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Abstract

Compromising social network accounts has become a profitable course of action for cybercriminals. By hijacking control of a
popular media or business account, attackers can distribute their malicious messages or disseminate fake information to a large
user base. The impacts of these incidents range from a tarnished reputation to multi-billion dollar monetary losses on financial
markets. In our previous work, we demonstrated how we can detect large-scale compromises (i.e., so-called campaigns) of regular
online social network users. In this work, we show how we can use similar techniques to identify compromises of individual
high-profile accounts. High-profile accounts frequently have one characteristic that makes this detection reliable – they show
consistent behavior over time. We show that our system, were it deployed, would have been able to detect and prevent three
real-world attacks against popular companies and news agencies. Furthermore, our system, in contrast to popular media, would
not have fallen for a staged compromise instigated by a US restaurant chain for publicity reasons.

Index Terms—Online Social Networks, Cybercrime, Network Se-
curity

1 Introduction

Online social networks, such as Facebook and Twitter, have
become one of the main media to stay in touch with the rest
of the world. Celebrities use them to communicate with their
fan base, corporations take advantage of them to promote their
brands and have a direct connection to their customers, while
news agencies leverage social networks to distribute breaking
news. Regular users make pervasive use of social networks
too, to stay in touch with their friends or colleagues and share
content that they find interesting.

Over time, social network users build trust relationships
with the accounts they follow. This trust can develop for a
variety of reasons. For example, the user might know the
owner of the trusted account in person or the account might
be operated by an entity commonly considered as trustworthy,
such as a popular news agency. Unfortunately, should the
control over an account fall into the hands of a cyber criminal,
he can easily exploit this trust to further his own malicious
agenda. Previous research showed that using compromised
accounts to spread malicious content is advantageous to cyber
criminals, because social network users are more likely to
react to messages coming from accounts they trust [1].

These favorable probabilities of success exceedingly attract

the attention of cyber criminals. Once an attacker compro-
mises a social network account he can use it for nefarious pur-
poses such as sending spam messages or link to malware and
phishing web sites [2]. Such traditional attacks are best carried
out through a large population of compromised accounts
belonging to regular social network account users. Recent
incidents, however, demonstrate that attackers can cause havoc
and interference even by compromising individual, but high-
profile accounts. These accounts (e.g., newspaper or popular
brand name accounts) have large social circles (i.e., followers)
and their popularity suggests trustworthiness to many social
network users. Recent attacks show that compromising these
high profile accounts can be leveraged to disseminate fake
news alerts, or messages that tarnish a company’s reputa-
tion [3], [4], [5], [6].

Moreover, the effects of an account compromise can extend
well beyond the reputation of a company. For example, the
dissemination of an erroneous Associated Press (AP) news
story about a bomb exploding in the White House in 2013
led to a 1% drop in the Standard & Poor’s 500 index,
temporarily wiping out US$ 136B [7]. Compromises of high
profile accounts usually get cleaned up quickly after they are
detected. Unfortunately, since detection is still exclusively a
manual endeavor, this is often too late to mitigate the negative
impacts of account compromises. For example, the above
mentioned AP message was shared by over 3,000 users before
the compromise was detected and the offending message



removed. Similarly, a message sent as a consequence of a
compromise of the Skype Twitter account happening during a
national holiday remained accessible for over a day [6]. These
incidents show that it is critical for a social network to be
able to reliably detect and block messages that have not been
authored by an account’s legitimate owner.

A wealth of research was proposed in the last years to
detect malicious activity on online social networks. Most of
these systems, however, focus on detecting fake accounts
specifically created to spread malicious content, instead of
looking for legitimate accounts that have been compro-
mised [8], [9], [10]. These systems are inadequate to detect
compromised accounts, because legitimate, yet compromised
accounts have significantly different characteristics than fake
ones. Other mitigation techniques have a more general scope,
and either detect malicious accounts by grouping together
similar messages [11], [12] or by looking at the presence of
suspicious URLs in social network messages [13], [14]. These
systems can detect messages that are sent by compromised
social network accounts, in case cybercriminals use multiple
accounts to send similar messages, or the messages are used
to advertise web pages pointing to malware or phishing. In the
case of the high-profile compromises mentioned before, how-
ever, neither of these conditions apply: the compromises each
consisted of a single message, and no URLs were contained in
any of the messages. Therefore, previously-proposed systems
are inadequate to detect this type of compromises.

