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Abstract

The rise and expansion of online social networks has created an enormous network of millions
of people who constantly communicate and share content among each other. Attackers have quickly
adapted and devised strategies to take advantage of unknowing users, mainly by luring them into their
malicious  domains  to  better  execute  their  exploits.  While  most  such  attacks  are well  known and
documented, not many studies have been done so far on the threat of clickjacking on social media. In
this type of attacks, users are tricked into clicking a page element thinking to trigger a certain action,
while unexpected ones happen instead. Such elements are commonly either hidden or “redressed” to
make them look harmless and appealing; the consequences of a successful attack can vary greatly, as
an attacker can make the user do anything requiring only clicks for execution, such as redirection to
another malicious page, starting malicious downloads, or perform a Cross-Site Request Forgery attack
if the user is currently logged in other services. The aim of this project is therefore to analyze the
clickjacking problem on Facebook, to determine how common it is and the level of danger to which
users are exposed if left unprotected. Using a web crawler, popular Facebook pages were analyzed
and the comments from most recent posts retrieved. URLs found in comments were then collected and
the HTML from the corresponding pages obtained in order to perform a static analysis for the presence
of clickjacking. In order to do so, relevant features were selected and extracted from the raw data and
700 entries in the dataset were manually labeled as either clickjacking, malicious or benign pages. A
supervised classifier  was then trained on the tagged data  and the resulting model  applied to  the
remaining 8360 entries, successfully detecting a total of 71 clickjacking pages. The most common
variants found were unwanted redirects to other malicious pages, likejacking, and promises of non-
existent content in exchange for a click on a Facebook plugin. The findings confirm that the clickjacking
problem is real and quite widespread and, even though not as dangerous as other types of attacks, still
warrants the development of automated tools for its prevention and detection.

1. Introduction

Online social networks have revolutionized modern life in developed countries and have grown to 
become one of the most common ways for people to express their thoughts and ideas and 
communicate with their peers. Smartphones and other mobile devices have made it progressively 
easier to access the Internet at all times, making social networks all the more appealing and popular. 
Nowadays politicians and prominent figures use them to broadcast their ideas and gather more 
followers or their influence their voters. Companies advertise themselves and their products to the 
large social network audience. Knowledge of world problems is quickly shared among users to raise 
awareness and gather all possible financial and humanitarian help. News and facts, real or fake, spread
quickly, shared in a chain by hundreds of people from all over the world. And hackers thrive in such an 
environment, where the large user pool allows them to easily find victims for their attacks. It is 
therefore increasingly important to perform in-depth studies of malicious activities in social media, as 
this will allow creation of automated tools that assist users in their daily navigation and make them far
less likely to become easy preys.
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1.1 Aims and goals

This project will focus on one particular social network, Facebook, with the aim of discovering to what 
extent its users are exposed to the threat of clickjacking, a malicious attack in which users are tricked 
into clicking selected elements in a web page to perform actions favorable to the attackers. 

In order to do so, there are two main steps to be performed: 
1. Gather enough data from malicious websites advertised on Facebook public pages.
2. Analyze it efficiently to detect clickjacking instances and separate malicious from benign activities.

The goal of this project is therefore twofold: deliver a web crawler that can collect significant amounts 
of relevant data from Facebook and the Internet, and analyze it to detect clickjacking and other 
malicious instances from it.

1.2 Implementation and results overview

The data that needed to be collected was in the form of full HTML code from suspicious pages found 
across Facebook comments. To collect this, the crawler's algorithm started with a few seed Facebook 
pages and used a BFS (breadth-first-search) approach in analyzing a fixed amount of posts and 
comments from every initial page before moving on to the next steps. All the comments found were 
saved to a text file in JSON format and URLs were extracted from those which contained links. Each 
URL found was then opened and its content saved in a text file if it contained at least one inline iframe,
and a Google search for the comment itself was performed to determine if other Facebook pages 
contained it. The crawler then collected data from the first few Facebook pages returned by the 
Google search, effectively replacing the seed pages and thus starting a new cycle. 

Around 1.7 GB of HTML pages have been collected. A close analysis of the data led to the 
identification of several features which mark important differences between genuine and malicious 
pages, while being at the same time able to identify clickjacking instances. Feature vectors were 
extracted from each entry to form a dataset matrix. A subset of the data was then manually labeled to 
form a training set over which a supervised classifier was trained. The model thus obtained was applied
to the main bulk of the data to obtain predictions on whether each entry corresponded to benign, 
malicious or clickjacking pages.

The classifier identified 118 clickjacking instances out of 8360 data points, 71 of which were correctly
predicted as clickjacking, while the remaining ones were false positives distributed into 15 benign and 
32 malicious. Therefore the model was correct on 60.17% of its clickjacking predictions, making it 
fairly accurate when considering the small dataset over which it was trained. 

1.3 Chapters summary

In the following chapter, context will be given to the reader, with a detailed review of literature found 
on the topic and its connection to the present document. Requirements will then be presented, 
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expanding on the introduction's aims and goals. The tools used to achieve the project's goals will also 
be introduced and discussed. Design and implementation details will then follow, with a detailed 
description of the algorithms developed and how the tools were used to implement them. The results 
of the analysis will then be covered and a series of case studies presented before concluding with 
observations on how the project could have been improved.

2. Context

In order to complete the project, sufficient background information about web crawling and clickjacking
needed to be collected. Online sources and published papers were used for this purpose, and the 
result of this research is outlined in this chapter. 

2.1 Why Facebook?

Created in 2004 by Mark Zuckerberg and other Harvard students, Facebook has grown to become the 
most popular social network in the world, with approximately 82.4% of users active outside of US and 
Canada [2, 4]. On December 2014 it had 890 million daily and 1.39 billion monthly active users [4]. A
good 71% of Internet users are on Facebook [3] and the most vulnerable slice of the population, that 
is teenagers, uses predominantly Facebook as their social network of choice [1]. 
The company itself places great importance on security and has always been actively trying to reduce 
spam and malicious attacks on itself and its users. Facebook even warns and educates users about the 
most common attacks carried on though their website, as can be seen in their “Spam and Other 
Security Threats” page [5], which lists and describes the most common attacks and what users can do 
about them. Nonetheless, the very size of their social network makes perfect security a very ambitious
goal and attackers still manage to find new victims and perpetrate their activities, mainly though clever
social engineering.

2.2 Web crawling and Facebook

Gathering data from the web is no new activity. According to Wikipedia, “A Web crawler is an Internet 
bot that systematically browses the World Wide Web, typically for the purpose of Web indexing.” 
[18]. Search engines and other sites routinely use web crawlers (also called “spiders”) to find and 
index more pages and collect data. 

Depending on their purpose, crawlers vary greatly in their function and implementations and can be 
extremely useful, but as they are able to gather far larger amounts of data in a short time compared to
humans, they might affect deeply the performance and usability of servers. They consume a lot of 
bandwidth and may access a server too often, causing router and server crashes and thus impacting 
businesses negatively [18]. This is why policies and regulations have been established to control web 
crawling, and personal crawlers are somewhat frowned upon as they tend to try (knowingly or not) to
evade them. 
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Social networks take crawling on their properties very seriously, as they already experience high load 
with normal human usage of their services without the aggravation of bots collecting their data. 
Facebook has their own, strict set of policies for crawling, which can be found in their robots.txt [20]. 
The document begins with:

“# Notice: Crawling Facebook is prohibited unless you have express written
  # permission. See: http://www.facebook.com/apps/site_scraping_tos_terms.php”

The link leads to their Automated Data Collection Terms, which contains a form that needs to be 
completed and sent to Facebook. If approved, a crawler compliant to their rules can be used in their 
domain. A form has been submitted to register the project's crawler, and an ethical approval from the 
UCL Research Ethics Committee (number 6521/002) obtained prior to start running the code. It is 
important to note that only public data has been collected during this project, and will only be used for
UCL research purposes.

2.3 Background on Clickjacking

While browsing Facebook, a user reads a catchy comment promoting an interesting video, with a link 
provided. Intrigued, she clicks on it. Once loaded, the page looks fairly normal, with the promised 
video right in the middle of the screen, its content just a click away. All the user needs to do is press 
the play button. She does not know that over the innocuous looking “play button” an attacker placed 
an invisible iframe containing Facebook like buttons. 

This is a classic example of clickjacking, where the attacker sets a bait for the user to click at and hides 
malicious content behind it, so that a user thinks to be clicking the bait element when in truth she 
clicked the invisible content. The name comes from the fact that the click is “hijacked”, so that it goes 
to something which the user did not mean to click at all. Other names for clickjacking are “UI redress 
attack” and “UI redressing”, which derive from the “redressing” of the clickable content by the attacker
so to make it appealing to the unfortunate user. 

Clickjacking attackers operate by modifying the content served from their own domain name and web 
servers and then tricking users into visiting their site to interact with its elements [15]. If the attack is 
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successful, a victim can be unknowingly lured into performing any action that can be done with a click, 
most commonly a redirect to another page, but sometimes also a download or an application 
execution. If she is logged in social networks or other platforms the attack variety widens to include 
Cross-Site Request Forgery, an attack that “forces an end user to execute unwanted actions on a web 
application in which they're currently authenticated” [13]. For example, on Facebook the user's 
account can be forced to post on one or more pages a spam message from the attacker, or could place 
a like on an unwanted page, ultimately spreading the threat and making other users more likely to fall 
on the same exact trap. The best freely available defense for the user at the moment is the Firefox 
browser addon No Script, which detects hidden elements in a page in real time and warns the user 
about the possibility of an attack [7, 10]. 

Clickjacking is not particularly widespread and the number of malicious pages fluctuates greatly. As  
can be seen from the Trend Micro data [12], there are considerable peaks around “fresh updates” on 
important world news or leakage of celebrity information/pictures that make it easier for attackers to 
construct successful baits. In the document, for example, the death of Steve Jobs corresponded to a 
large peak in number of clickjacking domains.

This document analyses the clickjacking problem from the user's point of view. The server's perspective
is outside the scope of this document, but it should be noted that as of 2012 the large majority of 
websites did not take precautions against this threat. The main reasons for this was lack of awareness 
for the problem and not considering it a serious issue [14]. There are excellent documents and studies 
that explain how to implement good defenses that make clickjacking very hard to perform. Indications 
can be found in the “Clickjacking Defense Cheat Sheet” From OWASP [8] and in the Wikipedia page 
about Clickjacking [7], while a Stanford study on proper implementation of clickjacking server side 
defense can be found in “Busting Frame Busting: a Study of Clickjacking Vulnerabilities on Popular 
Sites” [9]. Finally, Huang et al. in “Clickjacking: Attacks and Defense” [15] developed new attacks, 
conducted the first user study on their effectiveness and built a tool to prevent them, encouraging 
browser and OS vendors to adopt such solutions in defending their users.

2.4 Clickjacking variants

In clickjacking attacks the user is tricked by an attacker into clicking on a target element that performs 
unintended actions. A very common vector for the target element itself is the popular HTML tag 
<iframe>. According to w3schools, “an inline frame is used to embed another document within the 
current HTML document” [16]. They can be styled with CSS and inserted inline and through scripts. 
Iframes are most commonly used to contain and display embedded content such as advertisements 
and videos, and in most cases their use is absolutely legitimate. Attackers, however, use them to 
embed content with malicious purposes and hide it where users will click it. Clickjacking comes in 
different flavors, the most common of which are described below. 

In order to fool even more Internet-savvy people into clicking their malicious content, attackers need 
to hide the target element from the user's view. To achieve this, HTML and CSS styling features are 
used. Target elements can be made transparent by using “opacity = 0” or “visibility: hidden” 
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and placed on top of the bait. Alternatively, they can be placed underneath another element (which has
been made unclickable) with a lower “z-index” value. Attackers can crop target elements by wrapping
them inside iframes with negative offsets, so that only a part of them is visible; if inserted in the right 
context, the user won't think of it as malicious and might fall in the trap [15]. 

The most basic clickjacking attack consists in the placement of an iframe of width=100% and 
height=100% underneath the content of the malicious page, which only contain the target element 
made invisible by the attacker. This way, only the genuine page inserted in the iframe is visible. The 
target element placed in such a way that it overlaps with an element in the benign page that the user is
likely to click, so that when this happens the target element is clicked instead.

The following variation uses JavaScript to cause a user to generate a click on the target element no 
matter where she clicks inside the malicious page. In this scenario, the attacker places the hidden 
target element in a hidden iframe and writes a script in JavaScript to allow it to follow the user's 
cursor wherever it moves. This way, when the user pauses to click something inside the page, she will 
actually be clicking on the target element which will be perfectly aligned under the cursor. In a similar 
fashion, the attacker can steal the user's click by anticipating it (in the case, for example, of a game) 
and move the target element underneath the mouse just before the click happens. In the same way, 
the attacker can ask the user to double click, and only place the target element under the mouse after 
the first click [15].

