the observation inter-
val to eight hours to cover this long timespan. Furthermore, we only evaluated the

Facebook dataset with the text similarity measure to group similar messages.

Our experiments indicated that a small number of popular applications resulted in a
large number of false positives. Therefore, we removed the six most popular applica-

tions, including Mafia Wars from our dataset. Note that these six applications resulted

150



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

in groups spread over the whole dataset. Thus, we think it is appropriate for a social
network administrator to white-list applications at a rate of roughly three instances per

year.

In total, COMPA generated 206,876 profiles in 48,586 groups and flagged 671 groups
as compromised (i.e, 11,499 compromised accounts). All flagged groups are created
by bulk applications. 22 legitimate groups were incorrectly classified (i.e., 3.3% false

positives) as compromised; they contained 412 (3.6%) users.

6.6.5 Case Studies

In this section, we describe some interesting findings about the compromised accounts

detected by COMPA.

”Get more Followers” scams On Twitter, the majority of the accounts that COMPA
flagged as compromised were part of multiple large-scale phishing scams that advertise
“more Followers”. These campaigns typically rely on a phishing website and a Twitter
application. The phishing website promises more followers to a user. The victim can
either get a small number of followers for free, or she can pay for a larger set of fol-
lowers. Many users consider the number of their followers as a status symbol on the
Twitter network, and the ”’base version” of the service is free. This combination seems
to be an irresistible offer for many. The phishing sites requires the user to share their
username and password with the website. Additionally, the user needs to give read and

write access to the attacker’s application. Once the victim entered her credentials and

151



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

authorized the application, the application immediately posts a tweet to the victim’s
account to advertise itself. Subsequently, the attackers make good on their promise and
use their pool of existing, compromised accounts to follow the victim’s account. Of
course, the victim also becomes part of the pool and will start following other users

herself.

COMPA identified four different web sites that were part of the same phishing cam-
paign. 2 Although the web sites look different, they all use the same application to post
tweets to their victim’s accounts. This behavior became evident when we combined the
results of the fext similarity and landing page oracles. More precisely, the landing page
oracle identified four distinct campaigns, whereas the text similarity oracle detected a

single campaign.

Among the others, COMPA successfully identified four different phishing campaigns.
Although these campaigns were sending messages pointing to different URLs, the
structure of the messages and the application used was the same. This means that the
same group of people is running these campaigns and the infrastructure behind them.
Moreover, this gives an idea of how sophisticated the underground economy behind

Twitter has become.

Victim analysis. We also analyzed the victims of one of the "Get more followers”
scams previously described. The goal of this analysis was to understand more about the
victims who fall for such scams. Over the analysis period, COMPA detected 84,650

accounts that were compromised by this campaign. All together, these accounts had

http://plusfollower.info, http://followback.info, http://hitfollow.
info,and http://newfollow.info

152


http://plusfollower.info
http://followback.info
http://hitfollow.info
http://hitfollow.info
http://newfollow.info

CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

4,249,788 friends. We started to look for profiles that were followed by a large number
of victims. The idea behind this is that this type of scams is likely to produce dense
clusters of users connected to each other, since the advertised goal of the campaign is
to give more followers to the accounts that subscribe to the service. The easiest way of
doing this is to make the accounts attackers obtained credentials to follow each other.
Overall, 51,584 profiles were followed by at least 500 victims of the scam. However,
the majority of these accounts belonged to celebrities, which are followed by hundreds
of thousands of twitter accounts. To discriminate between celebrities and other pro-
files, we used the Klout API [81]. Klout is a service that measures how influential a
Twitter account is. By leveraging their API, we identified which accounts belonged
to celebrities, and which to users that were not influential but still had an anomalous
number of scam victims following them. In particular, we considered any profile with a
Klout score above 50 to be an influential profile. We found 204 accounts had both a low
Klout score and a high number of victims following them. We crawled the timelines of
these accounts to assess whether they were also compromised. 22 of them sent tweets
belonging to the scam, and therefore we consider them as compromised. Interestingly,
182 profiles did not show a behavior typical of compromised profiles. However, due
to their low influence scores, we think it is unlikely that they got followed by such a
large number of users who also happened to be compromised by the same scam. This
fact suggests that not only the victims of the scam will be followed by other compro-
mised accounts, but also that such victims will massively follow other accounts that are
not popular on Twitter. This might mean that this particular scam is related to a ser-
vices that offers followers in exchange for money. In fact, we observed such campaigns

that would, for example advertise 3,000 followers for $65. The scammers make good

153



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

on their offer by following their customers with accounts for which they previously

phished the credentials.

In exchange for the user’s money the scammers follow their customers with a number
of profiles for which they previously phished the credentials. A more detailed analysis

of this type of scams has been presented in our follow-up papers [127, 132].

Phone numbers COMPA also detected scam campaigns that do not contain URLs.
Instead, potential victims are encouraged to call a phone number. Such messages would
read, for example, "Obama is giving FREE Gas Cards Worth $250! Call now-&gt; 1
888-858-5783 (US Only)@ @ @.” In our evaluation, 0.3% of the generated groups did
not include URLs. Existing techniques, such as [137], which solely focus on URLs and

their reputation, would fail to detect such campaigns.

Malicious Firefox plugin Furthermore, COMPA detected a campaign to distribute
a malicious Firefox plugin under the false premise that the plugin enables the non-
existing dislike button on Facebook. However, once installed the plugin would annoy

the user with additional advertisements.

6.6.6 Detecting Worms

Twitter has been affected by multiple worm outbreaks. For example, in September
2010 a XSS worm exploited a vulnerability in the way in which Twitter parsed URLSs in

tweets. More specifically, if a URL contained an ”@” symbol, Twitter would interpret

154



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

everything following that character as JavaScript. Therefore, a user who hovered her

mouse over a tweet containing a URL similar to

http://x.xx/@"onmouseover="alert (1)

would execute the JavaScript event handler in her browser. Of course, the real worm
used JavaScript that would self propagate the worm instead of the alert statement.
Obviously, posting the tweet that contained the body of the worm happened without
the user’s consent, and, therefore, we have to consider such accounts as compromised.
Note that the URL preceding the @ sign was irrelevant for the attack. Therefore,
existing detection approaches that examine the maliciousness of URLs would fail to
detect this XSS worm attack, as the attacker could chose any benign domain (e.g.,

http://www.google.com).

To evaluate whether COMPA is capable of detecting worm outbreaks, we simulated
the worm outbreak on real Twitter data. That is, we chose a random message Sy of a
random user U, on the Twitter network. We assumed that the worm would propagate
from user A to user B iff user B follows user A, and user B was active on Twitter within
a time window 7 around the point in time when user A posts the offending message.
Due to the lack of detailed usage information, we determine the activity of a user by
observing when they tweet. Thus, a user is deemed active 7/2 before and after she
posted any status updates through the Twitter web interface. Note that this definition of
activity (i.e., a user is only deemed active when she is posting) is conservative, as users
are often browsing Twitter or reading other people’s tweets, even if they do not post at

the same time. Furthermore, the worm only propagates itself if the tweet that user B

155



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

sent was posted through the Twitter web site. That is, alternative clients are assumed
not to contain the same vulnerability in their URL parsing routines. The XSS worm we
are simulating is aggressive in that it spreads as soon as the user hovers the mouse over
the tweet. We assume that if a user is active, she will hover her mouse over the tweet,
and thus, get infected. For every propagation step, we record the IDs of users A and B,
as well as the ID of the tweet that was used to determine that user B is active (i.e., the
tweet user B sent within the time window 7). According to [9], web users spend roughly
10 minutes per day on social networks. Thus, we assumed a value of 10 minutes for 7

in our simulation.

Subsequently, we downloaded the timelines of the users infected by the simulated
worm. Then, we substituted the tweets that were responsible for the worm propagation
with a copy of the XSS worm. Finally, we ran COMPA on these timelines. Although
the way we simulated the worm outbreak means that the timing and source models are
drawn from real information (i.e., we only substituted the text of the tweet), COMPA
was able to successfully detect the outbreak and the compromised accounts after the
worm spread to 2,256 accounts in 20 minutes. This means that the worm group” con-
tained enough tweets that violated their respective users’ behavioral profiles. It turns out
that our propagation strategy was chosen conservatively as news reports® of previous
Twitter worms report of 40,000 infected accounts within 10 minutes. Thus, assuming
the distribution of profile violations is similar for such aggressive worms, COMPA

would detect such a large scale outbreak even faster.

3 http://eu.techcrunch.com/2010/09/21/warning-mouseover-tweets-security-flaw-is-wreaking-havoc-on-twitter/

156



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

6.7 Detecting High-profile Compromises

As we mentioned in Section 6.4, it is not uncommon for regular Twitter users to gen-
erate a tweet that violates their behavioral profile. For this reason, COMPA groups
together similar messages, and flags a group as malicious if a relevant fraction of the
messages result suspicious compared to their respective behavioral profile. By doing
this, we are able to reliably detect large-scale compromises that take over multiple so-

cial network accounts and use them for malicious purposes.

Although large-scale compromises account for the majority of compromised accounts
on social networks, there is another class of compromises that is possibly more dan-
gerous: high-profile accounts, belonging to celebrities, corporations, and news agen-
cies can be hijacked by miscreants and used to spread false information. Since these
high-profile accounts have a good reputation, the public is likely to believe this false

information, with potentially negative effects.

In this section we investigate the ability of COMPA to detect high-profile compromises
that target a single account and are composed of a single message. Our intuition is that
these high-profile accounts will show a more consistent behavior than regular social
network accounts, and therefore COMPA can reliably detect anomalies for them with
very low false positives. To validate this intuition, we analyzed the behavior of the
Twitter accounts of 20 high-profile news agencies over time. To this end, we collected
the public timelines of these 20 accounts and performed the behavioral profile extrac-
tion and evaluation presented earlier in this chapter for the most recent 500 tweets in

these timelines. Since we assume that the intention of media accounts is to dissemi-

157



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

Twitter Account | #Violations (%) | Twitter Account | #Violations (%)
FoxNews 0 (0%) | washingtonpost 1 (0%)
CNN 0 (0%) | lemondefr 2 (0%)
foxnewspolitics 0 (0%) | Reuters 5 (1%)
AP 0 (0%) | BostonGlobe 11 2%)
latimes 0 (0%) | BBCNews 16 (3%)
BloombergNews 0 (0%) | msnbc 17 (3%)
HuffingtonPost 0 (0%) | NBCNews 19 (4%)
BW 0 (0%) | el_pais 22 (4%)
abcnews 1 (0%) | DerSPIEGEL 63 (13%)
nytimes 1 (0%) | guardian 100 (20%)

Table 6.3: Behavioral profile violations of news agency Twitter accounts within most recent 500
tweets.

nate original content, our analysis discards all retweets and conversations (i.e., replies)
contained in a timeline. Our analysis has shown that such interaction frequently diverts
from observed regular behavior and is only used in exceptional cases by official news

agency Twitter accounts.

We consider an account to show consistent behavior if the probability of any of its
messages violating the accounts behavioral profile is significantly less than 4%. As we
mentioned previously, this is the rate of messages that randomly violates the behavioral
profile of an average Twitter account. As Table 6.3 illustrates, the rate of messages
violating the behavioral profile for the majority of the media accounts that we analyzed
is very low. This is an indicator that COMPA could be used to protect high-profile
Twitter account against compromises. In the following, we discuss these results more
in detail, and provide two examples of high-profile compromises that COMPA would

have been able to detect.

158



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

Analysis The only two media accounts whose behavior was not vastly consistent are
the accounts of the German news outlet Der Spiegel and the British Guardian. Most
profile violations in the @derspiegel account arose because this account is not only used
to disseminate news but also to interact with other reporters. For example, advertising
and communication during a journalistic convention held at the Spiegel headquarters
are also included in that timeline. We suspect that the Guardian Twitter feed is managed
by a set of different actors who have different preferences in terms of Twitter clients
and slightly different editing styles. Our system is currently not able to characterize

accounts with such multi-variant behavior patterns.