In this paper we present COMPA, the first detection system
designed to identify compromised social network accounts.
COMPA is based on a simple observation: social network users
develop habits over time, and these habits are fairly stable. A
typical social network user, for example, might consistently
check her posts in the morning from her phone, and during
the lunch break from her desktop computer. Furthermore, in-
teraction will likely be limited to a moderate number of social
network contacts (i.e., friends). Conversely, if the account
falls under the control of an adversary, the messages that the
attacker sends will likely show anomalies compared to the
typical behavior of the user.

To detect account compromises, COMPA builds a be-
havioral profile for social network accounts, based on the
messages sent by the account in the past. Every time a new
message is generated, the message is compared against this
behavioral profile. If the message significantly deviates from
the learned behavioral profile, COMPA flags it as a possible
compromise. In this paper we first show that high profile
accounts often have well-defined behavioral profiles that allow
COMPA to detect compromises with very low false positives.
However, behavioral profiles of regular user accounts are
more variable than their well-defined counterparts of most
high profile accounts. This is because regular users are more
likely to experiment with new features or client software to
engage with the social network. This variability could cause
an increase of false positive alerts. However, social network
accounts of regular users are less influential than high profile

accounts. Thus, attackers aggregate multiple accounts into a
campaign to achieve effects that are similar to the compromise
of a high profile account. COMPA uses this insight to first
identify campaigns by means of message similarity and only
labels accounts as compromised if a significant portion of
messages in a campaign violate the behavioral profile of their
underlying account. This allows us to keep false positives low,
while still being able to detect accounts that are victims of
large-scale compromises.

To evaluate COMPA, we applied it to four Twitter compro-
mises that affected high profile accounts over the last three
years. We show that our system would have been able to
detect those malicious messages before they were posted,
avoiding the fake information to spread. We also show a
case study of a compromise that was faked by the Chipotle
Twitter account for promotional reasons; in this case COMPA

correctly detected that the alleged malicious messages did not
deviate from the regular behavior of the account. Finally,
we also applied COMPA to two datasets from Twitter and
Facebook, looking for large-scale compromises. The Twitter
dataset consists of 1.4 billion messages we collected from
May 13, 2011 to August 12, 2011, while the Facebook dataset
contains 106 million messages ranging from September 2007
to July 2009 collected from several large geographic networks.
Our results show that COMPA is effective in detecting com-
promised accounts with very few false positives. In particular,
we detected 383,613 compromised accounts on Twitter, and
11,087 compromised accounts on Facebook.

In summary, this paper makes the following contributions:

• We present COMPA, the first system designed to detect
compromised social network accounts.

• We show that COMPA can reliably detect compromises
that affect high profile accounts. Since the behavior of
these accounts is very consistent, false positives are
minimal.

• To detect large-scale compromises, we propose to
group similar messages together and apply COMPA to
them, to assess how many of those messages violate
their accounts’ behavioral profile. This grouping ac-
counts for the fact that regular social network accounts
show a more variable behavior compared to high
profile ones, and allows us to keep false positives low.

• We apply COMPA to two datasets from popular social
networks, Facebook and Twitter, and show that our
system would have been able to detect hundreds of
thousands of compromised accounts. We also show
that COMPA would have been able to detect four
high-profile compromises that affected popular Twitter
accounts, and to correctly flag as legitimate a fake
compromise that was attempted by a US fast food
chain on their Twitter account for promotional rea-
sons.

Comparison with previous published version. This paper
is the extended version of our previous work [15] that was



published at the Network and Distributed Systems Security
Symposium in 2013. Compared to the original paper, in which
we focused on large-scale compromises that affect thousands
of social network accounts at the same time, in this paper
we also look at isolated compromises that affect high- profile
accounts. We show that such accounts typically show a very
consistent behavior, and therefore COMPA can reliably detect
compromises against them. To demonstrate this, we analyzed
four compromises of high-profile accounts that made the news
during the past three years, showing that COMPA would have
detected them.