Some types of clickjacking have been nicknamed differently to reflect their characteristics. The 
particular case described in 2.3 and illustrated in Image 1 is a type better known as Likejacking. The 
target element is a transparent iframe containing the Facebook like plugin, which is placed over (or 
underneath) the bait element, which could be for example a play button or a “next” icon. If the user 
clicks on it while logged into Facebook with her account, the plugin will cause it to generate an 
automatic “like” to the attacker's referenced page without the user consent. 
 
Another subtle type of clickjacking has been named Cursorjacking, as this time the user's cursor is 
hijacked to make it click in an unwanted location. The attacker makes the real cursor invisible and 
provides a fake one to the user, which can move it around just like a genuine one.  The invisible real 
cursor is placed at a precise distance from the fake one. The attacker positions the target element at 
this exact same distance as the bait element, so that when the user clicks on the latter with the fake 
cursor, she is in fact clicking with her real one on the target element. The link provided in [17] offers a 
good interactive example of cursorjacking, from which an excerpt is in Image 2 below.
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The hand placed on the twitter button is the real cursor, which is enabled to allow users to understand
the attack, but otherwise hidden in real cursorjacking instances. The cursor placed on the “YES” button
is fake. The user thinks she is clicking on the “YES” button, when in reality only the twitter button is 
being clicked.

Other more common variants, however, are far simpler. Upon clicking on the target element, the user 
might:

• Be redirected to other sites and/or multiple windows containing malicious pages might be 
opened in her browser without consent. 

• Start an automatic download of malicious material.
• Trigger the browser to open an external program to execute the attacker's code.
• Be convinced that the clicking action will correspond to a specific reward, which in fact will 

never be delivered (such as sharing on a social media in order to unlock a video, only to find 
that the video does not exist).

2.5 Related work

The following three papers are closely related to the core of the project. The discussion below outlines
which parts of each were relevant, what was integrated into the implementation and in what ways 
their approach differed from what was used in this project. 

2.5.1 “Crawling Facebook for Social Network Analysis Purposes” [19]
 
This paper describes two approaches to crawling the Facebook social network graph, Breadth-First-
Search and Uniform sampling. 

According to the paper, BFS is a very popular crawling approach for social networks and is particularly 
optimal and easy to implement for unweighted and undirected graphs. Seed nodes are provided from 
which the algorithm discovers their neighbors, placing them in a FIFO queue. Neighbors are then 
visited one by one in order of appearance, and the algorithm fills up the queue as it goes. As this 
process can virtually go on until the queue is emptied and there are no more nodes to visit, in practice 
a termination criteria is established in order to stop the crawler at a more reasonable time. 

In Uniform sampling, the algorithm relies on the fact that the Facebook IDs are assigned by spreading 
them out in a 32-bit range space. Therefore, the crawling algorithm can generate random user IDs and 
test for their existence, in which case their page will be crawled along with the users in their friends 
list. The advantage of this approach is that the data will be far less biased than with BFS. 

The paper then goes on to compare the datasets generated by each algorithm and produce metrics for 
which a discussion is outside of the scope of this project. This is because the data required here is of a 
different nature from what was collected by the paper authors. While their aim was to collect data 
from users and friends list, this project's focus on clickjacking makes it an essential requirement that 
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data from popular and/or dodgy public pages be collected instead. Most active users will notice if their
account has been compromised and will try to clean it, thus removing evidence of the attack. Huge 
amounts of very fresh data would need to be collected to find clickjacking instances. On the other 
hand, pages with millions of visitors a day will find it extremely difficult to remove suspicious 
comments from their posts (admins of malicious pages will not even try, and will often post such 
things themselves), thus greatly increasing the chance of finding clickjacking links.

The full algorithm implemented for this project makes bias irrelevant and therefore the Uniform 
algorithm was not considered. However, the BFS algorithm described in this paper was of great use to 
this project, and in fact ended up being at the core of the final implementation, for which a full 
discussion will be provided in chapter 4.

2.5.2 “Prophiler: a fast filter for the large-scale detection of malicious web pages”  [21]

This paper describes a method to perform computationally cheap and fast large-scale analysis of 
malicious web pages. They collected HTML pages and examined it statically for malicious content by 
extracting a number of features related to known attacks. In order to separate benign pages from 
malicious ones, they describe 77 different features, 19 of which from HTML content, 25 from 
JavaScript and 33 from the URL and host-based analysis. They produced a filter trained on a portion of
labeled data using multiple machine learning classifiers and used a validation set to evaluate their 
model. The results were very good, as more than 85% of malicious pages were identified without the 
load and cost of a dynamic analysis.

The method described is absolutely relevant to the project, and it has been of great inspiration in 
choosing the approach to take in analyzing the collected data. It shows that good features can lead to 
a very good score by just performing a HTML static analysis. Because their were looking for malicious 
web pages in general, and not clickjacking ones, some features are not applicable. These ones however
are particularly relevant in a clickjacking context:

• Number of iframe tags.
• Number of elements with a small area.
• Number of known malicious patterns (they used patterns established in drive-by-download 

attacks, but it can be adapted to clickjacking).
• Number of times a script contains “iframe”.
• Number of suspicious URL patterns.
• Presence of a subdomain in URL.
• Presence of IP address in URL.
• Host Name (domain) registration date.

As most of these features are used in the project's code, they will be discussed in details in the 
implementation chapter.
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2.5.3. “Detection and Analysis of Drive-by-Download Attacks and Malicious JavaScript Code” 
[22]

This paper focuses on detecting drive-by-download attacks by performing a dynamic analysis of 
JavaScript code in a page. Their approach consisted in emulating the behavior of benign web pages and
generating a number of features that clearly mark their non-maliciousness. When an unseen page is 
presented it is then emulated to check how far from the established profiles it is. An important thing to
note is their effort in deobfuscation of scripts in malicious pages, which would surely be relevant for 
this project.

This work, though not as relevant as the one mentioned above, is still important as many clickjacking 
attempts would be detected with such an in-depth dynamic analysis. However, as clickjacking can and 
is often perpetrated with static elements, too many important features would be missed if such an 
approach would be used alone. After tweaking the features to be more clickjacking oriented, this 
excellent type of JavaScript analysis combined with the work in the above paper would surely detect 
successfully the vast majority of clickjacking attempts. 

2.5.4 “A Solution for the Automated Detection of Clickjacking Attacks” [24]

While the previous papers focused on detecting malicious activity in web pages, the goal in this 
particular paper was to develop a much needed tool for automated detection of clickjacking attacks 
during normal browsing. The team delivered a browser plug-in called ClickIDS, presented an 
estimation of the prevalence of clickjacking attacks on the Internet and assessed whether proper 
defenses have been widely adopted. 

Their clickjacking detection technique consisted in having a browser render the web page, then extract 
the coordinates of all clickable elements and programmatically control the cursor and keyboard to click
on each of these elements. Their architecture consisted in a testing part responsible for the automated 
clicks and a detection part that detected probably clickjacking attempts. The latter unit was made of 
two separate browser plugins:

• ClickIDS, developed by the authors, which reports suspicious behavior when it detects that two
or more clickable elements of different pages overlap at the coordinates of the mouse click.

• NoScript, which contains the anti-clickjacking feature ClearClick that allows it to trigger an 
alert when the mouse click is detected in a region (not at the exact coordinates as in the above)
where elements from different origins overlap. The authors slightly modified its default output 
to make the evaluation easier.

The findings of this paper are very interesting and relevant, as they offer an idea of what to expect 
when searching for clickjacking attacks on the web. They ran their experiments for about two months, 
visiting a total of 1,065,482 unique web pages. Around 7% of them were unavailable (either down or 
under construction). From the remaining pages, 37.7% of them had at least one iframe, but only 930 
pages contained a completely transparent iframe and 627 contained partially transparent iframes. 
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The results are outlined in the table below, which was taken from the results chapter (Table 1 in the 
paper).

Even more interesting are the results on the pages for which their detection tool generated an alert. 
The two plugins raised a total of 672 (137 for ClickIDS and 535 for NoScript) alerts, but the value 
drops to 6 alerts if one considers the case where both reported a clickjacking attack at the same time. 
The authors report that NoScript generated 97% of its alerts on pages containing no transparent 
elements at all. They then proceeded to manually analyze the output to determine which web pages 
generated false positives and which didn't. Image 4 (Table 2 in the paper) illustrates their findings.

As can be clearly seen, only two out of the analyzed 978,683 valid pages were real clickjacking ones. 
The authors argue that most of the false positives were caused by either malicious pages that are not 
clickjacking or genuine elements that were just placed in a slightly unusual way. The borderline cases 
are very hard to classify, as they only fit in a more relaxed definition of the attack. 

This paper shows how clickjacking pages are quite uncommon and difficult to find. The attack's most 
distinctive features generate many false positives that require human intervention to distinguish from 
real positive cases. This project differs from the paper's approach, as it does not do dynamic analysis of
the crawled pages, but tries to use features derived from static HTML to determine if a page contains a
clickjacking attack or not. Nonetheless, this paper's finding are sound and it is not to be excluded that a
similar genuine/clickjacking-malicious ratio could actually reflect the reality of things and, therefore, 
this project's results as well.
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2.6 Novelty of approach

Literature search suggests that no research has ever been done on analysis of clickjacking instances 
among malicious comments shared in the Facebook social media. The papers described above proposed
solutions well suited to finding either malicious web pages in general or focused exclusively on 
detecting clickjacking attacks in real time. This project tries to understand whether applying one or 
more of these approaches to pages gathered from dodgy Facebook comments yields good results in 
finding more clickjacking instances, and is therefore novel material.

3. Requirements and tools

3.1 Problem statement and requirements

Being the most popular social network at the moment, Facebook is a huge attraction for cyber 
criminals, as the large pool of users makes it far more likely for them to find people who will fall for 
their scams. Because they have no direct control over Facebook pages themselves (the company tries 
to defend itself and its users as much as possible, so it leaves no vulnerabilities to be exploited), 
attackers are forced to be creative and always find alternative solutions to bypass security measures 
and perpetrate their activities. 

The most common way for them to do so is to use advanced social engineering techniques to lure 
users into visiting their malicious domains. To achieve this, they may create seemingly harmless 
Facebook pages filled with links directed to their sites. More often, however, they create fake accounts
to post catchy comments containing such links to popular public pages, so that they can obtain plenty 
of user visibility and increase the probability of fooling users. In short, their main goal in social medias 
is aggressive advertisements of their malicious web pages.

This project aims to collect a large number of such comments and analyze them to find instances of 
clickjacking attacks. Therefore, the problem statement can be summarized in the following questions: 
among all malicious domains advertised on Facebook, how many of them actually contain clickjacking 
attacks? And if yes, what types? Could they be easily blocked?

That the requirements for the project are as follows:

1. The implementation of a web crawler capable of gathering a large number of comments from 
Facebook pages that are most likely to contain malicious ones.

2. A tool that can collect the full HTML code of pages linked in dodgy comments.
3. The identification of features for detection of malicious pages and clickjacking instances among 

them. 
4. The development of an algorithm capable of extracting such features from the HTML bulk and 

perform analysis to determine whether a page is benign, malicious or clickjacking.
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3.2 Tools

3.2.1 Data collection tools

To interact with pages like a user would, a browser is needed. Therefore, in order to build the crawler 
the following options were selected: Google Chrome, Selenium + PhantomJS and PhantomJS alone. 
With the idea of performing dynamic analysis of collected web pages, the development of the crawler 
started with Selenium + PhantomJS. 

Selenium is a tool for browser automation. It is mainly used for testing purposes, as it allows to easily 
create browser-based automated suites and tests, and offers support for all main browsers, including 
PhantomJS [24]. 

The best description for PhantomJS can be found on their website: “PhantomJS is a headless WebKit 
scriptable with a JavaScript API. It has fast and native support for various web standards: DOM 
handling, CSS selector, JSON, Canvas, and SVG.” [25]. As PhantomJS uses WebKit, exactly like 
Google Chrome, the headless feature made it the browser of choice for the implementation of the 
crawler. Moreover, it is relatively straightforward to understand and its basics are well documented, 
though more advanced features lack proper disclosure and explanation (StackOverflow makes up for 
it, however). There are several variations of PhantomJS, the most notable of which is CasperJS, a 
wrapper that offers most features in a more convenient and accessible API. 

There are two main reasons that led to using standalone PhantomJS as opposed to the Selenium + 
PhantomJS combination:

1. In order to discourage web crawling on their domains, Facebook makes it extremely 
complicated to extract data from their pages without using their API. After numerous failed 
attempts to collect the data by other means, the API approach was chosen as it allows to 
collect data in a much cleaner and faster way, not to mention it greatly reduces simplicity of 
the algorithm and code writing process. Therefore “clicking on the Facebook page like a user 
would” was no longer necessary, and given that Selenium automation helped mostly in that 
respect, the need to use it ceased to exist.