In the following we analyze two attacks on high-profile media accounts in more detail.
Our previous research found that accounts are frequently compromised by tricking the
user into authorizing malicious Twitter applications. In contrast, the two attacks that
we detail here share the characteristic that the attackers used the Twitter web interface
to distribute fake news. One can only log into a Twitter account if the account name and
password are known. Thus, we can conclude that the attackers in these cases had full
access to the compromised accounts allowing them to authorize additional applications
or change the accounts password. These actions require full access to the account
and cannot be performed if the attacker only tricked the user to authorize a malicious
application. A detailed report [23] from another victim of a similar attack supports this

assumption by detailing the phishing emails used.

Associated Press On April 2374 2013, the Twitter account of the Associated Press

(@AP) was compromised [16]. The account was misused to distribute false information

159



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

about president Obama being hurt by an explosion in the White House. Comparing
the behavioral profile of the @AP account against this message resulted in significant
differences among many features that our system evaluates. For example, the fake news
was posted via the Twitter website, whereas the legitimate owners of the @ AP account
commonly use the SocialFlow application to send status updates. Furthermore, the
fake tweet did not include any links to additional information, a practice that the @ AP

account follows very consistently.

Only two features in our behavioral model did not signify a change of behavior. The
time when the tweet was sent (i.e., 10:07UTC) and the language of the tweet itself. The
authors of the @ AP account as well as the attackers used the English language to author
their content. While the language is undoubtedly the same, a more precise language

analysis could have determined an error in capitalization in the attacker’s message.

FoxNews Politics On July 4" 2011, the Twitter account of Fox News’ politics

(@foxnewspolitics) division got compromised [20]. The attackers used this opportunity
to distribute the information that president Obama got assassinated. This tweet violated
almost all the features used by our system. For example, the tweet was sent in the
middle of the night (i.e., 23:24UTC), through the main Twitter web site. Furthermore,
it did not include a link to the full story on the Fox News website. The tweet also
made extensive use of hashtags and mentions, a practice not commonly used by the

@foxnewspolitics account.

160



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

6.8 Limitations

An attacker who is aware of COMPA has several possibilities to prevent his compro-
mised accounts from being detected by COMPA. First, the attacker can post messages
that align with the behavioral profiles of the compromised accounts. As described in
Section 6.3, this would require the attacker to invest significant time and computational
resources to gather the necessary profile information from his victims. Furthermore, so-
cial networks have mechanisms in place that prevent automated crawling, thus slowing

down such data gathering endeavors.

Second, an attacker could send messages that evade our similarity measures, and thus,
although such messages might violate their compromised accounts’ behavioral pro-
files, they would not get grouped together. To counter such evasion attempts, COMPA
can be easily extended with additional and more comprehensive similarity measures.
For example, it would be straight-forward to create a similarity measure that uses the
landing page instead of the URLs contained in the messages to find groups of similar
messages. Furthermore, more computationally expensive similarity measures, such as
text shingling or edit distances for text similarity can also be implemented. Other sim-
ilarity measures might leverage the way in which messages propagate along the social

graph to evaluate message similarity.

161



CHAPTER 6. DETECTING COMPROMISED ONLINE SOCIAL NETWORK ACCOUNTS

6.9 Conclusions

In this chapter, we presented a novel approach to detect compromised accounts in social
networks. More precisely, we developed statistical models to characterize the behavior
of social network users, and we used anomaly detection techniques to identify sudden
changes in their behavior. We developed COMPA, a prototype tool that implements
this approach, and we applied it to a large stream of messages. The results show that
our approach reliably detects compromised accounts, even though we do not have full

visibility of every message exchanged on Facebook and Twitter.

162



Part 111

Detecting The Relations Between

Malicious Hosts and Online Accounts

163



Chapter 7

Detecting Malicious Account

Communities on Online Services

7.1 Introduction

As we mentioned in Chapter 1.1, attackers need two resources to carry out malicious
campaigns on online services: online accounts and infected machines. Almost all on-
line services require users to sign up and create accounts before they can access the
functionality that these services offer. Accounts allow online services to associate data
with users (such as emails, posts, pictures, ...), and they also serve as a convenient way
to regulate and restrict access. Infected machines (bots) are the typical mean through
which attackers access online accounts. They are the devices (hosts) that run the clients

that allow the miscreants to connect to online services. Infected machines work well for

164



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

cybercriminals because they serve as a convenient way for the attacker to log into the
targeted service and issue the necessary commands to send spam or harvest personal
information of legitimate users. However, attackers do not necessarily have to lever-
age infected machines to connect to online services. They could also use compromised
servers, or even the cybercriminal’s personal device. For this reason, to keep our anal-
ysis generic in this chapter we refer to any device used by a cybercriminal to an online

account as a connection point.

In the previous chapters of this thesis we focused on systems that either detect infected
computers or malicious accounts on online services. In this chapter instead we propose
a novel detection approach based on the analysis of the interactions between attackers
and an online service. More precisely, we look at the interplay between accounts,
connection points, and actions. That is, we observe which account carries out what

action, and which connection point is responsible for originating that action.

The basis for our detection approach is the intuition that cybercriminals use online
services differently than regular users. Cybercriminals need to make money, and this
requires automated operations at a large scale. Thus, when such operations are carried
out, they involve many accounts, connection points, and actions. Moreover, accounts
and connection points are related in interesting ways that can be leveraged for detection.
A key reason for these interesting relationships is the fact that attackers use botnets (as
connection points) to access the online accounts that participate in a campaign. By
linking accounts and the connection points that are used to access these accounts, we

see that malicious communities emerge, and these communities can be detected.

Our approach works by identifying communities (sets) of online accounts that are all

165



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

accessed from a number of shared connection points (we use IP addresses to identify
these connection points). That is, we observe a number of IP addresses and accounts,
and each account is accessed by a non-trivial portion of these IP addresses. Typically,
these IP addresses correspond to bot-infected machines, and they are used to log into
the accounts that are under the control of the attacker. To identify communities, we
consume a log of interaction events that the online services record. An interaction event
can be any action that a user performs in relation to an account on an online service,
such as logging in, sending an email, or making a friend request. Each event also

contains the account that is involved, as well as the IP address that sends the request.

In a next step, we analyze the characteristics of accounts within a community and iden-
tify typical behaviors that are indicative of malicious activity. Such characteristics in-
clude suspicious activity frequencies over time, synchronized activity of the machines
using the accounts in the community and the distribution of the types of browsers used
by the infected machines to connect to the online accounts. Analyzing additional char-
acteristics allows us to identify communities of accounts that are used for legitimate
purposes, and, thus, reduce false positives. Interestingly, our results show that the over-
whelming majority of accounts that are part of communities are actually malicious.
Hence, we do not need to leverage additional characteristics for detection. Instead, we

explore them to shed light onto the operations of cybercriminals on online services.

One advantage of our approach is that it is very general. We do not leverage specific
information of a particular online service, and our definition of interaction events can
be very broad. In fact, we show that our approach works both for the detection of

spammers on a webmail service, as well as for the identification of malicious accounts

166



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

on social networks. In the former case, interaction events correspond to the sending of
emails, while in the latter case, an interaction event is recorded when a user logs into her
account. This is different from previous work that looked at malicious activity on online
services. For instance, our approach can be applied to different types of actions. These
actions can include account generation and login operations. In these cases, it might
be possible to detect malicious accounts before they distribute any malicious content,
as an early warning system. Also, it can help to identify abuses where no malicious
content is spread. An example of this are botnets that use online social networks as
part of their command-and-control (C&C) infrastructure [123], or botnets that crawl

the address books of webmail users looking for victim email addresses [1].

We implemented our approach in a system called EVILCOHORT. We evaluated EVIL-
COHORT on real-world data collected from five different online services, and monitored
the communities of online accounts that were detected. Over a period of five months,

EVILCOHORT detected more than one million online accounts as malicious.

In summary, this chapter makes the following contributions:

o We find that a significant amount of malicious activity is carried out by accounts
that form communities (when looking at the connection points that access them).
We also find that these accounts are harder to detect for online services and re-

main active longer.

e We present an approach to detect malicious communities (and hence, accounts
controlled by cybercriminals). This approach works by detecting accounts that

are accessed by a common, shared set of IP addresses.

167



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

e We implemented our approach in a system called EVILCOHORT. We evaluated
EVILCOHORT on datasets of different types of interactions collected on five dif-
ferent online services. Over a period of five months, EVILCOHORT detected
more than one million accounts used to perform malicious activity. We show that
EVILCOHORT is effective in detecting malicious online communities regardless
of the type of accounts analyzed, making it a valuable tool to protect a variety of

online services from being abused.

e We analyzed the communities detected by EVILCOHORT. We show that mali-
cious account communities have very peculiar characteristics, which could sup-

port automated detection but also prevention of false positives.

7.2 Background: Analysis of Malicious Activity on a

Webmail Service

We want to understand the way in which cybercriminals abuse accounts on online ser-
vices, to identify weak points that we could leverage for detection. To this end, we
observed the email-sending activity on a large webmail service for the period of one
day. Our dataset was composed of a random sample of 72,471,992 emails generated by
21,387,006 distinct online accounts. We call the dataset containing information about
this email-sending activity T. For each email-sending event, the dataset T contains the
IP address that accessed the account, the user ID of the account that sent the email, and
a timestamp. In addition, each email-sending event contains information on whether the

email was considered as spam by the webmail provider or not. The webmail provider

168



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

uses a variety of anti-spam techniques, from IP reputation to content analysis.

Two Types of Malicious Accounts. We analyzed the accounts that sent spam in the

dataset T. We identify two types of malicious accounts:

1. Accounts that are used in isolation. In these operations, each account is accessed
by a single IP address, which could be the attacker’s computer or a single infected

machine.

2. Accounts that are accessed by multiple IP addresses. In these operations, the
same account is accessed by multiple infected computers (i.e., by different IP

addresses).

We looked at how many malicious accounts of each type are active on the webmail
service. We considered an account as malicious if the account sent at least 10 emails
during the day under consideration, and 60% or more of these emails were flagged
as spam by the webmail provider. We selected this threshold because we needed a
set of “labeled” accounts that sent spam on the webmail provider. Picking accounts
whose majority of emails was flagged as spam by the email provider gives us confidence
that this dataset does not contain false positives. We call this set of labeled accounts
L. In total, L is composed by 66,509 malicious accounts were accessed by a single
IP address, and 103,918 malicious accounts that were accessed by two or more IP

addresses.

Accounts Shared by Many IP Addresses Are More Dangerous. We then investigated

the effectiveness of the two identified types of spam accounts in sending emails, and

169



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Time (in Days)
£

Time Before Accounts Suspension
10 20 30 40 50 60 70 80 90
Number of IP Addresses

Figure 7.1: Average time (in days) before a spamming account was suspended in L, given the
number of IP addresses accessing that account. Accounts accessed by many IP ad-
dresses can be stealthier in their operation and survive longer. The plot shows bumps
when we reach accounts accessed by a very high number of accounts, because these
accounts are very rare.

their ability to evade detection by the webmail provider. Figure 7.1 shows the average
time (in days) that it took for a malicious account in L to be suspended after it sent
the first spam email, given the number of IP addresses that accessed that account. As
it can be seen, accounts that are used in isolation have a shorter lifespan than the ones
that are used by multiple IP addresses: accounts that are only accessed by a single IP
address are typically detected and suspended within a day, while ones that are accessed

by many different IPs can survive for as long as a week.

We then studied the difference in the activity of the two types of accounts with regards
to the number of spam emails sent, to identify techniques that might allow us to detect
them more effectively. Figure 7.2 shows that accounts that are used in isolation are less
effective for cybercriminals, as they send a smaller number of emails per day before
being shut down. Alternatively, attackers can have each of their infected computers
send a small number of emails and stay under the radar. Figure 7.3 shows that IP ad-

dresses accessing accounts used in isolation send 19 emails per day on average before

170



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

900
800
700
600
500
400
300
200
100

Average Number of Emails per Day

Number of Emails

10 20 30 40 50 60 70 80 90
Number of IP Addresses

Figure 7.2: Number of spam emails sent per day on average by accounts accessed by a certain
number of IP addresses. Accounts accessed by more IP addresses are generally able
to send more emails from their malicious accounts.

being blocked, while having multiple computers accessing the same account allows
cybercriminals to have each IP address send a lower number of emails, as low as one
email per IP address in some cases. The longevity of the accounts that are accessed by
more than one IP address suggests that the webmail service lacks effective countermea-
sures to prevent abuse of the service by such accounts. The community-based detection

approach presented in this chapter allows an online service to promptly identify such

accounts and thus prevent abuse and malicious activity.