2 Background: Social Network Compro-
mises

In the following, we illustrate four case studies where high-
profile Twitter accounts were compromised. We will use these
case studies to both show how critical a social network
compromise can be for a company, as well as how our system
could be used to detect and ultimately prevent such attacks.
Associated Press. On April 23rd 2013, the Twitter account
of the Associated Press (@AP) was compromised [4]. The
account was misused to distribute false information about
president Obama being hurt by an explosion in the White
House. This message had an interesting side effect: seconds
after being posted, it was used as a signal of negative events by
automated trading bots on the New York stock exchange. This
signal lead to a perceivable drop in the market index which
recovered after the information was confirmed to be false [7].
This incident shows how a social network compromise can
have significant effects on the real world.
FoxNews Politics. On July 4th 2011, the Twitter account of
Fox News’ politics (@foxnewspolitics) division got compro-
mised [3]. The attackers used this opportunity to distribute the
information that president Obama got assassinated.
Skype. On new year’s day 2014, the Twitter account of the
Skype Voip service was compromised. The attacker used his
access to discourage the use of Mircrosoft’s email products
for the fear of disclosing information to government agencies.
We would assume that an observant legitimate owner of
the account would detect such a malicious message during
their regular activity. However, presumably because of the
holiday season, it took more than two hours before the
offending message was removed by the legitimate owners of
the Skype account. In the meantime, the offending message
got retweeted over 8,000 times. This incident prominently
demonstrates the advantages an automated technique for the
detection of compromised accounts would entail, as such
attacks can have significant negative impact on a brand’s
online reputation.
Yahoo! News. More recently, in August 2014, Yahoo!’s news
account (@YahooNews) also got compromised and used to
disseminate false information regarding an Ebola outbreak in
Atlanta, GA.

To prevent social network accounts from being compro-

mised, we propose to learn the typical behavior of a user, and
flag a message as a possible compromise if it does not match
the learned behavior. In the following section, we describe in
detail the behavioral profile that we leverage as part of our
system. In Section 7.4 we provide details on the anomalies
generated by the four described high-profile incidents, which
allowed COMPA to detect them.

3 Behavioral Profiles

A behavioral profile leverages historical information about the
activities of a social network user to capture this user’s normal
(expected) behavior. To build behavioral profiles, our system
focuses on the stream of messages that a user has posted on
the social network. Of course, other features such as profile
pictures or social activity (e.g., establishing friend or follower
relationships) could be useful as well. Unfortunately, social
networks typically do not offer a way to retrieve historical
data about changes in these features, and therefore, we were
unable to use them.

A behavioral profile for a user U is built in the following
way: Initially, our system obtains the stream of messages of
U from the social networking site. The message stream is
a list of all messages that the user has posted on the social
network, in chronological order. For different social networks,
the message streams are collected in slightly different ways.
For example, on Twitter, the message stream corresponds to
a user’s public timeline. For Facebook, the message stream
contains the posts a user wrote on her own wall, but it also
includes the messages that this user has posted on her friends’
walls.

To be able to build a comprehensive profile, the stream
needs to contain a minimum amount of messages. Intuitively,
a good behavioral profile has to capture the breadth and variety
of ways in which a person uses her social network account
(e.g., different client applications or languages). Otherwise,
an incomplete profile might incorrectly classify legitimate user
activity as anomalous. Therefore, we do not create behavioral
profiles for accounts whose stream consists of less than a
minimum number S of messages. In our experiments, we
empirically determined that a stream consisting of less than
S = 10 messages does usually not contain enough variety to
build a representative behavioral profile for the correspond-
ing account. Furthermore, profiles that contain less then S
messages pose a limited threat to the social network or its
users. This is because such accounts are either new or very
inactive and thus, their contribution to large scale campaigns
is limited. A detailed discussion of this threshold is provided
in our previous work [15].

Once our system has obtained the message stream for
a user, we use this information to build the corresponding
behavioral profile. More precisely, the system extracts a set of
feature values from each message, and then, for each feature,
trains a statistical model. Each of these models captures a
characteristic feature of a message, such as the time the



message was sent, or the application that was used to generate
it. The features used by these models, as well as the models
themselves, are described later in this section.

Given the behavioral profile for a user, we can assess
to what extent a new message corresponds to the expected
behavior. To this end, we compute the anomaly score for
a message with regard to the user’s established profile. The
anomaly score is computed by extracting the feature values
for the new message, and then comparing these feature values
to the corresponding feature models. Each model produces
a score (real value) in the interval [0, 1], where 0 denotes
perfectly normal (for the feature under consideration) and 1
indicates that the feature is highly anomalous. The anomaly
score for a message is then calculated by composing the
results for all individual models.

3.1 Modelling Message Characteristics

Our approach models the following seven features when
building a behavioral profile.

Time (hour of day). This model captures the hour(s) of the
day during which an account is typically active. Many users
have certain periods during the course of a day where they
are more likely to post (e.g., lunch breaks) and others that are
typically quiet (e.g., regular sleeping hours). If a user’s stream
indicates regularities in social network usage, messages that
appear during hours that are associated with quiet periods are
considered anomalous.