2. After accurate review of existing literature, static HTML analysis was chosen over a dynamic 
approach, thus reinforcing the idea that standalone PhantomJS would be more than enough for 
this project's purposes.

Note that, after this decision, Python could have been used instead of a browser. However, it seemed 
more appropriate to learn a new language (JavaScript) and experiment with headless browsers rather 
than always going for the “pythonic” approach.

3.2.2 Analysis and evaluation tools

In order to analyze the large amounts of HTML documents collected along with the corresponding 
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Facebook comments, Python scripts were used. In particular, Python NumPy was used to construct the
feature set and Python scikit-learn for the machine learning part. 
Alternatives are Matlab or Mathematica, but they are not free to use and largely unknown outside of 
academic environment. Java could have been an option, but Python was deemed to be cleaner and 
simpler to understand and use.

4. Design and implementation

This chapter gives a detailed description of the deliverables of the project. The web crawler and HTML 
extraction tool will be discussed in section 4.1, while the scripts used for analysis and evaluation are 
covered in 4.2.

4.1 Data gathering

This section describes the web crawler's algorithm and implementation. After giving an overview of the
algorithm, the difficulties encountered in the development phase will be explored and discussed, 
before finally focusing on how the algorithm itself was actually implemented.

4.1.1 Algorithm overview
 
The input given to the crawling algorithm is a number of seed Facebook pages. Busy and popular 
pages are strongly preferred, as they are “liked” by more users attract a larger number of spammers 
and cybercriminals, who start disseminating their malicious comments in the page's posts in the hope 
that some user will fall in the trap and take their bait. At least 3 pages are recommended. 

The algorithm's objective is to output the HTML of suspicious web pages found in Facebook comments.
For each raw HTML text, the corresponding page's URL and the original comment from which the link 
was extracted are also given. The data is organized in a predefined format that allows the analysis and 
evaluation script to easily collect each page separately from the bulk.

The algorithm comprises five main steps:

1. Gather n posts from each seed page and put them in a FIFO queue.
2. Collect m comments from each post in the post queue, check each one of them to determine if 

they contain a URL and, if they do, place them in a comment queue. In all cases, the comment is
added to a text file that contains all comments parsed in JSON format for later statistics.

3. For each comment in the comment queue, open the URL and search for the iframe tag in the 
raw HTML. If the page has at least one iframe, push it in a “to be processed later” comment 
queue and save the HTML along with the URL and the comment itself. If it doesn't have 
iframes, do nothing with the comment. 

4. For each comment in the “to be processed later” queue, do a Google search with the comment 
as query followed by the word “facebook” and filter the output so that only new Facebook 
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pages are accepted as results.
5. Use those pages collected from the Google search in step #4 as new seed pages, and start 

again.

As can be seen, the Facebook graph is analyzed in a BFS fashion, in which pages and comments are 
first gathered, and then inspected. The number of posts and comments to be collected, called here 
respectively n and m, can be adjusted depending on the needs. The algorithm naturally finishes and 
exits when there are no more Facebook pages to crawl, but usually a termination parameter is used to 
shorten the search. 

4.1.2 Overcoming obstacles

Before discussing the implementation details it is worth describing the problems encountered and their
solutions, as they played an important part in how the structure was designed and how each step of 
the algorithm was implemented.

The first implementation of the crawler did not make any use of the Facebook API. Instead, the 
structure of the social media's pages was first carefully analyzed, and the div IDs and names of the 
containers incorporating the Facebook timeline of a page (which contains the posts along with their 
comments) were found. From there, posts needed to be retrieved and comments along with them. This
proved to be a most difficult task, as comments are loaded for human visualization in small batches and
too many clicks on the “load more comments” button were required to gather a decent amount of 
them. This is not only a slow process, but automating the extraction of text from the right div 
containers along with user information was taking too long in terms of implementation time at the 
expense of other key parts of the project. In short, the problems with this approach were many, but 
the most serious ones were the following:

• The div name containing the timeline and the subsequent divs holding the post IDs were not 
consistent between different pages. 

• Only a few posts are displayed at a time, and displaying more requires pressing a button and 
wait for loading time.

• Clicking on a post to display comment loaded the post in a new page, causing significant 
memory overhead.

• Comments are loaded in very small batches for human readability purposes and are only 
accessible though clicks to a button. The loading is slow and inefficient.

• User names collected along with a comment cannot always be used to retrieve account 
information (their user ID or specific page name is needed).

The difficulty of this approach is easily explained by Facebook's need to preserve its data and make it 
extremely difficult for outsiders to access without their control or consent. While it is possible to write
a web crawler in his way, it was beyond the scope and requirements of this project. Therefore, the 
Facebook API was used instead.
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As already discussed in Chapter 2, Facebook does not allow free crawling of their domains and 
requires compliance to a set of rules and regulations, even after written permission to operate a 
crawler on their social media has been obtained. In order to obtain public data though the API a valid 
access token is required, which anyone can obtain by registering a new application within Facebook. To
access private data belonging to a user or a closed group/page, the user or the admin must first accept 
the application and grant appropriate privileges to it. Only then the access token becomes valid for 
retrieving data on that particular user, group or page. As this project only required public data, a simple
access token was all that was required. The access token used in this project was 
'1391011097865724| yZSQMjmMpFa22BlY1JIndukLaA', comprised of the application number 
(1391011097865724) and an actual token ( yZSQMjmMpFa22BlY1JIndukLaA). The obvious 
downside to this is that Facebook is able to track every activity made using this access token, making 
the crawler absolutely non-stealthy.

Another rule relevant to this project is that they only allow 600 API calls per 600 seconds. If this is 
exceeded, the following error is displayed:

It was therefore necessary to slow down the crawler significantly, so that this error would not be 
generated. 

Facebook is not the only one that restricts bandwidth and server usage for performance and cost 
reasons. Google also blocked the crawler several times when too many queries were done. There are 
two different types of blocks, each of which lasts approximately half an hour: 

1. Bot automated queries are blocked, but user queries made though a browser make it though if 
the user completes a Captcha. The user is warned that her computer is generating a large 
amount of automated queries and is told that it might be a virus.

2. If the above scenario is repeated many times, all queries from that IP address are blocked, and 
users are told they have a bot infecting their computer.

Precise measurement as of what load exactly triggers each step have not been carried though, but 
slowing down the crawler even further prevented these problems.

Another difficulty was dealing with JavaScript asynchronousness in PhantomJS. Being a browser, it 
loads pages and data in asynchronous ways which are optimized for performance, but not always easy 
to predict. The tasks to be completed in this project strictly needed a sequential approach. Therefore a 
significant amount of time was spent researching and testing for a workaround that would allow 
making PhantomJS execute commands in a synchronous fashion. It turns out that the solution is 
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recursion, as it forces the browser to call functions in a specific order rather than allowing it to decide 
when to schedule the next execution to achieve better performance. Most functions in the crawler had 
to be made recursive as a consequence of this.

4.1.3 Implementation details

In this section, details will be given as of how each part of the crawler's code relates to the algorithm 
description. It is worth noting that all queues mentioned below are defined as global variables, and 
that the crawler has been made robust by keep going when errors are encountered and continuing 
with the execution if a page takes too long to load (30 seconds). Moreover, the code outputs a log file
though the PhantomJS console.log function, for which more details can be found in the github 
repository given in the Appendix.

1. Gather n posts from each seed page and put them in a FIFO queue.

The function getPosts constructs the Facebook API call to retrieve n posts from a given Facebook 
page, which needs to be inputted as either a page ID or by using correct name given by Facebook upon
creation (which is not necessarily the same as the user name shown). The API call structure is as 
follows:

In the above snippet, next_page[n] is the queue containing the seed Facebook pages. The posts limit 
has been fixed to 10 because it allows to gather the most recent posts while avoiding spending 
excessive resources on crawling one single page, allowing for greater variability and less bias of the 
collected data. Moreover, gathering fresher comments from the newest posts increases the chances of
being able to analyze malicious pages if found, as they are more likely to still be online and not have 
been removed from the web. The API call returns a JSON output containing all details about the posts 
retrieved, such as ID, time of creation, name, message, ID and name of all users who “liked” the post, 
and information about all comments posted. Below a small excerpt of the output.
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The ID is collected from all posts and put into the post queue, ready to be used in the next step.

2. Collect m comments from each post in the post queue, check each one of them to 
determine if they contain a URL and, if they do, place them in a comment queue. In all 
cases, the comment is added to a text file that contains all comments parsed in JSON 
format for later statistics.

This is handled by the getComments function, which constructs the API call to retrieve comments 
from the pages taken from the page queue. Unlike the one for posts, the API string does not require an
access token.

The output is again a JSON file containing in this case up to 5000 comments from each page. 
Increasing this number causes the crawler to slow down significantly, as more links are found and the 
overhead cause by each one of these is non trivial. The pages retrieved tend to be many, so enough 
comments are gathered in the end of each run. A sample of the output is given below.

The function then saves all the comments in a text file and collects the message and searched for 
instances of the word 'http' or 'www.' in order to see if the message is likely to contain a URL. If the 
test is positive, the message itself is saved in a queue to be used in the next step.
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Note how this is the first recursive function in the code. It needs to be executed for every post in the 
post queue, so instead of repeating the code in a loop, the following handler function is used:

The function getComments(callback) calls back the commentsHandler when it is done running. The 
handler then checks if there are still posts for which the comments have not been extracted and 
analyzed. If that is the case, it calls again getComments, otherwise it starts the next step. This 
approach will be used for all the following functions described in this section. 

3. For each comment in the comment queue, open the URL and search for the iframe tag in 
the raw HTML. If the page has at least one iframe, push it in a “to be processed later” 
comment queue and save the HTML along with the URL and the comment itself. If it 
doesn't have iframe, do nothing with the comment. 

The function iframeCheck (along with its recursive handler function) performs this task. While there 
are still comment messages in the queue, it extracts the URL from each using a JavaScript regex. The 
URL is then opened and its HTML code extracted. If the HTML contains any “<iframe” tag opener, the 
HTML is considered at least vaguely suspicious and is recorded for later analysis, along with the page 
URL and the original comment's message. The message is then stored in a “comments to be searched” 
queue, which will be used in the next step of the algorithm.

Note how the check is only performed for inline iframes and not for all iframes (for example script 
generated). Including non inline iframes produces a far larger number of pages to check, many of 
which would only be false positives as clickjacking attacks are much more likely to be performed with 
static elements. Moreover, only the comment's message is recorded. This is a design choice made for 
simplicity purposes and to avoid cluttering in the output, with the premise that if it is absolutely 
necessary to have more details on which users posted such messages, a simple manual Google search 
can be performed to find number and quality of pages containing the same comment. Alternatively, the 
comments file contains a complete record of all collected comments, and it is straightforward to 
perform a match with the message to find out who the original poster(s) were. Finally, as suggested in 
the literature search, the user agent was changed to avoid pages selectively loading a different 
element based on browser discrimination, and was set as follows:
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4. For each comment in the “to be processed later” queue, do a Google search with the 
comment as query followed by the word “facebook” and filter the output so that only new 
Facebook pages are accepted as results.

The googleSearch function and its handler take care of this step. Each comment message is searched 
in a Google query created as follows:

The Google output is then filtered with a regex to find links to other Facebook pages which contain the
comment somewhere in their posts. The page name is extracted and saved in the pages queue to be 
used in the next step of the algorithm. 

5. Use those pages collected from the Google search in step #4 as new seed pages, and start 
again. 

After exhausting all messages in the “comments to search” queue, the Google search handler calls 
back the main function crawl, outlined below.

The above snippet shows how writing synchronous code in JavaScript and PhantomJS can get quite 
tricky. The variable loops indicates the maximum number of pages that can be analyzed (and thus 
complete “loops” of the algorithm). Along with the termination criteria, the code also stops if all pages
in the page queue have already been analyzed (n < next_page.length). If those conditions are not 
satisfied, the algorithm keeps running and the function getPosts is called again with another function 
as input. Such function will then be used as a callback when getPosts complete its execution. As can 
be seen, the commentsHandler is up next: this is the handler function responsible for calling 
getComments and collecting the comments from the pages, as explained in step #2. 
If either termination criteria has been met, PhantomJS is simply closed with no error.

4.2 Data analysis

This section covers the analysis of the HTML data collected by the web crawler. The aim is to identify 
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clickjacking attacks by creating appropriate features and applying them to the static HTML. 