Detecting Malicious Accounts Shared by Many IP Addresses. Can we use the fact
that malicious accounts tend to be accessed by many IP addresses to flag these accounts
as malicious? Figure 7.4 shows the Cumulative Distribution Function (CDF) of the
number of IP addresses that accessed both malicious and legitimate accounts in T.
As it can be seen, malicious accounts are more likely to be accessed by multiple IP
addresses than legitimate accounts. Unfortunately, just looking at the number of IP
addresses that accessed an account is not a strong enough indicator by itself. In fact,

basing a detection system on the number of IP addresses that accessed an account would

171



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

20
18
16
14
12
10

Average Number of Emails per Day

Number of Emails

o N A O

10 20 30 40 50 60 70 80 90
Number of IP Addresses

Figure 7.3: Number of spam emails sent per IP address that accessed a certain account. If many
IP addresses access the same account, each of them can send a small number of
emails and help keeping the malicious accounts under the radar from the webmail
provider.

generate a number of false positives that is too high to be practical. For example,

considering as malicious accounts that were accessed by two or more IP addresses in

T would cause 77% of the total detections to be false positives (i.e., accounts that did

not send any spam email). This makes sense, because many users access their webmail

account from different devices, such as a mobile phone and a desktop computer. Even
by looking at accounts accessed by a higher number of IP addresses does not solve the
false positive problem: looking at accounts that were accessed by ten or more distinct

IP addresses in T generates a 32% false positive rate; by increasing the number of

required IP addresses the ratio of false positives decreases, but it remains well above

the level considered acceptable in a production environment.

To overcome the false positive problem, we leverage another property of cybercriminal
operations that use online services: cybercriminals can only count on a limited number
of infected machines (bots). To be able to have each of their infected machines perform

a small amount of interaction with the accounts under the control of the cybercriminal,

172



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

1
0.9 (

0.8

0.7

CDF

0.6

0.5 |

Legitimate Accounts
Malicious Accounts

10 20 30 40 50 60 70 80 90
Number of IP addresses

0.4

Figure 7.4: Cumulative Distribution Function (CDF) of the number of IP addresses that ac-
cessed benign accounts in T and malicious accounts in L. As it can be seen, mali-
cious accounts are more likely to be accessed by multiple IP addresses than legiti-
mate ones.

attackers have to make their bots connect to different accounts over time. We can think
of a set of accounts that are accessed by the same set of bots as a community. In the
following, we present EVILCOHORT, a system that detects communities of accounts
that are accessed by a common set of IP addresses. We show that looking at these
communities of accounts allows us to detect most of the malicious accounts that are
accessed by multiple IP addresses, while generating a false positive rate that is orders of
magnitude lower than just looking at accounts in isolation. In Section 7.5.1 we compare
the two methods in details, and show that EVILCOHORT outperforms the single account

method.

173



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

®—O ,
® O {31:1} [Communityl]
®e—O 212
® O (u;715] (E Q [Community2]
Building -
, Data ’ ) Find I ,
Collection Graph Cor’nmmul:?ties

Representation

Figure 7.5: Overview of EVILCOHORT. The darker circles represent IP addresses, while the
lighter circles represent online accounts.

7.3 EVILCOHORT: Overview

To operate, EVILCOHORT needs account interaction events as input. Users create their
own accounts and connect to online services to perform a number of actions. Depend-
ing on the service, such actions can span from sending messages to the user’s friends
and colleagues, to performing friend requests, to browsing pictures, to updating the
user’s profile. Accounts allow the online service to attribute any activity performed to
a specific user, in a more precise way than source IP addresses do. For instance, it is
possible to correctly attribute the activity of a certain user regardless of the place she
is connecting from (her home computer, her office, or her mobile phone). We define a

user interaction with an online service as a tuple

A=< HUT >,

where H is the host that the user is connecting from (identified by an IP address), U is

her user ID on the online service, and 7" is a timestamp.

Approach Overview. EVILCOHORT works in three phases. First, it collects interac-

tion events from the monitored online service, and builds a list of IP addresses that

174



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

accessed each of the observed accounts. Then, it builds a graph representation that
represents which accounts have been accessed by the same set of IP addresses. As a
third step, EVILCOHORT performs clustering on the combined access graph represen-
tation to find communities of online accounts. An overview of the different phases in
EVILCOHORT’s operation can be found in Figure 7.5. A last, optional step consists of
analyzing the discovered communities, and applying a set of heuristics that can iden-
tify likely-legitimate communities and avoid false positives. In the remainder of this

section, we provide more details about the steps involved in identifying communities.

7.3.1 Data Collection

In the first phase of operation, EVILCOHORT collects interaction events on an online
service for an observation period (a day in our implementation). For each account that
was active during the observation period, EVILCOHORT keeps an access list I, which
contains the set of IP addresses that accessed that particular online account. At the end
of this phase, EVILCOHORT returns a set S 4, where each element is a tuple containing

the user ID that identifies an account v and the access list I for that account.

7.3.2 Building the Graph Representation

We expect cybercriminals to have their bots connecting to multiple accounts under their
control, because they have control of a limited number of bots, and want to achieve
the effectiveness illustrated in Section 7.2. For this reason, we represent the relation

between online accounts and IP addresses as a weighted graph. More precisely, we

175



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

define the graph representation of the set of accounts U as

R=<V,E >,

where each element in the set of vertices V is one of the accounts in U, and the set
of edges E is weighted as follows: for each pair of accounts u;, us € V, the edge
connecting them has a weight equal to the number of IP addresses that u; and u, share.

If the accounts u; and u, do not share any IP address there is no edge between them.

As we showed in Section 7.2, a consistent number of legitimate accounts are accessed
by more than one IP address. To allow us to only detect communities of accounts that
share a higher number of IP addresses, we introduce a threshold s, and consider as
inputs for this phase only those accounts whose access lists I contain a number of IP
addresses equal or greater than s. Since the number of IP addresses that legitimate ac-
counts share is low, communities of accounts sharing many IP addresses are very likely

to be suspicious. We investigate the possible choices for the threshold s in Section 7.5.1.

EVILCOHORT builds the graph representation as follows:

1. For each element S 4, if the number of IP addresses in the access list I is higher

than s, we create a node in the graph R, labeled with the user ID w.

2. For each pair of accounts u; and uy, we calculate the intersection of the IP ad-
dresses that accessed them, by using the access lists I,, and I,,. If the intersection
is not empty, we create an edge in R between the nodes labeled as u; and us. The

weight of the edge is the size of the IP address intersection.

176



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

The graph R is then passed to the next phase of our approach, which finds communities

of online accounts that are accessed by a common set of IP addresses.

7.3.3 Finding Communities

After obtaining the graph representation R, we identify communities of accounts in it.
To this end, we use the “Louvain Method” [36]. This clustering method leverages an
iterative algorithm based on modularity optimization, and is particularly well-suited to
operate on sparse graphs, as most graphs obtained from “real life” situations are [58]. In
their paper, Blondel et al. [36] show that their method outperforms several community-

detection algorithms based on heuristics.

The Louvain method operates in two phases, which are iteratively repeated until conver-
gence is reached. At the beginning, each vertex in R is assigned to its own community

of size one. Each iteration of the algorithm proceeds as follows:

1. For each account u; in U, we consider each of its neighbors u5, and we calculate
a gain value g that represents the effect that we would have by removing u; from
its community and adding it to us’s community. We explain how we calculate
g later in this section. If any of the gain values g is positive, we move u; to the

community of the account that returned the highest gain.

2. We rebuild the graph R, whose nodes are now the communities built during phase
1. Each edge between two communities ¢; and ¢, is weighted with the number

of IP addresses that are shared between the two communities.

177



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

The algorithm repeats these two phases until convergence. Blondel et al. [36] describe
how the gain value g is calculated in detail. In a nutshell, the gain obtained in moving

an account ¢ to a community C' is

in = [Zinginen — (Rgrth)2] - [ — (Bta)? — (gi2)

where ) . is the sum of the weights of the edges between the accounts in C, ), .
is the sum of the weights of the edges incident to the accounts in C', k; is the sum of
the weights of the edges incident to 7, k; ;,, is the sum of the weights of the edges that
connect ¢ to the accounts in C', and m is the number of edges in R. Blondel et al. show
how a similar weight is calculated for the gain obtained by removing an account ¢ from
its community (go,;) [36]. If the sum of the two gains g = ¢, + gous 1S positive, the

account ¢ gets added to the community C'.

7.3.4 Postprocessing Step

The postprocessing phase takes the set of communities detected by EVILCOHORT and
performs additional analysis to understand the behavior of these communities and ex-
tract some characteristic traits. Postprocessing consists of optional filters that can be
applied to filter out potential false positives such as users behind a Network Address
Translation (NAT) device that could have been wrongly attributed to a malicious com-
munity. Each filter is independent and can integrate additional information that is not
necessarily part of the account interaction events or the graph representation, such as
HTTP user agents and time patterns. In the following, we introduce filters that can be

used to study the detected communities and reduce false positives even further.

178



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

User agent correlation filter

This filter relies on the assumption that a typical user connects to her account from
a limited set of devices. A typical user would access, for example, her account from
home using her personal browser, then from work using the browser recommended by
the company policy, and finally from her phone using her mobile browser. In other
words, we expect to have a one-to-one relationship between the sources of the activity
and the agents used to perform the activity. When online services are accessed via the
web, the agent used to perform the activity can be identified by the HTTP user agent

field.

On the opposite side, in malicious communities, the activity is no longer generated
by humans behind a browser but often generated by autonomous programs such as
bots or programs used to administer multiple accounts at once. These programs can
be designed to use either hard-coded user agent strings, or, as we observed in recent
malware, a permutation of user agent strings. These strings are often chosen in a way
to masquerade a legitimate browser. However, hard coding or permuting user agent
strings results in multiple sources relating to a single string, or, conversely, a single

source relating to multiple strings.

To measure the correlation between the sources and the user agents we compute the
following ratio:

(7.1)

number of IP addresses

log(c) = log (

number of user agents )

For a typical benign user, the correlation is very strong because there is a one-to-one

relationship between source and user agent: each source is associated to a different

179



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

user agent, meaning that log(c) tends towards 0. For malicious communities, where the
relationship becomes one-to-n, negative values will be observed in case of hard-coded

user agent strings, and positive values in case of permutations of the user agent strings.

Note that we exclude from the computation user agent strings coming from mobile
phones or tablets because these mobile devices can be connected to any network, mean-

ing that no correlation can be expected in this case.

Event-based time series filter

This filter introduces a different representation of account interaction events over time.
Time series represent the frequency of events per time period. An example of this can

be found in Figure 7.9.

This filter relies on the assumption that the shape of the time series for legitimate com-
munities and malicious communities are fundamentally different. The techniques used
by the time series filter are established in the research community, and were presented

in a paper by Jacob et al. [74].

For legitimate users, we expect the shape of the time series to exhibit some daily pat-
terns due to the night and day cycles, as well as some long term variations with the
passing weeks. On the opposite, malicious communities will show either a high degree
of stability and regularity, as in the case of botnets using online services as their com-
mand and control channels, or some irregular bursts, as in the case of spam campaigns

being sent out.

180



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Detection is based on automated classifiers working on statistical features characteriz-
ing the shape of the time series. For technical details, the reader is invited to refer to the
original paper [74]. Note that this filter can only be applied on cases where the amount
of events is sufficiently large to be statistically meaningful for the analysis tools that

the technique relies on.

IP addresses and accounts usage filter

This filter, similarly to the previous one, relies on time analysis. The main difference
lies in the fact that events are no longer aggregated for the full community but IP ad-

dresses and accounts being accessed are represented separately over time.