Message Source. The source of a message is the name of the
application that was used to submit it. Most social networking
sites offer traditional web and mobile web access to their
users, along with applications for mobile platforms such as
iOS and Android. Many social network ecosystems provide
access to a multitude of applications created by independent,
third-party developers.

Of course, by default, a third-party application cannot post
messages to a user’s account. However, if a user chooses to,
she can grant this privilege to an application. The state-of-the-
art method of governing the access of third-party applications
is OAUTH [16]. OAUTH is implemented by Facebook and
Twitter, as well as numerous other, high-profile web sites, and
enables a user to grant access to her profile without revealing
her credentials.

By requiring all third-party applications to implement
OAUTH, the social network operators can easily shut down
individual applications, should that become necessary. In
fact, our evaluation shows that third-party applications are
frequently used to send malicious messages.

This model determines whether a user has previously
posted with a particular application or whether this is the
first time. Whenever a user posts a message from a new
application, this is a change that could indicate that an attacker
has succeeded to lure a victim into granting access to a
malicious application.

Message Text (Language). A user is free to author her
messages in any language. However, we would expect that
each user only writes messages in a few languages (typically,
one or two). Thus, especially for profiles where this feature is
relatively stable, a change in the language is an indication of
a suspicious change in user activity.

To determine the language that a message was written in,
we leverage the libtextcat library. This library performs
n-gram-based text categorization, as proposed by Cavnar and
Trenkle [17]. Of course, for very short messages, it is often
difficult to determine the language. This is particularly prob-
lematic for Twitter messages, which are limited to at most
140 characters and frequently contain abbreviated words or
uncommon spelling.
Message Topic. Users post many messages that contain chat-
ter or mundane information. But we would also expect that
many users have a set of topics that they frequently talk about,
such as favorite sports teams, music bands, or TV shows.
When users typically focus on a few topics in their messages
and then suddenly post about some different and unrelated
subject, this new message should be rated as anomalous.

In general, inferring message topics from short snippets
of text without context is difficult. However, some social
networking platforms allow users to label messages to explic-
itly specify the topics their messages are about. When such
labels or tags are available, they provide a valuable source
of information. A well-known example of a message-tagging
mechanism are Twitter’s hashtags. By prefixing the topic
keyword with a hash character a user would use #Olympics to
associate her tweet with the Olympic Games. Using hashtags
to identify topics in messages have become so popular that
Facebook decided in August 2013 to incorporate this feature
unmodified.

More sophisticated (natural language processing) tech-
niques to extract message topics are possible. However, such
techniques are out of scope of this work.
Links in Messages. Often, messages posted on social net-
working sites contain links to additional resources, such as
blogs, pictures, videos, or news articles. Links in messages
of social networks are so common that some previous work
has strongly focused on the analysis of URLs, often as the
sole factor, to determine whether a message is malicious or
not. We also make use of links as part of the behavioral
profile of a user. However, in our system the link information
only represents a single dimension (i.e., feature) in the feature
vector describing a message. Moreover, recall that our features
are primarily concerned with capturing the normal activity of
users. That is, we do not attempt to detect whether a URL is
malicious in itself but rather whether a link is different than
what we would expect for a certain user.

To model the use of links in messages, we only make use
of the domain name in the URL of links. The reason is that a
user might regularly refer to content on the same domain.
For example, many users tend to read specific news sites
and blogs, and frequently link to interesting articles there.



Similarly, users might have preferences for a certain URL
shortening service. Of course, the full link differs among these
messages (as the URL path and URL parameters address dif-
ferent, individual pages). The domain part, however, remains
constant. Malicious links, on the other hand, point to sites that
have no legitimate use. Thus, messages that link to domains
that have not been observed in the past indicate a change. The
model also considers the general frequency of messages with
links, and the consistency with which a user links to particular
sites.

Direct User Interaction. Social networks offer mechanisms
to directly interact with an individual user. The most common
way of doing this is by sending a direct message that is
addressed to the recipient. Different social networks have dif-
ferent mechanisms for doing that. For example, on Facebook,
one posts on the recipient user’s wall; on Twitter, it is possible
to directly “mention” other users by putting the @ character
before the recipient’s user name. Over time, a user builds
a personal interaction history with other users on the social
network. This feature aims to capture the interaction history
for a user. In fact, it keeps track of the users an account ever
interacted with. Direct messages are sent to catch the attention
of their recipients, and thus are frequently used by spammers.