As explained in chapter 2 (Context), the paper from Canali et al. [23] performs a mostly static analysis
of HTML pages to detect malicious pages in general. To achieve this, they identified key features and 
trained several classifiers on a portion of data that was labeled, and then applied the model to the 
unlabeled data. 

The approach here is similar. However, some key differences in this project are the focus on 
clickjacking (rather than generic attacks) and the origin of the data. Social network data contains page, 
comments and user information which can be useful for classification purposes. The feature set is 
therefore very different from the paper's and will be discussed in the following section. The 
implementation of the algorithm will be then explained afterwards.

4.2.1 Feature selection

Following a thorough analysis of clickjacking attacks and manual exploration of the crawler's output, 
21 features were selected to best cover most clickjacking cases and distinguish malicious pages from 
benign ones. These can be categorized into four main types: page-related (1 to 4), comments-
related (5 and 6), iframes-related (7 to 13) and URL-related (14 to 21). 

1. Number of times a suspicious word appears in a JavaScript inline script. A bag of words 
usually correlated with malicious purposes was created, and the script is parsed to find any 
occurrence of such terms. The words selected are the following: 

• 'window': used to see if a script interacts with the browser window in an attempt to 
modify its current state.

• 'iframe': to detect if a script either creates a new iframe or changes existing inline 
iframes.

• 'mouse' and 'click': most JavaScript functions that deal with user's mouse events contain
these words [27]. Tracking user movements could be not entirely malicious, but given 
the biased data sample (coming from random links posted as bait on Facebook pages) is
a good indicator or possible problems.

• 'track': if the script contains this word there are definitely user activity tracking 
components. 

• 'eval': function used to execute code. Literature review even suggested extracting the 
length of functions contained inside eval calls to be used as a feature for maliciousness 
detection [23], but it was thought to be overkill for this project.

A bag of words approach was preferred over creating one feature for each word, as it was felt 
that they carry an equal weight in determining whether a script is potentially malicious or not. 

2. Number of videos in the page. Videos and clips are excellent clickjacking baits, so it is useful 
to know how many are contained in the HTML, ready to be displayed to the user [22].
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3. Number of iframes in the page. Having only one iframe and triggering other features might 
indicate a very high chance of clickjacking. On the other hand, if too many iframes are present,
some features are not actually that representative of clickjacking attacks anymore, so it is 
important to know how many iframes are inserted in the page. 

4. Number of inline scripts in the page. Imported scripts are not considered for simplicity of 
retrieval and analysis.

5. Number of suspicious words in comment and URL. As the comment is the number one bait, 
most attackers include a number of catchy words that is appealing to certain users. These are 
most often correlated with sexual content, money, weight loss programs and celebrity news, 
and the URL might contain them too. The terms used are the following: kilos, kg, weight, porn, 
sex, hot, dirty, naked, naughty, money, click, video, movie, earn.

6. Length of comment text that accompanies the URL. As explained above, text might help 
convince the user to open the included link and land on a malicious page, and longer messages 
might indicate the need for an attacker to further convince the user to click and/or provide 
explanations for the user on how to interact with the linked page.

7. Number of iframes not visible to the user. The parameters used to determine if an iframe is 
hidden from the user are: visibility: hidden, z-index < 0 and opacity < 0.2. 

8. Number of times height and width are equal to 1 in an iframe. Observation suggests this is 
quite common for hidden iframes to have such setup, especially those that are made to move 
along with the user's cursor.

9. Number of times height and width are equal to 100% in an iframe. In a classic clickjacking 
attack the malicious page is not visible, as the attacker wants to fool the user into thinking the 
iframe content is the actual page. Therefore, an iframe that covers the entire page is 
suspicious, although this is commonly seen in popup-like windows.

10.  Number of times an iframe has area smaller than 200. The same explanation for point 8 
applies.

11. Number of iframes with an absolute position. This means they can be positioned anywhere 
in the page, rather than within other elements such as divs. This allows attackers to place an 
iframe more easily where the user will click it, and to place an iframe with 100% width and 
height in a way that completely overlaps with the malicious page.

12. Number of times an iframe contains a source that does not have the same domain as the 
page URL. An iframe is much more likely to be benign if its content is strictly correlated with 
the page itself. 
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13. Number of iframes that have Facebook-related content. Examples are the Facebook like 
and share plugins, which are commonly found in most pages. A page without a share plugin is 
unlikely to spread easily within social networks, though often social engineering is used to 
make users post malicious content manually in other pages or in their timeline in exchange for a
reward of some kind. 

14.  Page URL does not contain “www.”. Most well known and established benign pages have this
popular prefix.

15. Length of URL. Malicious pages often have either very long or very short URLs.

16. Length of URL subdomain. 

17.Whether the URL contains an IP address. If yes, it is likely temporarily hosted on a private 
machine and more likely to be malicious. 

18. Whether the URL is shortened with a known advertisement-based shortening company. 
These links first lead to the company's advertisement page, and after a certain amount of time 
(most often 10 seconds) the user is allowed to move on to the actual page. The page owner 
earns a small amount of money in the process, hence making it a very popular option among 
less benign pages. The most popular are adf.ly and sh.st, both of which are well known for 
displaying malicious content to the public [27, 28]. The paper from Nikiforakis et al. [29] 
discusses in details the security problems of ad-based URL shortening services. 

19. Whether the URL is shortened with a known non-ad-based shortening company. Many 
malicious pages opt for shortening the URL in order to mask the true nature of their page from 
the user.

20. Whether the subdomain contains numbers. Most benign well know pages do not, but it is 
popular among malicious pages.

21. Number of times the comment appears in the dataset. Successful scams (and clickjacking) 
tend to spread easily in social networks. Finding the same page and comment often could mean
more users have been tricked into posting it, or attackers are putting serious effort in 
advertising their page.

4.2.2 Implementation

As outlined before, the analysis part consisted of three different steps: 

1. Extraction of the features from the data to create a feature matrix.
2. Labeling part of the data to construct a training set. 
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3. Training a supervised learning classifier on the labeled data, so that it can be used to separate 
malicious pages from benign ones and predict instances of clickjacking. 

Step 1 was achieved using a Python script, which can be found in the Appendix under the name 
featuregen.py. The HTML page is retrieved along with its corresponding URL and the Facebook 
comment from which the crawler collected it. A counter keeps track of how many times each comment 
appears in the dataset. 
The HTML is then parsed using the Python library BeautifulSoup, which allows to easily extract all 
iframes, scripts and videos in the page. The comment is checked to determine if it contains suspicious 
words and if it has text along with a URL. 
The iframes are then analyzed separately in order to collect information about whether they might be
used for malicious purposes. Height, width, area, position, opacity, z-index, source and content are 
checked for suspicious setups corresponding to clickjacking instances, and the relative features 
triggered accordingly. 
Finally, the URL is analyzed to determine whether it has been shortened or not (and if the shortening 
was done in an ad-based fashion), its length and whether it contains an IP address or not. Its 
subdomain is extracted and searched for numbers and its length recorded.

After extracting the features from the data, a portion of it needed to be labeled in order to build a 
training set. Three labels were chosen: clickjacking (1), malicious (2) and benign (3). 

An attempt at automating the process was done by constructing a static filter, which tagged each page
as either 1, 2 or 3 depending on whether certain conditions were satisfied. Several versions have been 
written and considerable effort was spent in trying to make it more accurate, but being it somewhat 
naive its usage is limited to assisting a manual tagging process. The filter's conditions were the 
following:

• A page is benign if: it has no suspicious terms in the script, its URL is not shortened, despite 
having one Facebook plugin (used for liking or sharing) it only appears once in the dataset, has 
a subdomain length of more than 2 and the subdomain itself does not contain numbers (so that
“www.” can be included), has no suspicious words in the comment, the URL does not contain 
an IP address and has no invisible iframes (which is questionable, as even Amazon does).

• If the page does not satisfy the benign requirements, it is tagged as malicious.

• If the page is already tagged as malicious and: has at least one iframe with width = 100% and 
height = 100% and whose source domain is not the same domain as the URL (that is, external 
content), has at least one iframe with width = 1 and height = 1 and has at least one invisible 
iframe and a script contains suspicious terms, occurs more than 3 times in the dataset and 
contains some sort of Facebook plugin and contains at least one invisible iframe and there 
aren't too many iframes in the page (due to the fact that if there are, the probability that the 
iframe containing the Facebook plugin also is invisible is far lower), the URL is not shortened 
in an ad-based fashion (because these already known to be malicious). 
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With the help of the filter, 700 of the most fresh entries in the dataset were manually analyzed one by
one and labeled according to the following criteria:

• Clickjacking, if the user was clearly tempted to click on something that produced unwanted and
unexpected consequences.

• Malicious, if the page contained other types of scams, such as suspicious download links, 
request for acceptance of questionable Facebook applications, insertion and submission of 
private user details (for example in exchange for free phone recharges, money, hacking your 
friend's account etc...) or little to no content and many advertisements, often placed in 
positions that make them look like part of the page and are very easy to click on.

• Benign, if a page has absolutely no trace of any of the above and/or it belongs to well known, 
established companies such as Amazon, Google, Twitter etc...

For step 3, another Python script (learn.py)was used in order to take advantage of the excellent 
Python library scikit-learn. As will be explained in the following section, an Extra Random Trees 
classifier was chosen for the task and the corresponding sklearn implementation used [32]. The model 
was first trained on the entire labeled data and then applied to the remaining portion to obtain the 
results discussed in the following chapter.

4.2.3 Classifier selection

Before proceeding, a more in depth description of the data is needed. The full dataset contains 9060 
entries, each of which has 21 independent features, as described in the previous section. The newest 
700 entries were labeled to compose the training set, while the remaining 8360 were yet to be 
classified. Out of those 700 data points, 14 were clickjacking, 368 malicious and 318 benign. 

The table below shows the mean and standard deviation for each feature:

Labeled data (700) Remaining data (8360)

Mean Std Mean Std

1 0.18 0.3878 0.0967 0.3928

2 0.0114 0.1599 0.0188 0.1851

3 5.23 14.6829 5.0899 5.3184

4 0.22 0.4142 0.1071 0.3093

5 0.2057 0.4042 0.3052 0.4604

6 99.7857 179.5692 136.3754 1451.7964

7 0.7742 13.6455 0.2981 1.3247

8 0.0 0.0 0.0 0.0

9 0.2528 0.6635 0.0847 0.3933
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10 0.6328 1.3900 0.7869 1.6285

11 0.0 0.0 0.0 0.0

12 1.7842 2.8325 1.7129 2.1583

13 1.8471 13.8781 1.4028 2.1296

14 0.7057 0.4557 0.7332 0.4422

15 47.5771 41.6142 51.9122 58.1557

16 6.0928 4.9530 6.8428 5.1019

17 0.0 0.0 0.0001 0.0107

18 0.2271 0.4189 0.0842 0.2777

19 0.0428 0.2025 0.0522 0.2225

20 0.0671 0.2502 0.1144 0.3183

21 2.0542 2.9956 1.4772 3.4163

It can be seen how several features have a high standard deviation, which indicates a noisy dataset 
with a significant number of outliers. With this in mind, classifiers relying on support vectors were 
unlikely to perform well even after scaling and normalizing the data. Nonetheless, a Support Vector 
Machine (SVM) was trained on the scaled and normalized training set. The labeled data was split into a
single training and validation set in a random deterministic way (that is, using a seed value for the 
random number generator). Different split proportions were tested, and 0.25, 0.5 and 0.75 train-test 
split were used as indication of a classifier's performance. Although there are three labels to be chosen,
we are most interested in clickjacking. Therefore k-fold cross validation was not deemed useful, as 
dividing the already small dataset into even smaller folds would not give the classifier enough data to 
detect this particular attack. 

With this setup, the parameters for the SVM were tuned until the best overall accuracy was obtained. 
The best performing parameters were: radial basis function (RBF) or Gaussian kernel, gamma (RBF 
width) = 0.01, cost parameter C = 100 (which allows for more features to be selected), and class 
weight that reflects the distribution of the dataset (to balance the fact that clickjacking instances are 
very few). 

The results for both splits are as follows:

Train-test 0.25 Train-test 0.5 Train-test 0.75

Test entries 525 350 175

Validation entries 175 350 525

Total correctly classified 119 240 339

Total incorrectly classified 56 110 186

Overall accuracy 68.0 68.571 64.571
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Clickjacking false positive 3 6 6

Clickjacking false negative 2 4 7

Correctly classified clickjacking 0 0 0

Total number of clickjacking 2 4 7

Number of predicted clickjacking 3 6 6

As expected, the SVM performed poorly on this dataset, as it did not fit the data well enough to detect
the clickjacking instances in the validation set.