The IP addresses usage graph, is generated in the following way: time is represented on
the x-axis and each unique IP address is represented by a separate entry on the y-axis
of the graph. Events are then plotted as points in the graph using this set of coordinates.
The account usage graph is generated in a similar way, with unique accounts instead
on the y-axis. An example of this can be found in Figure 7.10. The goal of such
representations is to discover some potential synchronization across IP addresses or

accounts.

This filter relies on the assumption that events generated by users of a legitimate com-
munity are mostly asynchronous if not unrelated. On the opposite side, malicious com-
munities tend to exhibit a high degree of synchronization in their events both across
IP addresses, and across accounts. For example, multiple accounts might be accessed

synchronously at the beginning of a spam campaign.

181



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Using this type of representation, any suspicious alignment in the events recorded for
different IP addresses or different accounts can easily be identified on these separate
graphs. These alignments reveal some strong synchronization across users, which is

highly suspicious.

7.4 Description of the Datasets

In Section 7.2 we analyzed T, a labeled dataset of email-sending events on an webmail
provider. However, since EVILCOHORT only takes into account the mapping between
IP address and online account of an event on an online service, it can operate on any
online service that allows users to create accounts. Such services include web-based
email services, online social networks, blogs, forums, and many others. In addition,
EVILCOHORT can operate on activities of different types, such as login events, message
postings, message shares, etc. To show the versatility of our approach, we evaluated
it on multiple datasets of activities on five different online services. The first dataset
is composed of email sending events logged by a large webmail service. The second
dataset is composed of login events logged on four different online social networks. In

the following, we describe these datasets in more detail.

7.4.1 Webmail Activity Dataset

Our first dataset is composed of email-sending events logged by a large webmail provider.

Every time an email is sent, an activity is logged. We call this dataset D,. Note that the

182



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

email-sending events in this dataset are generated by accounts on the webmail service,

which send emails to other accounts on the same service, or to the outside world.

The dataset D; contains a random sample of the events logged over a five-month pe-
riod by the webmail provider. In total, this dataset contains 1.2 billion email-sending
events, generated by an average of 25 million accounts per day. This data was col-
lected according to the webmail provider’s terms of service, and was only accessed on
their premises by a company’s employee. In addition to the activity events, the webmail
provider logged whether the email was flagged as spam by their anti-spam systems. We
used a subset of Dy, which we called T, to study the properties of legitimate and ma-
licious accounts on a webmail service (see Section 7.2). We will also use T as ground

truth for our further experiments.

7.4.2 Online Social Network Login Dataset

Online Social Network OSN; OSN, | OSN3 | OSN,
Number of login events 14,077,316 | 311,144 | 83,128 | 42,655
Number of unique Accounts 6,491,452 | 16,056 | 25,090 | 21,066
Number of unique IPs 6,263,419 | 17915 | 11,736 | 4,725
Average of daily events (week day) 2,067,486 | 51,832 | 11,897 | 6,601
Average of daily events (week end) 1,848,213 | 32,966 | 11,726 | 4,995
Percentage of account singletons (daily) 74.6% | 40.0% | 51.7% | 72.2%
Percentage of account singletons (weekly) 65.4% | 29.8% | 51.5% | 71.8%

Table 7.1: Statistics of activity events on our online social network login dataset.

Our second dataset is composed of login events on online social networks, spanning
a period of 8 days. We call this dataset Dy. The dataset contains login activities that

happened on four different online social networks over a period of eight weeks. We

183



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

obtained the dataset D, from a security company. For each activity event, the dataset
contained additional information such as the user agent of the web browser performing
the login and the HTTP headers of the response. Sensitive information such as the user
ID and the IP address were anonymized. Note that this did not affect our community

detection algorithm at all.

Statistics on the number of login events for each social network can be found in Ta-
ble 7.1. These statistics reflect the size and activity observed on these networks, rang-
ing from tens of thousands up to 14 million login events. One interesting observation is
the high percentage of account singletons on a daily basis, that is to say the percentage
of users connecting at most once a day. On a weekly basis, the percentage tends to
drop but remain surprisingly high. These users are probably legitimate users that are

not very active on the social network.

7.5 Evaluation

In this section, we analyze how EVILCOHORT performs in the real world. We first
validate our approach by using the labeled dataset T of malicious and legitimate email-
sending events. We then select a suitable threshold that allows us to have a small num-
ber of false positives. Finally, we run EVILCOHORT on multiple real-world datasets,

and we analyze the communities of malicious accounts that we detected.

184



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Value of s | # of accounts | # of communities | Coverage on L. | Add. Detections | FP communities | FP accounts
2 135,602 3,133 | 94,874 (58%) | 40,728 (23.8%) 1,327 (42%) | 12,350 (9.1%)
5 77,910 1,291 | 51,868 (30.4%) | 26,042 (15.2%) 580 (44.9%) 2,337 3%)
10 25,490 116 | 16,626 (9.7%) 8,864 (7.7%) 48 (41.3%) 433 (1.7%)
65 1,331 6 1,247 (0.7%) 84 (0.04%) 0 0

Table 7.2: Summary of the results reported by EVILCOHORT for different values of the thresh-
old s.

7.5.1 Threshold Selection

As with every detection system, EVILCOHORT has to make a trade-off between false
negatives and false positives. As we mentioned in Section 7.3.2, we can adjust the value
of the threshold s to influence the quality of EVILCOHORT’s results. In particular, in-
creasing the value of s decreases the number of false positives of our system, but also
reduces the number of accounts that can be detected. In this section we run EVILCO-
HORT on the dataset T and analyze the quality of its results. The goal is to identify a
suitable value of s for running EVILCOHORT in the wild. To this end, we take advan-

tage of the set of labeled malicious accounts L that we introduced in Section 7.2.

The first element that we use to evaluate the effectiveness of EVILCOHORT is the frac-
tion of accounts in L that our system is able to detect. We call this fraction the coverage
of EVILCOHORT with respect to L. Ideally, we want EVILCOHORT to detect a large
fraction of our labeled malicious accounts. Unfortunately, increasing the value of s
decreases the number of accounts that EVILCOHORT can possibly detect, because it
discards all accounts that have been accessed by less than s IP addresses. The coverage
provides us an estimate of the false negatives that EVILCOHORT would report if it was

run in the wild.

185



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

As a second element of effectiveness, we look at the set of accounts that EVILCOHORT
detects as malicious in T, but that were missed by the anti-spam systems deployed by
the webmail provider. These are malicious accounts not in L. We refer to this number
as additional detections. This value gives us an estimate on the overall effectiveness of
EVILCOHORT. Ideally, we want this number to be high, so that if EVILCOHORT were
to be deployed in conjunction with the defenses that are already in place on the online
service, it would increase the number of malicious accounts that can be detected and

blocked.

The third element that we consider is the confidence that the communities detected by
EVILCOHORT are indeed malicious. To this end, we look at the fraction of accounts in
L that are present in each detected community. We consider a community as malicious
(i.e., a true positive) if at least 10% of the accounts belonging to it are part of our
labeled dataset of malicious accounts. Otherwise, we consider it as a false positive of
EVILCOHORT. We empirically found that this fraction gives us a good confidence that
these communities are indeed malicious. By incresing the fraction of accounts needed

to asses false positives, results do not change significantly.

Table 7.2 provides a summary of the results that we obtained when running EVILCoO-
HORT on T, based on different values of the threshold s. As one can see, the fraction
of accounts in L that our system detects decreases quickly as we increase s. With a
threshold of 2, EVILCOHORT only detects 58% of the labeled accounts, and this frac-
tion decreases to 30% if we set s to 5. With a threshold of 10 the fraction of accounts
in L that are covered is only 10%. Once we reach higher thresholds, such as 65, the

fraction of detected accounts that are part of L. becomes very small. The additional

186



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

detections performed by EVILCOHORT over the webmail provider’s detection system
also decrease as we increase s. With a threshold of 2 we detect 23% malicious accounts
that existing approaches miss. This number decreases to 15% with a value of 5 for s; a

threshold of 10 still ensures 7.7% additional detections.

False positives decrease rapidly as we increase s as well. Setting s to 2 results in
9% false positives, while a threshold of 5 already decreases false positives to 3%. A
threshold of 10 reduces false positives to 1.7%. By setting s to 65, EVILCOHORT does
not mistakenly flag any legitimate account as malicious. Unfortunately, the number of

detections performed at this threshold is quite low.

Given the results reported in this section, we decided to use 10 as a value of s for our
experiments. At this threshold false positives are low (1.7%), but the system is still
able to significantly improve the detections performed by the existing countermeasures

deployed by the webmail provider, and detects 116 communities as malicious.

It is interesting to notice that although the number of accounts misclassified by EVIL-
COHORT is generally low, percentages are higher when looking at communities; For
example, with a threshold of 10, 40% of the detected communities are considered to
be false positive accounts. Interestingly, however, the size of true positive and false
positive communities varies consistently: false positive communities are composed of
9 accounts on average, while malicious ones are composed by 370 or more accounts.
This indicates that filtering on the number of accounts in a community could be an

effective filter to further reduce false positives.

Comparison between EVILCOHORT and the single account method. As we dis-

187



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

cussed in Section 7.2, EVILCOHORT outperforms detection by looking at single ac-
counts accessed by a high number of IP addresses by orders of magnitude. At a thresh-
old of 10, where EVILCOHORT reports a false positive rate of 1.7%, the single-account
method has a false positive rate of 32%. Even by dramatically increasing the threshold,
the number of false positives of the single-account method remains high. At a threshold
of 65, at which EVILCOHORT reports no wrong detections, the single-account method
has a false positive rate of 1.2%. Even at a threshold of 100, the single-account method

has a small number of false positives.

The last question to answer is whether accounts that are accessed by a high number
of IP addresses do form communities, in other words whether EVILCOHORT is able
to detect most malicious accounts that were accessed by a number of IP addresses s.
To answer this question, we looked at single accounts accessed by a number of IP ad-
dresses n (from one to 100), and labeled them as malicious or benign in the same way
we labelled the communities in the previous experiment. We then proceeded as fol-
lows: for each value of n, we considered the single-account method to have perfect
recall (i.e., no false negatives). We then looked at how many of the accounts detected
by this method would have formed communities, and therefore be detected by EVIL-
COHORT. The fraction of malicious accounts that form communities is generally very
high. With a threshold of 10, EVILCOHORT detected 93% of the malicious accounts
detected by the single-account method. With a threshold of 20 this fraction becomes
95%, while with a threshold of 50 it becomes 98%. We conclude that the vast ma-
jority of accounts accessed by a high number of IP addresses form communities, and
that therefore EVILCOHORT is a suitable alternative to the single-account method for

what concerns false negatives, and it reduces false positives by orders of magnitude

188



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

25000

Malicious Accounts

20000

15000

10000

Number of Detections

5000

Figure 7.6: Number of malicious accounts detected per day by EVILCOHORT on the dataset
D;.

compared to the single account method.

7.5.2 Detection in the Wild

We applied EVILCOHORT to the datasets D; and D,. In the following, we show that
EVILCOHORT is able to detect a large number of malicious online service accounts,

regardless of the type of online service that it is ran on.

Detection on the Webmail Activity Dataset

The dataset D; is composed of email-sending activities logged on a large webmail
provider. Over a period of 5 months, EVILCOHORT was able to detect 1,217,830 ac-
counts as malicious. Note that, in this context, a malicious account is an account that is
misused to send spam emails. Of these accounts 1,058,830 were detected as malicious

only once, while 60,708 accounts were detected as malicious multiple times during

189



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

250

Malicious Communities

2
S 200
B
2
® 150
a
° 100
(9]
£
E 50
p=4
0
2 e < < 2
%\o )O\o /;{o ‘6@ 0)@
O, O, O, O, O,
> > > > >
Day

Figure 7.7: Number of malicious communities of accounts detected per day by EVILCOHORT
on the dataset D;.

our observation period (recall that we use observation periods of one day). In total,

EVILCOHORT detected 17,803 malicious communities.

We then wanted to understand how much EVILCOHORT is able to grow the knowledge
of malicious accounts compared to the defenses already put in place by the webmail
provider. Of the accounts that we detected, 502,159 of them never had an email flagged
as spam by the email provider. This accounts for 41% of the total. To assess how
many of the detections performed by EVILCOHORT were potential false positives, we
performed the same analysis that we described in Section 7.5.1. We considered an ac-
count as a false positive if less than 10% of the accounts in a community were detected
as malicious. In total, we found 1.9% of the detected accounts to be potential false
positives. This is in line with the validation results from Section 7.5.1, in which we
reported 1.7% false positives by using the same threshold. 94.6% of the total accounts
detected as malicious by the webmail provider at this threshold formed communities,
and were therefore detected by EVILCOHORT. This shows that malicious accounts ac-

cessed by a large number of IP addresses are typically accessed by botnets, and confirm

190



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Day 1] 2[3[4[5]6[7]8
OSN; (24 (30| 6|4 |4 |4 |52
OSN; 1 0/{0|0]0O]0O]O0]O
OSN3 O ofojoj1r|r{1jo
OSNy 0 0(0]0|0|0]0]O
Table 7.3: Number of malicious communities detected per day by EVILCOHORT on the dataset
D,.
Social Network OSN; | OSN; | OSN3 | OSNy
Accounts (Avg) 3,662 2 2 0
Accounts (Med) 13 2 2 0
Accounts (Max) | 66,764 2 2 0
IPs (Avg) 2,381 14 10 0
IPs (Med) 19 14 10 0
IPs (Max) 3,9884 14 10 0

Table 7.4: Size of the malicious communities detected by EVILCOHORT on the dataset Ds.
Numbers (Average, Median and Maximum) are expressed per community.

the usefulness of our approach.

Detection on the Social Networks Dataset

The dataset D, is composed of login events from online social networks. In the fol-
lowing, we applied EVILCOHORT to this second dataset to prove the viability of the
approach for different types of services. For these experiments, no ground truth was
available. For this reason, we used the same threshold as selected in Section 7.5.1. To
confirm that the accounts belonging to these communities were indeed malicious, we
performed a postprocessing analysis as we described in Section 7.3.4. We discuss the

results of these experiments in Section 7.5.3.

Over the 8 days, EVILCOHORT was able to detect a total of 83 communities, which

191



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

represents a total of 111,647 unique accounts. The number of detected communities
and the size of these communities evolve daily as it can be observed in Table 7.3 and
Table 7.4. Unsurprisingly, these numbers heavily depend on the size of the social net-
work. OSN; is by far the largest network; consequently, this is where we observed
the highest number of communities, as well as the largest communities. Interestingly,
we observe an important drop in the number of communities on the third day meaning
that the accounts might have been taken down by the network after they detected some
malicious activities. The remaining communities tend to be of smaller size. In OSN,
and OSN3 we only detect isolated communities of very small size: two accounts for
about ten different IP addresses. The activity for OSN, was too little for us to detect

any interesting community with the selected threshold.

To understand the evolution of the communities, we studied their similarity over time.
A community remains stable over time if it is found similar to a community detected
the day before. We declare two communities as similar if they share more than 50%
of their accounts. In OSNy, one of the largest communities, with more than 66,000
accounts, was stable for over five days with a similarity ranging between 53% to 85%.
Two communities of smaller size, with about 10,000 accounts each, were found stable
over the two first days but they disappeared on the third day as previously observed.
The community detected in OSN3 is only made up of two accounts and is stable over

three days before being brought down.

Beside the stability over time, we studied the possible overlap of communities across
social networks. To study this overlap, we focused on the IP addresses hosting some

malicious community activity. Overall, only OSN;, OSN; and OSN3 share about 2,000

192



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

source IP addresses. Out of these, we found no IP addresses belonging to one of the
detected communities. In other words, we could not obtain any proof of communities

acting across multiple online social networks.

Since no ground truth was available for the dataset Dy, we cannot be sure that the
detected communities are actually malicious. For this reason, we analyzed the de-
tected communities using the post-processing techniques described in Section 7.3.4.
As expected, the vast majority of the communities of accounts detected by EVILCO-
HORT shows very different characteristics than legitimate communities, giving us con-
fidence that EVILCOHORT is indeed effective in identifying communities of malicious

accounts. In the following section we describe these experiments in detail.

7.5.3 Result Analysis

Given the lack of a labeled set for the dataset D,, we ran the postprocessing filters
described in Section 7.3.4 on it. The results show that most communities of accounts
detected by EVILCOHORT show very different characteristics than legitimate commu-
nities, and are therefore very likely to be malicious. In the following, we describe our
experiments in detail. We did not run the postprocessing filters on D; because not all

the information needed for these filters was available to us.

193



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Correlation between IPs and User-Agents for Legitimate Users Correlation between IPs and User-Agents for Communities
600000 T T T T T T T 30000

500000 - B 25000 -

400000 ~ 20000

300000 15000

Frequency
Frequency

200000 - B 10000 -

100000 - B 5000 -

log(c) log(c)

Figure 7.8: Correlation between user agents and IPs: legitimate accounts (left) and malicious
accounts (right).

User Agent Correlation Filter

Information about user agents was only available for OSN; and OSNj; in D;. Con-
sequently, we excluded OSN3 and OSN, from this study. We also excluded all the
account singletons identified in Section 7.4.2 because the notion of ratio then becomes

meaningless.

To verify the soundness of filtering communities based on user agents as described in
Section 7.3.4, we plotted in Figure 7.8 the separated distributions of the correlation be-
tween user agents and IP addresses: one for legitimate accounts and one for accounts
being part of detected communities. As it can be seen, the distribution is shifted for
malicious communities and no longer aligned on the origin. For legitimate accounts,
the average of log(c) was 0.08, which is close to zero as expected, with a standard de-

viation of 0.43. For malicious communities, the average shifts to -0.85 with a standard

194



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

deviation of 1.24.

Using this filter, we evaluated the quality of the detection in OSN; and OSN,, and
tried to extract interesting characteristics of malicious communities. We observed an
interesting phenomenon in communities that we considered true positives according to
the filter. These communities often exhibit a high degree of similarity in terms of user
agents across multiple accounts, but also across multiple communities. These results
are detailed for both network in Table 7.5. Communities sharing a common user agent

are likely to be part of a bigger campaign of malicious activity.

Network | Com | Acc | log(c) | UA Sim UA string
OSN; 1] 11587 -1.5 100% Mozilla/5.0 (Windows; U [...]) Gecko/20070725 Firefox/2.0.0.6
OSN; 22 268 -2.0 98% Mozilla/5.0 (Windows NT 6.1; [...]) Gecko/20100101 Firefox/11.0
OSN, 1 2 2.4 100% | Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1

Table 7.5: Correlating malicious communities based on the User-Agent. Com - Number of
Communities, Acc - Number of Accounts, log(c) - Average correlation, UA Sim -
User-Agent Similarity, UA string - User-Agent String.

If we look closely at the OSN; communities from the third entry of Table 7.5, we can
see that the user agent similarity is not perfect. We actually observed some sporadic
accounts with unrelated user agents and a correlation log(c) close to 0. These accounts
were showing additional user agents meaning that these accounts might actually have
been compromised, but still accessed by their legitimate owners in addition to cyber-
criminals. Nonetheless, the suspiciousness of these communities is confirmed by the
fact that these are the communities we saw being brought down two days after the start

of our dataset as described in the detection results of Section 7.5.2.

While we evaluated the quality of the detected communities, we also looked for po-

tential false positives. We actually found two communities detected in OSN;, one of

195



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

5,720 accounts and one of seven accounts, that were likely false positives according to
the filter. For all accounts coming from these two communities, the correlation index
log(c) was very close to zero. The number of accounts in these communities might
seem significant, but further postprocessing will show that these accounts are not all
false positives. A majority of these accounts actually fall in the category previously
observed of compromised accounts where both legitimate and malicious activity are
simultaneously observed. This is particularly true for the largest community where we
will actually observe some suspicious behaviors in coming experiments. For OSN,, the

filter detected no potential false positive.

Event-based Time Series Filter

Since time series become only significant if the amount of data is sufficiently large to
make any measure statistically meaningful. For this reason, we evaluated the time series
filter introduced in Section 7.3.4 over OSN;. Unfortunately, the volume of login events
observed for OSN5, OSN3 and OSN4, as well as the size of the detected communities

made this approach impracticable for these networks.

The assumption behind time series filtering is that part of the events observed in mali-
cious communities are triggered by automated entities, eventually resulting in a distinct
shape of activity from communities of legitimate users where events are triggered by
humans [74]. To verify this assumption, we plotted the time series associated to the ac-
tivity of the biggest malicious communities detected in OSN;. The experiments showed
that the time series generated for malicious communities differ fundamentally in shape

from regular user activity, even when users are grouped behind a NAT.

196



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Concrete examples are plotted in Figure 7.9. The leftmost time series represents the
activity of all users from OSN; over 8 days. The reader can clearly see the daily pat-
terns in the activity. The middle left time series represents the activity we observed for
an isolated IP where multiple accounts were being accessed behind a NAT. One can
see that the time series remains very similar in shape and preserves the daily patterns.
The middle right time series represents the activity generated by the largest malicious
community detected in OSN; (first entry in Table 7.5). As it can be seen, there are fun-
damental differences: disappearance of the daily patterns, higher stability on the long
term. The rightmost time series is representative of most of the time series obtained for
smaller communities of OSN;: the volume of events remains low but one can clearly
observe regular bursts of activity. This bursty shape is also observed for the potential
false positive of 5,720 accounts detected by the user agent filter. The only exception is

the community of seven accounts detected as false positive by the user account filter.

IP Addresses and Accounts Usage Filter

Time series being restricted to large amounts of data, another possible representation
of the activity over time is to plot the usage graphs for IP addresses and accounts as
detailed in Section 7.3.4. For malicious communities, the usage graphs will exhibit
suspicious patterns betraying some synchronization across accounts and IP addresses.
For reference, Figure 7.10 presents the usage graphs for the exact same NAT as in
Figure 7.9. One can see clearly in the account usage graph the daily interruptions over

night time as well as the randomness of the events during day time.

If we look at malicious communities as plotted in Figure 7.12, one can see some sus-

197



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

‘ ( ;( ‘M
WI ‘H‘"‘(\

| | |
“ ‘H (‘U I

L i (L] ‘MI\

Figure 7.9: Time series plotting login event over time: all accounts (leftmost), legitimate ac-
counts behind a NAT (middle left) and malicious communities (middle right and

rightmost).
picious vertical patterns appearing. Looking at the IP addresses usage graphs, IP ad-
dresses are active by synchronous groups. These groups shift everyday and IP addresses
are rarely reused over time, probably as a protection to avoid detection. Looking at ac-
counts usage graphs, accounts, on the other hand, remain stable over time but login
events are also suspiciously synchronized. This phenomenon can be observed for all

detected communities of OSN;, OSN, and OSN3 at the exception of the two potential

false positives of OSN;.

198



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

Looking more closely at the second example of Figure 7.12, some accounts and IP
addresses have been clearly associated to the community even if they exhibit some
benign activity. These accounts correspond to the examples from Table 7.5 where we
observed some discrepancies in the user agent filtering. This observation confirms our
suspicions that some accounts are probably compromised but still accessed by their

legitimate owner.

In comparison, if we look back at the potential false positive of 5,720 accounts from
OSN; discovered in Section 7.5.3, one can see in Figure 7.11 that the usage graphs
are overall similar to the NAT usage graphs. However, looking more closely, one can
observe multiple darker vertical patterns in the graphs that can be related to the patterns
we observed in malicious communities. The mix of legitimate and malicious activities
must have confused the user agent filter but the detection by EVILCOHORT in this case
is confirmed by the two filters based on time analysis. On the other hand, the usage
graphs for the smaller false positive of seven accounts from OSN; did not exhibit again

any suspicious pattern.