Ensemble methods such as Random Forest were therefore considered for their ability to easily absorb 
noisy data and their simplicity of use, as they do not require data preprocessing, perform an internal 
feature selection to maximize the outcome and are easy to tune. Ensemble methods combine a group 
of “weak learners” in order to form a “strong learner.”

From the sklearn website: “A random forest is a meta estimator that fits a number of decision tree 
classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy 
and control over-fitting.” [30]. The weak learners are the individual decision trees, each of which is 
trained with different parts of the data. Decision trees were thought to be particularly fitting to the 
clickjacking detection problem, as their structure resembles a “flowchart” in which the internal nodes 
represent a “test” on a particular attribute, the branches the outcome of the test and each leaf node is 
a class label, which is obtained after all attributes have been computed. The classification rules are 
then represented by the path from root to leaf [31]. For example, let's assume presence of a hidden 
iframe and a suspicious script are the only features, and if they are positive a page can be classified as
clickjacking. A decision tree would look as follows: 

Node 1: “Does this page contain hidden iframes?” ---- yes ----> Node 2: “Does this page have a 
suspicious script?” ---- yes ----> Leaf node: “Is this clickjacking?” If yes, set 1. 
When fed data that corresponds to these parameters, the decision tree will output 1. 

The strong learner is then formed by averaging the predictions of the individual trees. When tuning the
classifier with the setup described beforehand, the best results were obtained when the number of 
weak estimators corresponded to roughly double the feature size, each decision tree was not limited 
by a maximum depth and all features were used. In particular, using extremely randomized trees 
(ExtraTrees classifier) instead of the classic RandomForest approach helped reduce overfitting. The 
table below outlines the results for the ExtraTrees classifier in the same format used for the SVM 
results:

Train-test 0.25 Train-test 0.5 Train-test 0.75

Test entries 525 350 175

Validation entries 175 350 525
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Total correctly classified 167 326 453

Total incorrectly classified 8 24 72

Overall accuracy 95.428 93.143 86.285

Clickjacking false positive 0 3 16

Clickjacking false negative 1 2 4

Correctly classified clickjacking 1 2 3

Total number of clickjacking 2 4 7

Number of predicted clickjacking 1 5 19

As can be seen from the 0.75 split column, the classifier was starting to overfit the data and produce a 
higher number of false positives. However, across all splits the number of correctly classified 
clickjacking entries is far better than what obtained by using SVMs. False positives rate is also more 
promising, being it respectively 0, 0.00859 and 0.02996 for 0.25, 0.5 and 0.75 train-test splits 
against 0.01704 (same for all splits) for SVMs. Moreover, the overall accuracy is much higher, which 
means that more malicious and benign entries have also been classified correctly. Therefore, 
ExtraTrees were selected as the best classifier for this task. 

5. Results and evaluation

5.1 Crawler performance

The web crawler mostly performed as expected, gathering an average of 40 MB of HTML data every 
hour and using no more than 3 GB of RAM during execution. Its speed could not be increased any 
further in order not to be blocked by Google and Facebook. 

A total of 1.5 GB of HTML data was collected, along with all comments encountered. However, the 
high number of pages opened and closed triggered a known bug in PhantomJS [33] that caused it to 
crash in the middle of execution, making it unlikely that any given run of the program would collect 
more than 150 MB of data. The crawler had to be manually restarted with new seed pages after every
crash, which greatly slowed data collection and made it difficult to use on a Virtual Machine. The bug 
seems to have been resolved in the latest PhantomJS version, but due to dependency incompatibility in
the Linux OS used to gather the data this new version could not be used. 

5.2 Model results 

Results of the classifier on the unlabeled data points will be covered in this section. Out of 8360 
entries, 118 were labeled as clickjacking, 4465 as malicious and 4047 as benign. Recall that in the 
training data, out of 700 entries 14 were clickjacking, 368 malicious and 318 benign. As can be seen 
from the table below, the label distribution in the predictions reflects the one in the training set.
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Clickjacking Malicious Benign Total

Training set 14 = 2% 368 = 52.57% 318 = 45.42% 700 = 100%

Unlabeled set 118 = 1.4% 4465 = 53.4% 4047 = 48.4% 8360 = 100%

As the focus of this project is on clickjacking attacks, the evaluation of malicious and benign pages will 
not be covered for a variety of reasons: partly because it is a problem already addressed in the papers 
covered in the Context chapter, then because in the training set the accuracy levels were extremely 
high (> 85%) and finally checking manually 8360 entries is an extremely daunting task, surely not fit 
for a project of this nature. 

The 118 data points labeled as clickjacking were analyzed manually one by one to determine whether 
they were false positives and what kinds of clickjacking attacks were found. The false positives 
percentage was found to be 39.83%, while the remaining 60.16% was correctly classified. 
 In actual numbers, this mean that a total of 15 pages were found to be genuine, 32 malicious and 71 
clickjacking. Out of the latter:

• 13 required the user to share the page on Facebook before being able to see the promised 
content (most often what seems to be a video or a particularly scandalous image). After 
sharing, they would realize said content did not exist. 

• 2 attempted to make the user's browser open external software upon clicking on a benign 
looking page element.

• 16 used buttons usually meant for other purposed (such as the “play” or the “next” button) to
redirect the user to other malicious pages.

• 8 attempted likejacking by having an iframe follow the user's cursor anywhere on the page. 
They were triggered by double clicks.

• 32 were removed from the Internet for their malicious content.

The 32 malicious and 15 benign pages were mostly incorrectly classified because they made heavy use
of iframe for advertisements, embedding content and social media plugins. Out of the incorrectly 
classified malicious pages, 5 offer questionable downloads to the user, 7 are scams and the remaining 
ones are spam pages, that is they are mostly empty and full of advertisements.

Among the benign ones, the only major genuine page encountered is GoFundMe (6 out of 15), a 
website for do-it-yourself fundraising, which makes heavy use of Facebook and other social media 
plugins to allow its users to more easily advertise their cause to a large public. The remaining 9 pages 
were news websites or smaller retail services. 

While a detailed analysis of clickjacking false positives was possible due to the low amount of entries 
to be checked, false negatives could not be evaluated manually due to the far larger amounts of data.
False positives rate could not be calculated for the same reason. However, from the training set 
analysis, which had a 0 and 0.00859 rate respectively for 0.25 and 0.5 train-test split, it can be 
inferred that it would be an acceptable value. In fact, assuming all other entries have been classified 
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correctly as non-clickjacking, the model achieves a false positive rate of 0.0056, or 0.5%.

That said, feature analysis can be used to understand what the classifying algorithm learnt and how it 
relates to the results. The following is the feature ranking for the classifier trained on the full labeled 
data, given first in graphic format and then in a more detailed table:

Rank Feature Score Description

1 18 0.242857  URL with ad-based shortening

2 5 0.171599  Number of suspicious terms in comment

3 20 0.095486  Subdomain contains numbers

4 7 0.080404  Number of iframes hidden

5 19 0.054532  URL shortened (not ad-based)

6 21 0.048417  Number of occurrences of comment in dataset

7 3 0.045815  Number of  iframes

8 6 0.045181  Length of comment text (without URL) 

9 13 0.040777  Number of iframes containing a Facebook plugin

10 12 0.039143  Number of iframes with source (src) not corresponding to page domain

11 16 0.033313  Subdomain length

12 10 0.032886  Number of iframes with small area (< 200) 
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13 15 0.031783  Length of URL

14 14 0.019246  Whether or not URL contains “www.” prefix

15 9 0.008077  Number of times height and width are 100% in an  iframe

16 4 0.007402  Number of scripts in the page

17 1 0.003083  Number of suspicious words in scripts

18 8 0.000000  Number of times height and width are 1 in an iframe

19 17 0.000000  URL contains an IP address

20 2 0.000000  Number of videos

21 11 0.000000  Number of iframes with position absolute

The last four features in the ranking were not found in the training set, and the classifier could not 
assign them an importance score. The most discriminating feature was whether the URL had been 
shortened in an ad-based way or not. This is because all the entries containing such features were a 
significant portion of the training set (159 on 700) and were all manually classified as malicious. The 
second best in the ranking is the number of suspicious terms in comments, which confirms how social 
media data can greatly help in identifying malicious websites. All other features were considered far 
less relevant by the classifier, though the structure of the subdomain and number of hidden iframes 
are still of significant importance. 

It can therefore be safely assumed that the classifier missed several clickjacking instances, perhaps in a 
proportion similar to the results obtained in the validation set, if anything because the labeled data 
was not even enough to be representative of all the features selected. Increasing the amount of 
correctly classified data to be used as training set would surely be of great help in obtaining better 
results.

5.3 Case studies

This section will provide examples for the most common types of clickjacking detected in the dataset, 
ordered from the least to the most dangerous.
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Likejacking

The image above shows one of the likejacking attempts. The Facebook like plugin follows the user's 
mouse (which turns into a hand whenever the cursor stops) and gets activated whenever a double click
is performed. However, Facebook recently solved this problem by forcing the plugin to generate a 
popup window asking the user to confirm the like, as in the image below.
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However, as they specify in the plugin's documentation [35] once the page reaches a certain level of 
trust the confirm window will not be displayed anymore. The data for the page displayed in Image 4 
can be found below:

URL: http://tinyurl.com/15z1z5z15z1 
Full comment: Pitbum Cristiano Ronaldo Kissing a Fan In Public http://tinyurl.com/15z1z5z15z1♥
Prediction: 1 (clickjacking) with probability 0.68
Feature vector: [0, 0, 13, 0, 0, 50, 0, 0, 0, 1, 0, 6, 6, 1, 30, 7, 0, 0, 1, 0, 1]

Feature vector in Python dictionary form:
[('nsuspscript', 0), ('nvideos', 0), ('niframes', 13), ('nscripts', 0), ('ncommsuspterm', 0), ('commthastxt', 
50), ('ninvisible', 0), ('nhw1', 0), ('nhw100', 0), ('nsmallarea', 1), ('nposabs', 0), ('nsrcnotdom', 6), 
('nhas_fb', 6), ('nowww', 1), ('lengthurl', 30), ('subdomlen', 7), ('urlhasip', 0), ('url_adv_short', 0), 
('url_short', 1), ('subdomhasnum', 0), ('noccurr', 1)]

The page contained 13 iframes, of which one had a very small area and 6 contained Facebook plugins
of some kind. All other iframes had content from the same page domain. The URL is shortened in a 
non ad-based way and therefore contains no www. prefix.  

Share to unlock content

Image 7 shows an example of tricking a user into sharing malicious pages on Facebook in order to 
unlock some kind of content. In this case, the user is presented with this scenario once she clicks on 
the play button. If she decides to actually share the content, she will discover that the “video” was just
a bait image: the real thing does not exist. As for the other example, the data is given below:
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URL: http://goo.gl/J0svAo 
Comment: http://goo.gl/J0svAo
Prediction: 1 (clickjacking) with probability 0.44
Feature vector: [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 20, 3, 0, 0, 1, 0, 2]

Feature vector in Python dictionary form:
[('nsuspscript', 0), ('nvideos', 0), ('niframes', 3), ('nscripts', 0), ('ncommsuspterm', 0), ('commthastxt', 
0), ('ninvisible', 0), ('nhw1', 0), ('nhw100', 0), ('nsmallarea', 0), ('nposabs', 0), ('nsrcnotdom', 2), 
('nhas_fb', 2), ('nowww', 1), ('lengthurl', 20), ('subdomlen', 3), ('urlhasip', 0), ('url_adv_short', 0), 
('url_short', 1), ('subdomhasnum', 0), ('noccurr', 2)]

The page contained 3 iframes, of which 2 had Facebook content and one was native to the page. The 
URL was shortened in a non ad-based way, so it does not have the www. prefix. The comment is 
simply the URL and it was actually found twice in the dataset. 

Redirect

The user is instructed to click on certain images to “verify she is human”, but every click on an image 
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silently opens another browser window in the background containing another malicious page. 

An even more common way to perform this kind of redirects is to place the links over buttons that the 
user will click for other reasons. An example is the page below.