7.6 Discussion

We showed that EVILCOHORT can be applied to very different online services and
to any type of activity on such services. This versatility, together to the fact that it
complements detections made by state-of-the-art systems makes EVILCOHORT a useful
tool in the fight against malicious activity on online services. As any detection system,

however, EVILCOHORT has some limitations. In this section, we describe our system’s

199



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

limitation, as well as some possible directions for future work.

The main limitation of EVILCOHORT, as we already mentioned, is that it can only
detect malicious accounts that are accessed by a large number of IP addresses. As we
showed in Section 7.2, however, such accounts are more dangerous than the ones that
are accessed by single IP addresses, and existing countermeasures are able to shut down

this second type of accounts much quicker.

Another shortcoming is that the accounts used by cybercriminals are not necessarily
fake accounts, but could be legitimate accounts that have been compromised. In the
current implementation, EVILCOHORT cannot distinguish between the two types of
accounts. Dealing with compromised accounts is more difficult, because the online
service cannot just suspend them, but has to go through expensive password-reset op-
erations. In the future, we could improve EVILCOHORT to detect the characteristics
of the accounts in communities, to detect whether they are fake or compromised. We
partially explored this direction in Section 7.5.3. Another way to do this would be to
look at accounts that have an established history of legitimate activity, and suddenly

start being part of a community.

Since EVILCOHORT can work, among the rest, on login events, it has the potential
of detecting an account as malicious and blocking it before it performs any malicious
activity. In the current version, the system works in batches, on time frames of one day.
In the future, however, we plan to extend it to handle a stream of data, and operate in
real time. This way, the system could continuously build account communities, and

flag an account as malicious as soon as it joins a community.

200



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

In Section 7.5, we explored a variety of possible threshold at which EVILCOHORT
could operate, and selected one that ensures a low rate of false positives. However,
using a lower threshold could still ensure a small number of false positives, if used in
conjunction with the postprocessing filters described in Section 7.3.4. As future work,
we plan to explore different tradeoffs between the number of IP addresses accessing a

community and the characteristics of such community.

7.7 Conclusions

We presented EVILCOHORT, a system that detects malicious accounts on online ser-
vices by identifying communities of accounts that are accessed by a common set of
computers. Our results show that the vast majority of the accounts that form such com-
munities are used for malicious purposes. In the rare cases in which legitimate commu-
nities of accounts form, we show that such communities present behavioral character-
istics that are very different than the ones of malicious communities. These differences
can be used to perform more accurate detection. We ran EVILCOHORT on two real-

world datasets, and detected more than a million malicious accounts.

201



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

R

22 252 272 202 312 332 3% 72 302

425398 4

T

®
o

L LR T

Figure 7.10: Activity of legitimate users behind a NAT: IP address usage (left) and account
usage (right).

7 3220 3581 3933 4285 4637 4909 5341 5693

086 201 331 461 591 721 851 981 1125 1284 1443 1602 1761 1920 2070 2238 2397 2556

[t] Hours Hours

Figure 7.11: Activity of non malicious community: IP address usage (left) and account usage
(right).

202



CHAPTER 7. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

ooooo

P
017 36 55 74 93 115 140 185 190 215 240 265 290 315 340 365 390 415 440 465
LY

S
Accounts
0123456780910 12 14 18 18 20 2 24 2 28

EE K i:
2 gaﬂ ° ;; §
EE 8 2 B $
L H o 7 o -

Figure 7.12: Activity of malicious communities: IP address usage (left) and accounts usage
(right).

203



Chapter 8

Conclusions and Future Work

Cybercrime is currently a serious problem, and will remain a problem in the coming
years. I described the three elements that are leveraged by cybercriminals to set up a
large-scale malicious campaign targeting online services: infected computers, a com-
mand and control infrastructure, and online service accounts. I showed that, although
a wealth of research has been conducted in detecting and disrupting such operations,
the problem is far from being solved. The reason is that cybercriminals and researchers
are involved in an arms race: every time a new detection technique is developed, mis-
creants come up with more advanced attack and management strategies that evade such

technique.

In this dissertation, I showed that there are differences in the way in which regular users
and cybercriminals use legitimate third party services. These differences originate from

the different goal of these users: while legitimate users use online services for the pur-

204



CHAPTER 8. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

poses they were designed for, cybercriminals exploit them for profit. I presented mul-
tiple systems that detect and block malicious activity by leveraging the differences in
which infected machines and legitimate users use online services. Since these detection
systems are based on elements that are important for the profitability of cybercriminal

operations, they are difficult to evade, and raise the bar in the war against cybercrime.

I presented BOTMAGNIFIER, a system that learns the email-sending behavior of in-
fected computers belonging to spamming botnets, and finds other computers that be-
have in the same way, effectively growing the knowledge of the population of bots
belonging to that botnet. This system is a valuable aid to keep track of the infection
population of large botnets, and improve the list of infected machines kept by blacklists,

which notoriously have coverage problems.

As a second topic I focused on detecting accounts on online services that are misused
by cybercriminals. I first presented one of the first studies on spam activity on online
social networks, and introduced SPAMDETECTOR, a system that leverages the typical
modus operandi of fake accounts controlled by cybercriminals on social networks to
detect them. I then presented COMPA, the first system to detect legitimate social
network accounts that have been compromised and are misused by cybercriminals. I
showed that COMPA is effective in detecting both large-scale compromises, which
target thousand of victims and spread spam or malware, and high-profile compromises,
which target a singe account belonging to a news agency or a large company with the

goal of spreading false information.

Finally, I focused on studying the relations between infected machines and accounts on

online services. I showed that accounts that are accessed by many infected machines

205



CHAPTER 8. DETECTING MALICIOUS ACCOUNT COMMUNITIES ON ONLINE SERVICES

(i.e., by botnets) are more dangerous for online services, because they manage both
to stay active longer and to spread a higher quantity of malicious content. I presented
EVILCOHORT, a system to detect communities of online accounts that are used by the
same botnet. I showed that EVILCOHORT can be ran on any online service, and detect

types of malicious activity that go beyond spreading malicious content.

In the future, I plan to keep studying Internet threats. As these threats become more
sophisticated, the techniques required to fight them will need to be more advanced too.
In particular, as attacks become more targeted and higher profile, it will not be possible
to leverage their scale as I have done in this thesis to fight them. Some of the elements
that we proposed, such as the behavioral modelling of COMPA, could however be
adapted to fight these new threats. In my future work I plan to explore the use of
such behavioral modelling technique to fight certain types of targeted attacks, such as
spearphishing scams. On the social network side, I plan to combine the techniques
presented in this dissertation with network analysis methods, to develop systems able

to detect messages that are spreading anonymously.

206



Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Attackers target yahoo mail accounts in coordinated effort to own users — threat-

post. http://bit.ly/1nBgtqg].

Compete site comparison. http://siteanalytics.compete.com/

facebook.com+myspace.com+twitter.com/.

Exposure. http://exposure.iseclab.org/.

Facebook statistics. http://www.facebook.com/press/info.php?

statistics.

foursquare. http://foursquare.com.

Google  safebrowsing. http://code.google.com/apis/
safebrowsing/.

Honeypots. http://en.wikipedia.org/wiki/Honeypot__
computing.

Livejournal. http://www.livejournal.com.

Nielsen. http://blog.nielsen.com.

207


http://bit.ly/1nBgtqj
http://siteanalytics.compete.com/facebook.com+myspace.com+twitter.com/
http://siteanalytics.compete.com/facebook.com+myspace.com+twitter.com/
http://exposure.iseclab.org/
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://foursquare.com
http://code.google.com/apis/safebrowsing/
http://code.google.com/apis/safebrowsing/
http://en.wikipedia.org/wiki/Honeypot_computing
http://en.wikipedia.org/wiki/Honeypot_computing
http://www.livejournal.com
http://blog.nielsen.com

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Oauth community site. http://ocauth.net.

Phishtank. http://www.phishtank.com.

The recaptcha project. http://recaptcha.net/.

Spamhaus dbl. http://www.spamhaus.org.

Surbl. http://www.surbl.org

Tinyurl. http://tinyurl.com/.

U.s. stocks tank briefly in wake of associated press twitter account hack. http:
//allthingsd.com/20130423/u-s-stocks-tank-briefly-

in-wake-of-associated-press—-twitter—account-hack/.

Weka - data mining open source program. http://www.cs.waikato.ac.
nz/ml/weka/.

Wepawet. http://wepawet.iseclab.org.

Youtube. http://www.youtube.com.

Fox news’s hacked twitter feed declares obama dead. http:

//www.guardian.co.uk/news/blog/2011/jul/04/fox—news—

hacked-twitter—-obama—-dead, 2011.

Renren. http://www.renren.com, 2011.

Twitter finally released a ”stalkers” app?  no, it’s a phishing scam.

http://nakedsecurity.sophos.com/2011/08/12/twitter—

208


http://oauth.net
http://www.phishtank.com
http://recaptcha.net/
http://www.spamhaus.org
http://www.surbl.org
http://tinyurl.com/
http://allthingsd.com/20130423/u-s-stocks-tank-briefly-in-wake-of-associated-press-twitter-account-hack/
http://allthingsd.com/20130423/u-s-stocks-tank-briefly-in-wake-of-associated-press-twitter-account-hack/
http://allthingsd.com/20130423/u-s-stocks-tank-briefly-in-wake-of-associated-press-twitter-account-hack/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://wepawet.iseclab.org
http://www.youtube.com
http://www.guardian.co.uk/news/blog/2011/jul/04/fox-news-hacked-twitter-obama-dead
http://www.guardian.co.uk/news/blog/2011/jul/04/fox-news-hacked-twitter-obama-dead
http://www.guardian.co.uk/news/blog/2011/jul/04/fox-news-hacked-twitter-obama-dead
http://www.renren.com
http://nakedsecurity.sophos.com/2011/08/12/twitter-finally-released-a-stalkers-app-no-its-a-phishing-scam/
http://nakedsecurity.sophos.com/2011/08/12/twitter-finally-released-a-stalkers-app-no-its-a-phishing-scam/

[23]

[24]

[25]

[26]

[27]

[28]

[29]

finally-released—-a-stalkers—app—-no-its—a-phishing-

scam/, 2011.

http://theonion.github.io/blog/2013/05/08/how-the—-

syrian—-electronic—army—hacked-the-onion/, 2013.

T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan. N-gram-based detec-
tion of new malicious code. In Computer Software and Applications Conference

(COMPSAC), 2004.

M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted Approach
to Understanding the Botnet Phenomenon. In ACM SIGCOMM Internet Mea-

surement Conference (IMC), 2006.

M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a

dynamic reputation system for dns. In USENIX Security Symposium, 2010.

M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and D. Dagon. Detecting
malware domains at the upper dns hierarchy. In USENIX Security Symposium,

2011.

M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee,
and D. Dagon. From throw-away traffic to bots: Detecting the rise of dga-based

malware. In USENIX Security Symposium, 2012.

Apache Foundation. Spamassassin. http://spamassassin.apache.

org.

209


http://nakedsecurity.sophos.com/2011/08/12/twitter-finally-released-a-stalkers-app-no-its-a-phishing-scam/
http://nakedsecurity.sophos.com/2011/08/12/twitter-finally-released-a-stalkers-app-no-its-a-phishing-scam/
http://nakedsecurity.sophos.com/2011/08/12/twitter-finally-released-a-stalkers-app-no-its-a-phishing-scam/
http://theonion.github.io/blog/2013/05/08/how-the-syrian-electronic-army-hacked-the-onion/
http://theonion.github.io/blog/2013/05/08/how-the-syrian-electronic-army-hacked-the-onion/
http://spamassassin.apache.org
http://spamassassin.apache.org

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Baltazar, J. Costoya, and R. Flores. Koobface: The largest web 2.0 botnet

explained. 2009.

D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and G. Vigna. Effi-
cient detection of split personalities in malware. In Symposium on Network and

Distributed System Security (NDSS), 2010.

F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. Detecting Spammers

on Twitter. In Conference on Email and Anti-Spam (CEAS), 2010.

F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, and M. Gongalves. De-
tecting spammers and content promoters in online video social networks. In
ACM SIGIR conference on Research and development in information retrieval,

20009.

L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding malicious
domains using passive dns analysis. In Symposium on Network and Distributed

System Security (NDSS), 2011.

L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All Your Contacts Are Belong to
Us: Automated Identity Theft Attacks on Social Networks. In World Wide Web

Conference (WWW), 2009.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment, 2008.

L. Breiman. Random forests. In Machine Learning, 2001.

210



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-per-install:
The commoditization of malware distribution. In USENIX Security Symposium,

2011.

J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher: Enabling
Active Botnet Infiltration Using Automatic Protocol Reverse-engineering. In

ACM Conference on Computer and Communications Security (CCS), 2009.

Z. Cai and C. Jermaine. The latent community model for detecting sybils in
social networks. In Symposium on Network and Distributed System Security

(NDSS), 2012.

Y. Cao, V. Yegneswaran, P. Possas, and Y. Chen. Pathcutter: Severing the self-
propagation path of xss javascript worms in social web networks. In Symposium

on Network and Distributed System Security (NDSS), 2012.

W. B. Cavnar and J. M. Trenkle. N-gram-based text categorization. In Annual

Symposium on Document Analysis and Information Retrieval (SDAIR), 1994.

K. Chiang and L. Lloyd. A Case Study of the Rustock Rootkit and Spam Bot.

In USENIX Workshop on Hot Topics in Understanding Botnet, 2007.

C. Cho, J. Caballero, C. Grier, V. Paxson, and D. Song. Insights from the In-
side: A View of Botnet Management from Infiltration. In USENIX Workshop on

Large-Scale Exploits and Emergent Threats (LEET), 2010.

C. Y. Cho, E. C. R. Shin, D. Song, et al. Inference and analysis of formal models
of botnet command and control protocols. In ACM Conference on Computer and

Communications Security (CCS), 2010.

211



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

M. Christodorescu and S. Jha. Testing malware detectors. In ACM SIGSOFT

Software Engineering Notes, 2004.

M. Christodorescu and S. Jha. Semantics-aware malware detection. Technical

report, 2005.

M. Christodorescu and S. Jha. Static analysis of executables to detect malicious

patterns. Technical report, DTIC Document, 2006.

Z. Chu, S. Giannivecchio, H. Wang, and S. Jajodia. Who is tweeting on Twitter:
human, bot, or cyborg? In Annual Computer Security Applications Conference

(ACSAC), 2010.

Cisco Inc. Cisco IOS NetFlow. https://www.cisco.com/en/US/
products/ps6601/products_ios_protocol_group_home.

html.

E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Understand-
ing, Detecting, and Disrupting Botnets. In USENIX Workshop on Steps to Re-

ducing Unwanted Traffic on the Internet (SRUTI), 2005.

M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-
download attacks and malicious javascript code. In World Wide Web Conference

(WWW), 2010.

C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert. Zozzle: Fast and precise

in-browser javascript malware detection. In USENIX Security Symposium, 2011.

212


https://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
https://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
https://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

D. Dagon, G. Gu, C. P. Lee, and W. Lee. A taxonomy of botnet structures. In

Annual Computer Security Applications Conference (ACSAC), 2007.

D. Dagon, C. C. Zou, and W. Lee. Modeling botnet propagation using time

zones. In Symposium on Network and Distributed System Security (NDSS), 2006.

H. Drucker, D. Wu, and V. N. Vapnik. Support vector machines for spam cate-

gorization. In IEEFE transactions on neural networks, 1999.

M. Egele, G. Stringhini, C. Kruegel, and G. Vigna. COMPA: Detecting Compro-
mised Accounts on Social Networks. In Symposium on Network and Distributed

System Security (NDSS), 2013.

I. J. Farkas, I. Derényi, A.-L. Barabdasi, and T. Vicsek. Spectra of real-world

graphs: Beyond the semicircle law. Physical Review E, 2001.

F. C. Freiling, T. Holz, and G. Wicherski. Botnet Tracking: Exploring a Root-
Cause Methodology to Prevent Distributed Denial-of-Service Attacks. In Euro-

pean Symposium on Research in Computer Security (ESORICS), 2005.

H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. Choudhary. Towards online spam
filtering in social networks. In Symposium on Network and Distributed System

Security (NDSS), 2012.

H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Zhao. Detecting and Char-
acterizing Social Spam Campaigns. In ACM SIGCOMM Internet Measurement
Conference (IMC), 2010.

213



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

C. Ghiossi. Explaining facebook’s spam prevention systems. http://blog.

facebook.com/blog.php?post=403200567130, 2010.

C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the underground on
140 characters or less. In ACM Conference on Computer and Communications

Security (CCS), 2010.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering Analysis of
Network Traffic for Protocol- and Structure-independent Botnet Detection. In

USENIX Security Symposium, 2008.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter: Detecting
malware infection through ids-driven dialog correlation. In USENIX Security

Symposium, 2007.

G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet command and control

channels in network traffic. In USENIX Security Symposium, 2008.

S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser. Detecting Spam-
mers with SNARE: Spatio-temporal Network-level Automatic Reputation En-

gine. In USENIX Security Symposium, 2009.

M. Heiderich, T. Frosch, and T. Holz. Iceshield: detection and mitigation of
malicious websites with a frozen dom. In Symposium on Recent Advances in

Intrusion Detection (RAID), 2011.

T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring and detecting
fast-flux service networks. In Symposium on Network and Distributed System

Security (NDSS), 2008.

214


http://blog.facebook.com/blog.php?post=403200567130
http://blog.facebook.com/blog.php?post=403200567130

[70]

[71]

[72]

[73]

[74]

[75]

[76]

X. Hu, M. Knysz, and K. G. Shin. Rb-seeker: Auto-detection of redirection
botnets. In Symposium on Network and Distributed System Security (NDSS),
2009.

D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. McCoy,
S. Savage, N. Weaver, A. C. Snoeren, and K. Levchenko. Botcoin: monetiz-

ing stolen cycles. In Symposium on Network and Distributed System Security

(NDSS), 2014.

L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar. Adversarial
machine learning. In ACM Workshop on Security and Artificial Intelligence,

2011.

J. Iedemska, G. Stringhini, R. Kemmerer, C. Kruegel, and G. Vigna. The Tricks
of the Trade: What Makes Spam Campaigns Successful? In Proceedings of the
International Workshop on Cyber Crime (IWCC), 2014.

G. Jacob, E. Kirda, C. Kruegel, and G. Vigna. Pubcrawl: protecting users and

businesses from crawlers. In USENIX Security Symposium, 2012.

T. Jagatic, N. Johnson, M. Jakobsson, and T. Jagatif. Social phishing. Commu-
nications of the ACM, 2007.

J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishnamurthy. Studying Spam-
ming Botnets Using Botlab. In USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI), 2009.

215



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. Voelker, V. Paxson, and
S. Savage. Spamalytics: An empirical analysis of spam marketing conversion.

In ACM Conference on Computer and Communications Security (CCS), 2008.

C. Kanich, N. Weaver, D. McCoy, T. Halvorson, C. Kreibich, K. Levchenko,
V. Paxson, G. Voelker, and S. Savage. Show Me the Money: Characterizing

Spam-advertised Revenue. USENIX Security Symposium, 2011.

M. Khmartseva.  Email Statistics Report. http://www.radicati.
com/wp/wp—content /uploads/2009/05/email-stats—report—

exec—-summary .pdf, 2009.

D. M. Kienzle and M. C. Elder. Recent worms: a survey and trends. In Proceed-

ings of the ACM workshop on Rapid malcode, 2003.

klout. http://klout.com.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang.
Effective and efficient malware detection at the end host. In USENIX Security

Symposium, 2009.

B. Krebs. Taking Stock of Rustock. http://krebsonsecurity.com/

2011/01/taking-stock—-of-rustock/, 2011.

C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson, and
S. Savage. On the Spam Campaign Trail. In USENIX Workshop on Large-Scale

Exploits and Emergent Threats (LEET), 2008.

216


http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf
http://klout.com
http://krebsonsecurity.com/2011/01/taking-stock-of-rustock/
http://krebsonsecurity.com/2011/01/taking-stock-of-rustock/

[85] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson,
and S. Savage. Spamcraft: An Inside Look at Spam Campaign Orchestration.
In USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET),

20009.

[86] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a

news media? In World Wide Web Conference (WWW), 2010.

[87] K. Lee,J. Caverlee, and S. Webb. Uncovering social spammers: social honeypots
+ machine learning. In International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2010.

[88] S. Lee and J. Kim. Warningbird: Detecting suspicious urls in twitter stream. In

Symposium on Network and Distributed System Security (NDSS), 2012.

[89] B. Leiba. DomainKeys Identified Mail (DKIM): Using digital signatures for

domain verification. In Conference on Email and Anti-Spam (CEAS), 2007.

[90] A. Lelli. Return from the Dead: Waledac/Storm Botnet Back on
the Rise. http://www.symantec.com/connect/blogs/return—

dead-waledacstorm-botnet-back-rise, 2011.

[91] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detecting environment-

sensitive malware. In Symposium on Recent Advances in Intrusion Detection

(RAID), 2011.

[92] D. Lowd and C. Meek. Good word attacks on statistical spam filters. In Confer-

ence on Email and Anti-Spam (CEAS), 2005.

217


http://www.symantec.com/connect/blogs/return-dead-waledacstorm-botnet-back-rise
http://www.symantec.com/connect/blogs/return-dead-waledacstorm-botnet-back-rise

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

L. Lu, V. Yegneswaran, P. Porras, and W. Lee. Blade: an attack-agnostic ap-

proach for preventing drive-by malware infections. In ACM Conference on Com-

puter and Communications Security (CCS), 2010.

MS86. Rustock, the king of spam. http://www.m86security.com/

labs/traceitem.asp?article=1362, July 2010.

MaxMind. GeolP. http://www.maxmind.com/app/ip—location.

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system

based on the xor metric. In Peer-to-Peer Systems. 2002.

MessageLabs. MessagelLabs Intelligence: 2010 Annual Secu-
rity  Report. http://www.messagelabs.com/mlireport/
MessagelLabsIntelligence_2010_Annual_Report_FINAL.pdf,

2010.

T. Meyer and B. Whateley. SpamBayes: Effective open-source, Bayesian based,
email classification system. In Conference on Email and Anti-Spam (CEAS),

2004.

S. Moyer and N. Hamiel. Satan is on my friends list: Attacking social
networks. http://www.blackhat.com/html/bh-usa-08/bh-usa-

08—archive.html, 2008.

B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini,
C. Sutton, J. D. Tygar, and K. Xia. Exploiting Machine Learning to Subvert
Your Spam Filter. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2008.

218


http://www.m86security.com/labs/traceitem.asp?article=1362
http://www.m86security.com/labs/traceitem.asp?article=1362
http://www.maxmind.com/app/ip-location
http://www.messagelabs.com/mlireport/MessageLabsIntelligence_2010_Annual_Report_FINAL.pdf
http://www.messagelabs.com/mlireport/MessageLabsIntelligence_2010_Annual_Report_FINAL.pdf
http://www.blackhat.com/html/bh-usa-08/bh-usa-08-archive.html
http://www.blackhat.com/html/bh-usa-08/bh-usa-08-archive.html

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Y. Niu, Y. Wang, H. Chen, M. Ma, and F. Hsu. A quantitative study of forum
spamming using context-based analysys. In Symposium on Network and Dis-

tributed System Security (NDSS), 2007.

C. Nunnery, G. Sinclair, and B. B. Kang. Tumbling Down the Rabbit Hole: Ex-
ploring the Idiosyncrasies of Botmaster Systems in a Multi-Tier Botnet Infras-
tructure. In USENIX Workshop on Large-Scale Exploits and Emergent Threats

(LEET), 2010.

E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi. Fluxor: Detecting and
monitoring fast-flux service networks. In Detection of Intrusions and Malware,

and Vulnerability Assessment (DIMVA ), 2008.

A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G. M. Voelker, V. Paxson,
N. Weaver, and S. Savage. Botnet Judo: Fighting Spam with Itself. In Symposium
on Network and Distributed System Security (NDSS), 2010.