The page contains several image slides with various content. As soon as certain (not all) slides sets are
over, this kind of page is displayed. The advertisement has been carefully placed so to look like a 
continuation of the current page. The user is first distracted with a “like” and “share” this page popup, 
then naturally tempted to click on the green arrow to proceed with the next set of slides. Doing so, 
however, leads to click right on the advertisement and to another malicious page. This is an extremely 
common setup found in many different pages. They all look the same and have mostly the same 
content, but different names and URLs. The data for the page in Image 6 can be found below:

URL: http://goo.gl/Pv4Fik 
Comment: Shocking Celebs Then Vs. Nowhttp://goo.gl/Pv4Fik
Prediction: 1 (clickjacking) with probability 0.46
Feature vector: [0, 0, 13, 0, 0, 28, 0, 0, 0, 1, 0, 2, 2, 1, 20, 3, 0, 0, 1, 0, 1]

Feature vector in Python dictionary form:
[('nsuspscript', 0), ('nvideos', 0), ('niframes', 13), ('nscripts', 0), ('ncommsuspterm', 0), ('commthastxt', 
28), ('ninvisible', 0), ('nhw1', 0), ('nhw100', 0), ('nsmallarea', 1), ('nposabs', 0), ('nsrcnotdom', 2), 
('nhas_fb', 2), ('nowww', 1), ('lengthurl', 20), ('subdomlen', 3), ('urlhasip', 0), ('url_adv_short', 0), 
('url_short', 1), ('subdomhasnum', 0), ('noccurr', 1)]
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The container for the advertisement is a <div>, so the iframes information does not apply here. This 
is an excellent example, however, to show how adding a similar type of analysis for divs and other 
types of elements would be beneficial in malicious pages detection. The model classified this entry 
correctly because several of these examples were manually tagged as clickjacking in the training set.

6. Conclusion

This project aimed to analyze the threat of clickjacking on the Facebook social media, to understand 
how widespread it is and what dangers it poses to users. In order to do so, a web crawler capable of 
collecting data from Facebook public pages was developed, along with a method of analysis of such 
data in order to find clickjacking instances. 

A significant amount of HTML was gathered from suspicious websites for which a link was found in the
comments of the Facebook pages analyzed. Features capable of allowing a machine learning classifier 
to correctly identify clickjacking instances and separate malicious pages from benign ones were found 
and extracted from the data. A portion of the resulting feature matrix was manually analyzed and 
labeled to construct a training set, and an Extra Random Trees ensemble classifier trained on it. The 
model was then used on the unlabeled data (8360 entries), from which it predicted 118 clickjacking 
instances, 71 (60.16%) of which correct, 4465 malicious and 4047 benign pages.

The project's goals, namely the development of a functioning crawler and a valid data analysis method,
have therefore been met. Clickjacking was found to be still an actively used attacks, and its percentage
among pages shared in the Facebook social media higher to what previously found by other studies on 
general web pages [23], confirming the need for the development of an automated tool that would 
protect users from this attack.

6.1 Critics

As explained in the “Results and evaluation” chapter, both the crawler implementation and the analysis
done on the data are not flawless. 

The crawler is subject to a rather bad PhantomJS bug that causes it to crash too soon in the collection 
process, forcing the user to restart it manually every time with new seed pages. Moreover, some URLs 
have been found to be correlated to the wrong comments in the crawler's output, indicating the 
presence of another bug. Even after a thorough search, the cause of the problem could not be found 
and therefore could not be solved. Fortunately, however, this wrongly assigned comments are few and
the problem can be fixed manually by searching for the correct comment for the link in the outputs. 
The crawling algorithm is good and performs well, but using Python and its excellent libraries would 
have surely made things far more simple and efficient, solving the need for intricate solutions in the 
PhantomJS code to achieve a synchronous execution. Overall, the crawler achieved what it needed to: 
it provided 1.7 GB of relevant HTML data to be analyzed, but there is sure room for improvement.
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The analysis part had several problems. The features identified were not enough, and more are needed 
to identify clickjacking better. All the page elements should be checked, and a far more detailed 
analysis should be done on the JavaScript and the URL. For example, it is useful to determine each 
script's entropy to see if it has been obfuscated or not, inspect the use of JavaScript native functions, 
check what is being executed inside the eval() occurrences. For the URL, knowing the registration date 
of the page, country code, obtaining verification details for the owner and checking DNS details would 
be of incredibly help in detecting malicious pages. 

Secondly, the training set was not big nor varied enough to allow all the features to be learned by the 
classifier. Manual labeling is an incredibly time-consuming process and should absolutely be avoided 
whenever possible. This is why writing and plugging a tool in the crawler to do an initial analysis is an 
absolute requirement. A large dataset of labeled clickjacking entries is needed to make this type of 
machine analysis effective. The Random Forest classifier chosen tends to overfit when not enough data 
is provided in the training process, even in its more randomized version Extra Random Trees. That, and 
having some comments connected to the wrong URL in the input was the main cause of the 
misclassifications, given that the second most important feature selected by the classifier was the 
number of suspicious words found in the comment. 

That said, the model was still good enough to detect many clickjacking instances and correctly identify 
60% of the total clickjacking predictions, which is a very promising number considering the difficulty of 
detection and dynamic nature of such attacks. 

6.2 Future work

This project confirmed how clickjacking is still a relatively widespread problem, especially in social 
medias such as Facebook. It would be useful, therefore, to develop a tool capable of protecting users 
from such attacks. In order to do so, after solving the problems outlined in the previous section, 
considerable effort would need to be spent on developing an automated way to detect clickjacking 
during the crawling process, so to build a larger training set. With the addition of new features, the 
model trained in a wider and more varied dataset should be able to perform well enough to see its 
results integrated in a browser plugin or similar protection tool, which would then be freely distributed
to the larger public.

Such a tool could be built using a combination of the detection tool plugged in the crawler, which 
would scan each loaded page to identify suspicious behaviors, and a database of clickjacking pages 
obtained from the model.

6.3 Final thoughts

This project taught how to write a web crawler to collect data and how to apply machine learning 
principles to analyze it, which is something of incredible value nowadays, where so many relevant 
things to investigate can be found on the Internet. The focus on clickjacking allowed learning more 
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about this relatively unfamiliar attack, and analyzing malicious links in Facebook pages led to a 
thorough understanding of how attackers operate in social media environments and what can be done 
to stop them. Therefore, it can be said that the project was indeed not only interesting, but also very 
useful, as many valuable skills were developed and an approach highly reusable in the real world was 
learned.
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Appendix

The full code, along with a detailed description of how to run it and sample inputs and outputs can be 
found in the following github repository: https://github.com/sjowastaken/Final-Year-Project

 

Project plan

Name: Giulia Deiana
Supervisor's name: Gianluca Stringhini
Project title: “Analysis and detection of clickjacking on Facebook”

Aim

This project aims to collect public data from the Facebook social network and use it to train a machine 
learning model with the aim of detecting instances of clickjacking. 

Objectives

1. Learn how to collect raw real world data by writing a successful web crawler that will comply with 
Facebook's rules and thus won't be detected and/or banned.

2. Analyze the problem of clickjacking and find ways to automatically detect it.

3. Create a training set and a data set from the raw data to use for a supervised learning algorithm. 

4. Develop a machine learning algorithm that after being trained on the training data will be able to 
successfully detect clickjacking given the raw data.

Deliverables

1. A web crawler written in Phantom JS and Selenium that is able to stealthily crawl Facebook to 
collect public user data, saving it in text files.

2. A machine learning algorithm capable of identifiying clickjacking instances by parsing text files 
(dumps of web pages).

Schedule

October (4 weeks): literature review.
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Novemeber – December (8 weeks) : study clickjacking, develop webcrawler and collect data.
January – March (12 weeks): develop and implement algorithm.
April – May (8 weeks): write project paper.

Project interim report 

Name: Giulia Deiana
Supervisor's name: Gianluca Stringhini
Project title: “Analysis and detection of clickjacking on Facebook”

1. Progress made to date

The goal of the project is to retrieve user data from public Facebook pages in order to analyze the 
common problem of UI – redressing, of which a popular subset is better known as clickjacking. This 
project aims to understand how widespread this problem is on Facebook and how a person's profile 
predicts the likelihood of him/her falling for such scams.

1.1 - Obtaining permissions

Facebook does not allow crawlers and its structure and code are created in such a way that it is hard 
to collect data from it without being strictly monitored, even if all the data collected is strictly public. 
Therefore we registered the project with Facebook itself and with the UCL Data Protection Office, 
while also asking UCL for ethical approval. The code runs on a UCL VM that Facebook knows to be 
associated with this project, therefore making the collection of data absolutely legal.

1.2 – Understanding the UI – Redressing problem (clickjacking included)

The first step that needed to be done was to analyze the problem of clickjacking. This, in turn,  led to 
its parent problem of general UI-Redressing. As the name itself suggests, the attack consists in 
“redressing” the UI so that the user is deceived into thinking he/she is interacting with a certain 
webpage when in reality there's a hidden layer underneath that reacts to user inputs to carry on 
malicious activities. Examples of these are posting automatically on the user's Facebook timeline 
(and/or spamming their friend's timelines as well or sending them spam private messages), put a “like” 
in certain pages on their behalf, steal their cookies, send automated emails, download viruses and 
infect their computers etc...

In its most common format, an attacker sets up a web page A with a hidden iframe in which a 
malicious page B is loaded. When the user clicks on some button seemingly in A (for example, the 
“start video” button if the bait is a video), it is page B who executes its own code without the user 
noticing. Sometimes the cursor of the user is followed everywhere in the page, so that whenever the 
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user clicks the malicious code is executed.

Common example in nowadays Facebook include scams about celebrity pictures, lies about sudden 
deaths or mishappenings of famous people or (mostly false) catastrophic news pictures and videos. 
Iframe busters are the most common solution (adding code in web pages that does not allow them to 
be embedded in iframes or that warns the user when an iframe is overlaid on them). It is, however, 
hard to detect when iframes are used legitimately and when they're being abused for malicious 
activities, so banning them entirely is not a solution.

1.3 – Selecting the right tools

In order to collect the data from Facebook, a web crawler needed to be implemented. Several tools 
were considered for this purpose, among which python, Selenium + PhantomJS and Google chrome. 
After trying out selenium (a tool that allows to automate browser activities) along with PhantomJS (a 
fast headless browser), selenium was dropped in favor of a browser only solution. The code for the 
crawler is written entirely in JavaScript and so far no extensions have been used.

1.4 - Gathering data from Facebook

Understanding Facebook structure was a crucial step in extracting data from it. After raw HTML 
observation and Facebook graph documentation, it was understood that in order to get user 
comments, the respective post's ID and the corresponding page ID had to be retrieved first.
The first attempt at extracting post IDs from Facebook was done by loading the website's JavaScript 
and reading raw HTML data from the downloaded content. The main difficulties with this approach 
turned out to be the following:

• Not all Facebook pages present the same layout, which made it very difficult to decide which 
DOM structure to extract the data from. Some pages contained the post IDs in the 
“mainContainer” div, others in the “contentArea”, others still in the “timelineUnitContainer”. 

• The post IDs are scattered around and appear multiple times (for example comments do contain
the post ID of the parent post), but it seemed that they all appeared under the “fbid=”...” 
format, so the following regex was indeed successful in retrieving all of them from a given 
output: match("fbid=(.*)&amp").

• Comments are very hard to fetch with this method and no solution was found on how to access
them using PhantomJS alone.

• Slow. Every page needs to be loaded, queried and the output scanned with a regex.

After more research, it turned out that the preferred method to analyze Facebook data is to use the ' 

44/60



Facebook graph', which allows developers to easily access any kind of data in the social network. The 
only downside is that an application ID and a token are necessary to access such service, and 
admittedly creating a “stealthy” crawler that leaves obvious footprints did not sound like the best idea.
Public data can be viewed with any kind of app ID and token, whether privileged or not. After creating 
a dummy application and the correspondent identification details it was possible to note that data 
retrieval is much faster and cleaner with this method. The Facebook graph returns the content of the 
page in JSON format, which makes it easy to read and handle. The post IDs along with the 
corresponding post's comments are easy to collect, along with the information of the user who posted 
each comment and “liked” the post.

1.5 – The crawling algorithm

The crawler is first given a list of popular web pages that have a high probability of containing posts 
with spam comments. Then the pages are analyzed one by one, and if spam comments with a link are 
found, the comment is collected along with the profile information of the user who posted it. The 
crawler then saves the page and once all of the starting pages have been analyzed, it performs a 
Google search with the spam comment to see if other Facebook pages also have posts containing that 
comment and then starts crawling those pages, repeating the process.

2. Remaining work to be done

In the project plan, the following objectives were identified:

1. Learn how to collect raw real world data by writing a successful web crawler that will comply with 
Facebook's rules and thus won't be detected and/or banned.

2. Analyze the problem of clickjacking and find ways to automatically detect it.

3. Create a training set and a data set from the raw data to use for a supervised learning algorithm.

4. Develop a machine learning algorithm that after being trained on the training data will be able to 
successfully detect clickjacking given the raw data.

So far, point 1 and 2 have been addressed. Points 3 and 4 will be completed in the upcoming months.