J. C. Platt. Fast training of support vector machines using sequential minimal

optimization. In Advances in Kernel Methods - Support Vector Learning, 1998.

P. Porras, H. Saidi, and V. Yegneswaran. Conficker C analysis. SRI International,

2009.

Project Honeypot. http://www.projecthoneypot.org/.

N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iFRAMEs

point to Us. In USENIX Security Symposium, 2008.

219


http://www.projecthoneypot.org/

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

A. Ramachandran, D. Dagon, and N. Feamster. Can DNS-based blacklists keep
up with bots? In Conference on Email and Anti-Spam (CEAS), 2006.

A. Ramachandran and N. Feamster. Understanding the Network-level Behavior

of Spammers. SIGCOMM Computer Communication Review, 2006.

A. Ramachandran, N. Feamster, and D. Dagon. Revealing Botnet Membership
using DNSBL Counter-intelligence. In USENIX Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI), 2006.

A. Ramachandran, N. Feamster, and S. Vempala. Filtering Spam with Behavioral
Blacklisting. In ACM Conference on Computer and Communications Security

(CCS), 2007.

P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense against heap-

spraying code injection attacks. In USENIX Security Symposium, 2009.

M. Sahami, S. Dumais, D. Heckermann, and E. Horvitz. A Bayesian approach

to filtering junk e-mail. Learning for Text Categorization, 1998.

SC Magazine. Accused MegaD operator arrested. http://www.
scmagazineus.com/accused-mega-d-botnet-operator—

arrested, 2011.

D. Sculley and G. M. Wachman. Relaxed Online SVMs for Spam Filtering. In
ACM SIGIR Conference on Research and Development in Information Retrieval,

2007.

220


http://www.scmagazineus.com/accused-mega-d-botnet-operator-arrested
http://www.scmagazineus.com/accused-mega-d-botnet-operator-arrested
http://www.scmagazineus.com/accused-mega-d-botnet-operator-arrested

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Shadowserver. New fast flux botnet for the holidays. http://www.
shadowserver.org/wiki/pmwiki.php/Calendar/20101230,
2011.

S. Shin and G. Gu. Conficker and beyond: a large-scale empirical study. In

Annual Computer Security Applications Conference (ACSAC), 2010.

S. Sinha, M. Bailey, and F. Jahanian. Shades of Grey: On the Effectiveness of
Reputation-based “Blacklists”. In International Conference on Malicious and

Unwanted Software, 2008.

J. Song, S. Lee, and J. Kim. Spam filtering in twitter using sender-receiver
relationship. In Symposium on Recent Advances in Intrusion Detection (RAID),

2011.

B. Stock, J. Gobel, M. Engelberth, F. Freiling, and T. Holz. Walowdac Anal-
ysis of a Peer-to-Peer Botnet. In European Conference on Computer Network

Defense (EC2ND), 2009.

B. Stone-Gross, R. Abman, R. A. Kemmerer, C. Kruegel, D. G. Steigerwald, and
G. Vigna. The underground economy of fake antivirus software. In Proceedings

on the Economics of Information Security and Privacy (WEIS). 2010.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kem-
merer, C. Kruegel, and G. Vigna. Your Botnet is My Botnet: Analysis of a Bot-
net Takeover. In ACM Conference on Computer and Communications Security

(CCS), 2009.

221


http://www.shadowserver.org/wiki/pmwiki.php/Calendar/20101230
http://www.shadowserver.org/wiki/pmwiki.php/Calendar/20101230

[124]

[125]

[126]

[127]

[128]

[129]

[130]

B. Stone-Gross, M. Cova, C. Kruegel, and G. Vigna. Peering Through the

iFrame. In IEEE Conference on Computer Communications (INFOCOM), 2011.

B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. The Underground Econ-
omy of Spam: A Botmaster’s Perspective of Coordinating Large-Scale Spam
Campaigns. In USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), 2011.

B. Stone-Gross, A. Moser, C. Kruegel, E. Kirda, and K. Almeroth. FIRE: FInd-
ing Rogue nEtworks. In Annual Computer Security Applications Conference

(ACSAC), 2009.

G. Stringhini, M. Egele, C. Kruegel, and G. Vigna. Poultry Markets: On the
Underground Economy of Twitter Followers. In SIGCOMM Workshop on Online

Social Networks, 2012.

G. Stringhini, O. Hohlfeld, C. Kruegel, and G. Vigna. The harvester, the botmas-
ter, and the spammer: On the relations between the different actors in the spam

landscape. In ACM Symposium on Information, Computer and Communications

Security (ASIACCS), 2014.

G. Stringhini, T. Holz, B. Stone-Gross, C. Kruegel, and G. Vigna. Botmagnifier:

Locating spambots on the internet. In USENIX Security Symposium, 2011.

G. Stringhini, C. Kruegel, and G. Vigna. Detecting Spammers on Social Net-

works. In Annual Computer Security Applications Conference (ACSAC), 2010.

222



[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

G. Stringhini, C. Kruegel, and G. Vigna. Shady Paths: Leveraging Surfing
Crowds to Detect Malicious Web Pages. In ACM Conference on Computer and

Communications Security (CCS), 2013.

G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng, and B. Y.
Zhao. Follow the Green: Growth and Dynamics in Twitter Follower Markets. In

ACM SIGCOMM Internet Measurement Conference (IMC), 2013.

Symantec Corp. State of spam & phishing report. http://www.symantec.

com/business/theme. jsp?themeid=state_of_spam, 2010.

Symantec. Corp. Rustock hiatus ends with huge surge of pharma
spam. http://www.symantec.com/connect/blogs/rustock—

hiatus-ends-huge-surge-pharma-spam, January 2011.

Symantec Corp. Internet security threat report. http://www.symantec.
com/content/en/us/enterprise/other_resources/b-

istr_main_report_v19_21291018.en-us.pdf, 2014.

B. Taylor. Sender reputation in a large webmail service. In Conference on Email

and Anti-Spam (CEAS), 2006.

K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and Evaluation of
a Real-Time URL Spam Filtering Service. In IEEE Symposium on Security and

Privacy, 2011.

K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson. Trafficking Fraudulent
Accounts: The Role of the Underground Market in Twitter Spam and Abuse. In

USENIX Security Symposium, 2013.

223


http://www.symantec.com/business/theme.jsp?themeid=state_of_spam
http://www.symantec.com/business/theme.jsp?themeid=state_of_spam
http://www.symantec.com/connect/blogs/rustock-hiatus-ends-huge-surge-pharma-spam
http://www.symantec.com/connect/blogs/rustock-hiatus-ends-huge-surge-pharma-spam
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

A. Thomason. Blog Spam: A Review. In Conference on Email and Anti-Spam

(CEAS), 2007.

Twitter. The twitter rules. http://support.twitter.com/entries/

18311-the-twitter—rules, 2010.

J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the face-

book social graph. arXiv preprint arXiv:1111.4503, 2011.

S. Venkataraman, S. Sen, O. Spatscheck, P. Haffner, and D. Song. Exploiting
Network Structure for Proactive Spam Mitigation. In USENIX Security Sympo-
sium, 2007.

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross
site scripting prevention with dynamic data tainting and static analysis. In Sym-

posium on Network and Distributed System Security (NDSS), 2007.

G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng, and B. Y. Zhao. You are
how you click: Clickstream analysis for sybil detection. In USENIX Security

Symposium, 2013.

G. Wang, C. Wilson, X. Zhao, Y. Zhu, M. Mohanlal, H. Zheng, and B. Y. Zhao.
Serf and turf: crowdturfing for fun and profit. In World Wide Web Conference
(WWW), 2012.

C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao. User Interactions
in Social Networks and Their Implications. In ACM European conference on

Computer systems (EuroSys), 2009.

224


http://support.twitter.com/entries/18311-the-twitter-rules
http://support.twitter.com/entries/18311-the-twitter-rules

[147]

[148]

[149]

[150]

[151]

[152]

[153]

P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda. Auto-
matically Generating Models for Botnet Detection. In European Symposium on

Research in Computer Security (ESORICS), 2009.

Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov. Spamming
Botnets: Signatures and Characteristics. SIGCOMM Computer Communications

Review, 2008.

W. Xu, F. Zhang, and S. Zhu. Toward worm detection in online social networks.

In Annual Computer Security Applications Conference (ACSAC), 2010.

C. Yang, R. Harkreader, and G. Gu. Die Free or Live Hard? Empirical Evaluation
and New Design for Fighting Evolving Twitter Spammers. In Symposium on

Recent Advances in Intrusion Detection (RAID), 2011.

Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai. Uncovering
social network sybils in the wild. In ACM SIGCOMM Internet Measurement

Conference (IMC), 2011.

T.-F. Yen and M. K. Reiter. Traffic Aggregation for Malware Detection. In
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),

2008.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing
system-wide information flow for malware detection and analysis. In ACM Con-

ference on Computer and Communications Security (CCS), 2007.

225



[154] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman. Sybilguard: defending
against sybil attacks via social networks. ACM SIGCOMM Computer Commu-

nication Review, 2006.

[155] A. Zand, G. Vigna, X. Yan, and C. Kruegel. Extracting Probable Command
and Control Signatures for Detecting Botnets. In ACM Symposium on Applied

Computing (SAC), 2014.

[156] C. C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling
and analysis. In ACM Conference on Computer and Communications Security

(CCS), 2002.

226



	Introduction
	Anatomy of a Cybercriminal Operation
	Infected Machines
	Command and Control Infrastructure
	Malicious Online Service Accounts

	Dissertation Overview
	Detecting Misbehaving Hosts
	Detecting Misbehaving Accounts
	Studying the Relations Between Bots and Malicious Accounts

	Contributions

	Related Work
	The Evolution of Botnets
	The Evolution of Botnet Structures
	The Evolution of the Botnet Infection Model

	The Evolution of Mitigation Techniques
	Detecting Infections
	Detecting Command and Control Activity
	Detecting Malicious Content
	Detecting Malicious Online Service Accounts


	I Detecting Misbehaving Hosts
	Locating Spambots on the Internet
	Introduction
	Input Datasets
	Approach

	Input Datasets
	Seed Pools
	Transaction Log

	Characterizing Bot Behavior
	Bot Magnification
	Threshold Computation

	Spam Attribution
	Spambot Analysis Environment
	Botnet Tags
	Botnet Clustering

	Evaluation
	Validation of the Approach
	Tracking Bot Populations
	Application of Results
	Universality of k

	Conclusions


	II Detecting Misbehaving Accounts
	Background: Online Social Networks
	The Facebook Social Network
	The MySpace Social Network
	The Twitter Social Network

	Detecting Fake Online Social Network Accounts
	Introduction
	Data Collection
	Honey-Profiles
	Collection of Data

	Analysis of Collected Data
	Identification of Spam Accounts
	Spam Bot Analysis

	Spam Profile Detection
	Spam Detection on Facebook
	Spam Detection on Twitter
	Identification of Spam Campaigns

	Conclusions

	Detecting Compromised Online Social Network Accounts
	Introduction
	Behavioral Profiles
	Modeling Message Characteristics

	Detecting Anomalous Messages
	Training and Evaluation of the Models
	Robustness of the Models
	Novelty of the modelled features

	Grouping of Similar Messages
	Compromised Account Detection
	Evaluation
	Data Collection
	Training the Classifier
	Detection on Twitter
	Detection on Facebook
	Case Studies
	Detecting Worms

	Detecting High-profile Compromises
	Limitations
	Conclusions


	III Detecting The Relations Between Malicious Hosts and Online Accounts
	Detecting Malicious Account Communities on Online Services
	Introduction
	Background: Analysis of Malicious Activity on a Webmail Service
	EvilCohort: Overview
	Data Collection
	Building the Graph Representation
	Finding Communities
	Postprocessing Step

	Description of the Datasets
	Webmail Activity Dataset
	Online Social Network Login Dataset

	Evaluation
	Threshold Selection
	Detection in the Wild
	Result Analysis

	Discussion
	Conclusions

	Conclusions and Future Work
	Bibliography