Code listing

crawler.js

/* PhantomJS Facebook crawler */
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var fbgraph = 'https://graph.facebook.com/';
var access_token = '1391011097865724|9yZSQMjmMpFa22BlY1JIndukLaA';

/* Customizable variables */
var posts_limit = '10';
var comments_limit = '5000';
var loops = 100000000;
/* Set to 0 to deactivate logs */
var verbose = 1

/* Initialize filesystem for comment and HTML writing. */
var fs = require('fs');
var commentsPath = ."./data/all_comments.txt";
if(fs.exists(commentsPath)){
    fs.remove(commentsPath);
}

var htmlPath = ."./data/all_html.txt";
if(fs.exists(htmlPath)){
    fs.remove(htmlPath);
}

var i = 0;
var j = 0;
var n = -1;
var urlRegex = /(https?:\/\/[^\s]+)/g;

/* Contains name of pages to be searched next_page. */
var next_page = [];
var post_ids = [];
var comments_to_search = [];
var comments_to_check = [];
var links = [];

var nextindex = 0;
var postsindex = 0;
var page_id_index = 0;

/* All seed pages used, taken from: http://fanpagelist.com/category/top_users/

 f4ep, facebook, shakira, Cristiano, eminem, VinDiesel, cocacola, michaeljackson,
 TheSimpsons, rihanna, JustinBieber, LeoMessi, BobMarley, harrypottermovie,    
 WillSmith, TaylorSwift, beyonce, TexasHoldEm, linkinPark, jackie, 
 manchesterunited, ladygaga, MrBean, adele, pitbull, brunomars, Selena,
 McDonaldsUS, TitanicMovie, DavidGuetta, spongebob, avrillavigne, AKON, neymarjr,
 FamilyGuy, LilWayne, MeganFox, AvatarMovie.UK, Beckham, JasonStatham, Enrique,
 usher.
*/

/* Initialize seed pages */
next_page[0] = 'f4ep';
next_page[1] = 'facebook';
next_page[2] = 'shakira';

crawl();

function crawl() {
    n++;
    if(verbose == 1) console.log('n = ' + n);
    if(n <= loops & n < next_page.length){
        getPosts(function(){
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            if(verbose == 1) console.log('posts ids found: ' + post_ids);
            commentsHandler() 
            if(verbose == 1) console.log('comments to check: '+comments_to_check);
        });
    }
    else {
        if(verbose == 1) console.log('THE END.');
        phantom.exit(0);
    }
}

/* Gets post IDs from a Facebook page */
function getPosts(callback) {
    var page = require('webpage').create();
    if(verbose == 1) console.log('enter crawl');
    var url = fbgraph + next_page[n].toString() + '/posts?access_token=' + access_token 
+ '&limit=' + posts_limit;

    /* Wait 30 seconds before deciding that the page is unreachable and move on */
    page.settings.resourceTimeout = 30000;

    page.onResourceTimeout = function(e) {
        if(verbose == 1) console.log('\n\nPAGE DIDN\'T OPEN\n\n');
        if(verbose == 1) console.log(e.errorCode);
        if(verbose == 1) console.log(e.errorString);
        if(verbose == 1) console.log(e.url);
        page.release();
        htmlHandler();
    }

    if(verbose == 1) console.log('opening url: ' + url);
    
    page.open(url);
    page.onLoadFinished = function(status) {
        if (status === 'success') {
            var data = JSON.parse(page.plainText);               

            if(data.error) {
                if(verbose == 1) console.log('----- page had error, skipping it 

-----');
                if(verbose == 1) console.log(page.plainText);
                if(verbose == 1) console.log('---------------------------------------');

                crawl();
                return;
            }
            if(!data.data) {
                if(verbose == 1) console.log('no posts found in page');
                if(verbose == 1) console.log(page.plainText);
                page.close();
                crawl();
                return;
            }
            if(verbose == 1) console.log('data length = ' + data.data.length);
            for(i = 0; i < data.data.length; i++){
                if(verbose == 1) console.log('pushing data: ' + data.data[i].id);
                post_ids.push(data.data[i].id);
                postsindex++;
            }
        }   
        else {
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            if(verbose == 1) console.log('error crawling page ' );
            if(verbose == 1) console.log(
                "Error opening url \"" + page.reason_url
                + "\": " + page.reason
                );
        } 
        page.release();

        if(verbose == 1) console.log('closing crawl page');
        page.close();

        callback();
    };

    page.onResourceError = function(resourceError) {
        page.reason = resourceError.errorString;
        page.reason_url = resourceError.url;
    };

}

function commentsHandler(){
    if(verbose == 1) console.log("STARTING COMMENTS HANDLER");
    if(post_ids.length > 0) {
        getComments(commentsHandler);
    }
    else{
        if(post_ids.length == 0){
            if(verbose == 1) console.log('number of comments to check: ' + 

 comments_to_check.length);
            if(verbose == 1) console.log('READY FOR HTML SEARCH');
            htmlHandler();
        }
    }
}

/* Get comments from Facebook posts using post ID and save them to file. If a
   comment contains a URL, save it in a queue for it to be searched on Google
   later */

function getComments(callback) {
    if(verbose == 1) console.log('entering getComments');

    var page = require('webpage').create();
    comment_url = fbgraph + post_ids.shift() + '/comments?limit='+comments_limit;
    jsonComments = '';
    if(verbose == 1) console.log('opening comments url: ' + comment_url);

    page.settings.userAgent = 'Mozilla/5.0 (X11; Linux x86_64; rv:35.0) 
  Gecko/20100101 Firefox/35.0';

    page.open(comment_url);
    page.onLoadFinished = function(status) {
        if (status === 'success') {
            if(verbose == 1) console.log('saving comments...');
            text = page.plainText;
            fs.write(commentsPath, text, 'a');
            jsonComments = JSON.parse(text);
            if(verbose == 1) console.log('length = ' + jsonComments.data.length);

            if(jsonComments.data.length == 0) {
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                if(verbose == 1) console.log('no comments found in post');
                page.close();
                commentsHandler();
                return;
            }
            for(k = 0; k < jsonComments.data.length; k++) {
                /* If message contains a url, search the whole message on google 

 to see if it's been posted in other pages */
                message = jsonComments.data[k].message;
                if(message.indexOf("http") > -1){ 
                    comments_to_check.push(message);
                }
            }
        }
        else {
            if(verbose == 1) console.log('error in getComments page ' );
            if(verbose == 1) console.log(
                "Error opening url \"" + page.reason_url
                + "\": " + page.reason
                );
        } 
        page.release();
        if(verbose == 1) console.log('closing getComments page');
        page.close();
        callback.apply();
        
    }; 
}

function htmlHandler() {
    if(verbose == 1) console.log('STARTING HTML HANDLER'); 
    if(verbose == 1) console.log('comments_to_check length is ' + 

comments_to_check.length);
    if(comments_to_check.length > 0) {
        iframeCheck();
    }
    else {
        if(comments_to_check.length == 0){
            searchHandler();
        }
    }
}

/* Check if a given webpage contains inline iframes */
function iframeCheck() {
    if(verbose == 1) console.log('STARTING IFRAMECHECK');
    comment = comments_to_check.shift();
    if(verbose == 1) console.log('\nchecking comment: ' + comment);

    var page = require('webpage').create();
    page.settings.resourceTimeout = 30000;

    page.onResourceTimeout = function(e) {
        if(verbose == 1) console.log('\n\nPAGE DIDN\'T OPEN\n\n');
        if(verbose == 1) console.log(e.errorCode);
        if(verbose == 1) console.log(e.errorString);
        if(verbose == 1) console.log(e.url);
        page.release();
        htmlHandler();
    }
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    page.onResourceError = function(resourceError) {
        page.reason = resourceError.errorString;
        page.reason_url = resourceError.url;
    };

    var url = comment.match(urlRegex);
    if(url != null) {
        url = url.toString();

        if(url.match(/www\.facebook/) === null & url.match(/www\.youtube/) === 
null & url.match(/m\.facebook/) === null & url.match(/m\.youtube/) === null &

url.match(/play\.google/) === null & url.match(/youtu\.be/) === null) { 
            if(verbose == 1) console.log('this link passed the test: ' + url);
            if(verbose == 1) console.log('opening url: ' + url);

            page.settings.userAgent = 'Mozilla/5.0 (X11; Linux x86_64; rv:35.0) 
Gecko/20100101 Firefox/35.0';

            
            page.open(url, function(status) {
                if(verbose == 1) console.log('iframecheck page loaded');
                if (status === 'success') {
                    var html = page.content;
                    if(html != null){
                        if(html.indexOf("<iframe") > -1) {
                            if(verbose == 1) console.log('writing html for page ' 

+ url + '...');
                            fs.write(htmlPath, '\n\n\n-------- HTML from page: ' + 

url + '.\n\ncomment is: ' + comment + '\n\n' + html, 'a');
                            if(verbose == 1) console.log('done writing html');
                            comments_to_search.push(comment);
                            if(verbose == 1) console.log('pushed comment: ' + 

comment);
                        }
                    }
                }   
                else {
                    if(verbose == 1) console.log('error in iframecheck page ' );
                    if(verbose == 1) console.log(
                        "Error opening url \"" + page.reason_url
                        + "\": " + page.reason
                        );
                } 
                page.release();
                if(verbose == 1) console.log('closing iframecheck page');
                page.close();
                htmlHandler();
            });
        }
        else {
            if(verbose == 1) console.log('url didn\'t pass the test');
            page.release();
            htmlHandler();
        }
    }
    else {
        if(verbose == 1) console.log('url null');
        page.release();
        htmlHandler();
    }
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}

function searchHandler() {
    if(verbose == 1) console.log('STARTING SEARCH HANDLER');
    if(verbose == 1) console.log('comments to search length: ' + 

     comments_to_search.length);
    if(comments_to_search.length > 0) {
        googleSearch();
    }
    else {
        if(comments_to_search.length == 0){
            if(verbose == 1) console.log('next page: ' + next_page);
            if(verbose == 1) console.log('CRAWL AGAIN');
            crawl();
        }
    }
}

/* Search suspicious comments on Google and save other Facebook pages that contain it */
function googleSearch() {
    if(verbose == 1) console.log('entering googleSearch');
    comment = comments_to_search.shift();

    var url = 'http://www.google.com/search?q=' + comment + '+facebook';

    if(verbose == 1) console.log('google search for comment: ' + comment);

    var temp = '';
    var page = require('webpage').create();

    page.settings.userAgent = 'Mozilla/5.0 (X11; Linux x86_64; rv:35.0) 
  Gecko/20100101 Firefox/35.0';

    page.open(url, function(status) {
        if (status === 'success') {
            var links = page.plainText.match(/https:\/\/www.facebook.com\/

(.*?)\n/g);
            if(links != null){
                for(i = 0; i < links.length; i++) {
                    temp = links[i].split("/")[3];

                    /* Remove duplicates and any entry that contains a dot.*/
                    if(temp.indexOf("pages") == -1 && temp.indexOf(."") == -1 && 

next_page.indexOf(temp) == -1) {
                        next_page.push(temp.replace(/(\r\n|\n|\r)/gm,''));
                        nextindex++;

                    }        
                }
            }
        }   
        else {
            if(verbose == 1) console.log('error in googleSearch page ' );
            if(verbose == 1) console.log(
                "Error opening url \"" + page.reason_url
                + "\": " + page.reason
                );
        } 
        page.release();
        if(verbose == 1) console.log('closing googleSearch page');
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        page.close();
        searchHandler();

    });
}

featurelearn.py

import re
import os
import sys
from bs4 import BeautifulSoup
import urllib.request 
from urllib.parse import urlsplit
import time
import numpy as np
import cssutils
import collections

start = time.time()

#Set to 0 to deactivate logs 
verbose = 1

# Saved file name
outn = 'example_output'

# Data file name
dn = 'example_all_html'

def init_fv():

fv = collections.OrderedDict()

fv['nsuspscript'] = 0
fv['nvideos'] = 0
fv['niframes'] = 0
fv['nscripts'] = 0

fv['ncommsuspterm'] = 0
fv['commthastxt'] = 0

fv['ninvisible'] = 0
fv['nhw1'] = 0
fv['nhw100'] = 0
fv['nsmallarea'] = 0
fv['nposabs'] = 0
fv['nsrcnotdom'] = 0
fv['nhas_fb'] = 0

fv['nowww'] = 0
fv['lengthurl'] = 0
fv['subdomlen'] = 0
fv['urlhasip'] = 0
fv['url_adv_short'] = 0
fv['url_short'] = 0
fv['subdomhasnum'] = 0

fv['noccurr'] = 0
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fv['filterpred'] = 0

return fv

def is_url_shortened(url):
# Check if url was shortened
shorteners = ['goo.gl', 'tinyurl.com', 'tiny.cc']
if any(x in url for x in shorteners):

return 1 
else: return 0

def is_url_adv_shortened(url):
# Check if url was shortened in ad-based way
shorteners = ['bit.ly', 'ow.ly', 'adf.ly', 'sh.st', 'fur.ly', 'cutt.us', 

  'cur.lv', 'past.is', 'po.st', 'adyou.me', 'jota.pm', 'j.gs', 
  'q.gs']
if any(x in url for x in shorteners):

return 1 
else: return 0

def has_keywords(comment):
# Find terms that more often correlate with malicious intentions
keywords = ['kilos', 'kg', 'weight', 'porn', 'sex', 'sexo', 'hot', 'dirty', 

'naked', 'naughty', 'money', 'click', 'video', 'movie', '$ex', 'earn']
if any(x in comment.lower() for x in keywords):

return 1 
else: return 0

def has_susp_script(scripts):
# Find terms that more often correlate with malicious activity
count = 0
for s in scripts:

suspterms = ['window', 'iframe', 'mouse', 'click', 'track', 'eval']
for susp in suspterms:

if susp in s.lower():
count += 1

return count

def has_text(comment, comment_url):
# Determine whether comment contains text along with url
comment_text = comment.replace(comment_url, "").strip()
return len(comment_text)

def inline_transp_check(ifr):
# Check for transparency
is_invisible = 0
if 'visibility' in ifr.attrs:

if ifr['visibility'] != 'visible':
is_invisible = 1

if 'opacity' in ifr.attrs:
if ifr['opacity'] == '0':

is_invisible = 1
if 'z-index' in ifr.attrs:

if int(ifr['z-index']) < 0:
is_invisible = 1

return is_invisible

def analyze_iframes(iframes, page_url, fv):
for ifr in iframes:
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w = ''
h = ''
is_invisible = inline_transp_check(ifr)

if 'style' in ifr.attrs:
css = ifr['style']
s = cssutils.parseStyle(css)
w = s.width
h = s.height
if 'absolute' in s.position:

cssposabs = 1
if s.visibility == 'hidden': 

is_invisible = 1
if s.opacity == '0':

is_invisible = 1

fv['ninvisible'] += is_invisible

if 'width' in ifr.attrs:
w = ifr['width'].strip(' ')

if 'height' in ifr.attrs:
h = ifr['height'].strip(' ')

w = re.findall(r'\d+', w)
h = re.findall(r'\d+', h)

if len(w) > 0 and len(h) > 0:
w = int(w[0])
h = int(h[0])
area = -1
if(w == 0 and h == 0) or (w != 0 and h != 0):

area = w * h
if area < 250:

fv['nsmallarea'] += 1 
elif area == 1:

fv['nhw1'] += 1
elif area == 10000:

fv['nhw100'] += 1

if 'src' in ifr.attrs:
src = ifr['src']
if "facebook" in src:

fv['nhas_fb'] += 1 

# Benign domains
benigndom = ['accounts.google.com', 'youtube.com', 'ulogin', 

'blogger.com', 'wix', 'addtoany.com']
if not any(x in src for x in benigndom):

# Same domain check
base_src = urlsplit(src).netloc
base_url = urlsplit(page_url).netloc
if base_src != base_url:

if 'id' in ifr.attrs:
# Don't pick up google iframes, developers try 
  to hide them
if 'google' not in ifr.attrs['id']:

fv['nsrcnotdom'] += 1 
if 'position' in ifr.attrs:

if ('absolute' in ifr['position']) or cssposabs == 1:
fv['nposabs'] += 1 
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return fv

def analyze_url(url, fv):
# See if subdomain is www
spl = (url.split('://')[1]).split('.')
subdom = spl[0]
fv['lengthurl'] = len(url)
# Whitelisting twitter
fv['subdomlen'] = len(subdom)
if subdom != 'www' and subdom != 'twitter' and spl[1] != 'tumblr' and subdom != 

'youtu':
fv['nowww'] = 1 

# Find if it contains ip address
ip = re.findall( r'[0-9]+(?:\.[0-9]+){3}', url)
if len(ip) > 0:

fv['urlhasip'] = 1 
fv['url_adv_short'] = is_url_adv_shortened(url)
fv['url_short'] = is_url_shortened(url)
if any(char.isdigit() for char in subdom):

fv['subdomhasnum'] = 1
return fv

def labelgen(fv):

'''
1: Clickjacking: is malicious AND:
- one iframe only and w == 100 and h == 100 and srcnotdom
- w == 1 and h == 1 and is_invisible and script suspicious
- noccurr > 3 and is_fb true and is_invisible true and there aren't too many 
iframes to skew up the result
- urladshort is not true

3: Benign pages 
- no bad terms in script
- url not shortened in any way (urladshort and urlshort == 0)
- (is_fb == 1 and appears only once in dataset (noccur == 1)) 
- subdomain present (subdomainlen > 2) and subdomain has no numbers
- no bad terms in comment (nocommsuspterm == 0)
- no ip address in URL (hasipaddr == 0)
- is_invisible never triggered

Else: 2, malicious

'''

label = 0

if fv['nsuspscript'] <= 1 and (not (fv['noccurr'] > 2 and fv['nhas_fb'] > 
0)) and fv['url_adv_short'] == 0 and fv['url_short'] == 0 and 

       fv['ncommsuspterm'] == 0 and fv['urlhasip'] == 0 and (fv['subdomlen'] >  
            2 and fv['subdomhasnum'] == 0) and fv['ninvisible'] == 0:

label = 3
else:

label = 2
if fv['url_adv_short'] == 0 and ((fv['nhw1'] > 0 and fv['ninvisible'] > 

                  0 and fv['nsuspscript'] > 0) or \
(fv['noccurr'] > 3 and fv['nhas_fb'] > 0 and fv['ninvisible'] > 1  

and fv['niframes'] <= 20) or \
(fv['nhw100'] == 1 and fv['nsrcnotdom'] > 0)):
label = 1
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return label

def process_pages(pages):
log = {}

htmls = []
page_urls = []
comments = []
log_entries = []

for i in range(0, len(pages)):
# Early termination 
#if i > 100: break
if i % 100 == 0: print("processed ", i, " pages")
html = pages[i].split("<head>")

if(len(html) > 1):
nonhtml = html[0].split("comment is: ")
page_url = nonhtml[0].split("from page: ")[1].split(" ")

[0].strip()
page_url = page_url[:len(page_url)-1]

# Get comment
comment = nonhtml[1].split("<!DOCTYPE")[0]
log_entry = page_url + " " + comment.replace('\n', '') 

if log_entry not in log:
log[log_entry] = 1

else: 
log[log_entry] += 1

htmls.append(html)
page_urls.append(page_url)
comments.append(comment)
log_entries.append(log_entry)

return htmls, page_urls, comments, log_entries, log

# --- SCRIPT

pages = open(''.join((."./data/", dn, ."txt"))).read()
if verbose == 1: print("opening file: ", ''.join((."./data", dn)))
pages = pages.split("-------- HTML ")

featurevectors = []
already_processed = []

# Counts non duplicate pages
count = 1

htmls, page_urls, comments, log_entries, log = process_pages(pages)

for i in range(0, len(page_urls)):

# Feature vector
fv = init_fv()

html = htmls[i]
page_url = page_urls[i]
comment = comments[i]
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log_entry = log_entries[i]

# Avoid duplicates
if log_entry not in already_processed: 

# Extract url from comment (all comments at this point have urls)
comment_url = re.findall(r'https?://[^\s<>"]+|www\.[^\s<>"]+',

 comment[0]

html = "<head>" + html[1]
soup = BeautifulSoup(html)
iframes = soup.findAll('iframe')

if iframes != None:
fv['niframes'] = len(iframes)

scripts = soup.find('script')

if scripts != None:
fv['nscripts'] = len(scripts)
fv['nsuspscript'] = has_susp_script(scripts)

videos = soup.find('video')
if videos != None:

fv['nvideos'] = len(videos)

if len(iframes) == 1: 
fv['niframes'] = len(iframes)

fv['ncommsuspterm'] = has_keywords(comment)
fv['commthastxt'] = has_text(comment, comment_url)
fv = analyze_iframes(iframes, page_url, fv)
fv = analyze_url(page_url, fv)

fv['noccurr'] = log[log_entry]

filter_pred = labelgen(fv)
fv['filterpred'] = filter_pred

already_processed.append(log_entry)
v = list(fv.values())
featurevectors.append(v)
if verbose == 1: print(count, "  ", fv)
if verbose == 1: print("url:  ", page_url)
if verbose == 1: print(count, "  ", v)
if verbose == 1: print("filter pred: ", filter_pred)
if verbose == 1: print("")
count += 1

with open(''.join(('../gen/data_', outn)), 'wb') as f:
np.savetxt(f, featurevectors, fmt='%i')

with open(''.join(('../gen/links_', outn)), 'w') as f:
for item in already_processed:

f.write("%s\n" % item)

if verbose == 1: print("\ntotal entries: ", i + 1, " non duplicates: ", count - 1)
end = time.time()
if verbose == 1: print('\ntime elapsed: ', end – start)
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learn.py

import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt

np.set_printoptions(threshold=np.nan)

verbose = 1

filen = 'example_output'
outn = 'example_out'
data = []

# Load labeled training data
labdata = []
with open('../gen/training_lab_data', 'r') as f:
    labdata = f.readlines()

if verbose == 1: print("--- loaded labeled data")

# Remove newlines and separate columns
labdata = [x.strip('\n') for x in labdata] 
labdata = [x.split(" ") for x in labdata] 

n = len(labdata)
m = len(labdata[0])

xs = [x[: m - 1] for x in labdata]
ys = [x[m - 1] for x in labdata]

if verbose == 1: print("number of 1 (clickjacking): ", ys.count('1'))
if verbose == 1: print("number of 2 (malicious): ", ys.count('2'))
if verbose == 1: print("number of 3 (benign): ", ys.count('3'))

# Create validation set with train-test split 0.5
xs_train, xs_test, ys_train, ys_test = train_test_split(xs, ys, test_size = 0.5, 
random_state = 345) 

clf = ExtraTreesClassifier(n_estimators=50, max_features = m-1, max_depth=None, 
min_samples_split=1, \

random_state=12, bootstrap=True) 

clf.fit(xs_train, ys_train)

prob = clf.predict_proba(xs_test)
pred = clf.predict(xs_test) 

# Analyze result
correct = 0
wrong = 0

falseneg = 0
falsepos = 0
# Correctly classified
crtclass = 0
trueclickj = 0
predclickj = 0

for i in range(0, len(xs_test)):
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result = pred[i]
if verbose == 1: print(i, " ", ys_test[i], " pred: ", result, prob[i])

if ys_test[i] == '1':
trueclickj += 1

if result == '1':
predclickj += 1

if ys_test[i] == '1' and result != '1':
falseneg += 1

if ys_test[i] != '1' and result == '1':
falsepos += 1

if ys_test[i] == '1' and result == '1':
crtclass += 1

if(ys_test[i] == result):
correct = correct + 1

else: wrong = wrong + 1

if verbose == 1: print("\n\ntotal: ", n)
if verbose == 1: print("correct: ", correct)
if verbose == 1: print("wrong: ", wrong, "\n")

accuracy = (correct * 100) / len(xs_test)
if verbose == 1: print("accuracy: ", accuracy, "\n\n")

if verbose == 1: print("falsepos: ", falsepos)
if verbose == 1: print("falseneg: ", falseneg)
if verbose == 1: print("crtclass: ", crtclass)

if verbose == 1: print("trueclickjickj: ", trueclickj, ", predclickjickj", predclickj)

importances = clf.feature_importances_
if verbose == 1: print("features as list:\n")
if verbose == 1: print(importances)

# Code from:
# http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html...
# ...example-ensemble-plot-forest-importances-py

# Print the feature ranking
indices = np.argsort(importances)[::-1]
if verbose == 1: print("\nFeature ranking:")
nf = m-1
for f in range(nf):
    if verbose == 1: print("%d. feature %d (%f)" % (f + 1, indices[f], 
importances[indices[f]]))

# Plot the feature importances
plt.figure()
plt.title("Feature importance")
plt.bar(range(nf), importances[indices], color="b", align="center")
plt.xticks(range(nf), indices)
plt.xlim([-1, nf])
plt.show()

# Train classifier on full training set
clf.fit(xs,ys)

# Load data
data = []
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with open(''.join(('../gen/data_', filen)), 'r') as f:
    data = f.readlines()
if verbose == 1: print("data file", filen, " loaded")

# Remove newlines and separate columns
data = [x.strip('\n') for x in data] 
data = [x.split(" ") for x in data] 

n = len(data)
m = len(data[0])

xs = [x[: m - 1] for x in data]
ys = [x[m - 1] for x in data]

out = []
# Print predictions and probability
for i in range(0, len(ys)):

out.append([i+1, "  pred:", pred[i], " prob:", prob[i]])

with open(''.join(('../out/', outn, ."txt")), 'w') as f:
for item in out:

f.write("%s\n" % item)

if verbose == 1: print("output file", outn, " written")
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