Proximity. In many cases, social network users befriend other
users that are geographically or contextually close to them. For
example, a typical Facebook user will have many friends that
live in the same city, went to the same school, or work for the
same company. If this user suddenly started interacting with
people who live on another continent, this could be suspicious.
Some social networking sites (such as Facebook) express this
proximity notion by grouping their users into networks. The
proximity model looks at the messages sent by a user. If a
user sends a message to somebody in the same network, this
message is considered as local. Otherwise, it is considered as
not local. This feature captures the fraction of local vs. non-
local messages.

4 Training and Evaluation of the Models

In a nutshell, COMPA works as follows: for each social
network user, we retrieve the past messages that the user has
authored. We then extract features for each message, and build
behavioral models for each feature separately. Then, we assess
whether each individual feature is anomalous or not, based
on previous observations. Finally, we combine the anomaly
scores for each feature to obtain a global anomaly score for
each message. This score indicates whether the account has
likely been compromised. In the following, we describe our
approach in more detail.

Training. The input for the training step of a feature model
is the series of messages (the message stream) that were
extracted from a user account. For each message, we extract
the relevant features such as the source application and the
domains of all links.

Each feature model is represented as a set Mf . Each ele-
ment of Mf is a tuple < fv, c >. fv is the value of a feature
(e.g., English for the language model, or example.com
for the link model). c denotes the number of messages in
which the specific feature value fv was present. In addition,
each model stores the total number N of messages that were
used for training.

Our models fall into two categories:

• Mandatory models are those where there is one feature
value for each message, and this feature value is
always present. Mandatory models are time of the day,
source, proximity, and language.

• Optional models are those for which not every mes-
sage has to have a value. Also, unlike for mandatory
models, it is possible that there are multiple feature
values for a single message. Optional models are
links, direct interaction, and topic. For example, it is
possible that a message contains zero, one, or multiple
links. For each optional model, we reserve a specific
element with fv = null, and associate with this
feature value the number of messages for which no
feature value is present (e.g., the number of messages
that contain no links).

The training phase for the time of the day model works
slightly differently. Based on the previous description, our
system would first extract the hour of the day for each
message. Then, it would store, for each hour fv, the number
of messages that were posted during this hour. This approach
has the problem that strict one hour intervals, unlike the
progression of time, are discrete. Therefore, messages that are
sent close to a user’s “normal” hours could be incorrectly
considered as anomalous.

To avoid this problem, we perform an adjustment step after
the time of the day model was trained (as described above). In
particular, for each hour i, we consider the values for the two
adjacent hours as well. That is, for each element < i, ci >
of Mf , a new count c′i is calculated as the average between
the number of messages observed during the ith hour (ci),
the number of messages sent during the previous hour (ci−1),
and the ones observed during the following hour (ci+1). After
we computed all c′i, we replace the corresponding, original
values in Mf .

As we mentioned previously, we cannot reliably build a
behavioral profile if the message stream of a user is too short.
Therefore, the training phase is aborted for streams shorter
than S = 10, and any message sent by those users is not
evaluated.

Evaluating a new message. When calculating the anomaly
score for a new message, we want to evaluate whether this
message violates the behavioral profile of a user for a given
model. In general, a message is considered more anomalous
if the value for a particular feature did not appear at all in the
stream of a user, or it appeared only a small number of times.



For mandatory features, the anomaly score of a message is
calculated as follows:

1) The feature fv for the analyzed model is first ex-
tracted from the message. If Mf contains a tuple
with fv as a first element, then the tuple < fv, c > is
extracted from Mf . If there is no tuple in Mf with fv
as a first value, the message is considered anomalous.
The procedure terminates here and an anomaly score
of 1 is returned.

2) As a second step, the approach checks if fv is
anomalous at all for the behavioral profile built for
the feature under consideration. c is compared to

M̄f , which is defined as M̄f =

∑‖Mf‖
i=1

ci

N , where
ci is, for each tuple in Mf , the second element of the
tuple. If c is greater or equal than M̄f , the message
is considered to comply with the learned behavioral
profile for that feature, and an anomaly score of 0 is
returned. The rationale behind this is that, in the past,
the user has shown a significant number of messages
with that particular fv.

3) If c is less than M̄f , the message is considered
somewhat anomalous with respect to that model. Our
approach calculates the relative frequency f of fv as
f =

cfv

N . The system returns an anomaly score of 1
- f .

The anomaly score for optional features is calculated as:

1) The value fv for the analyzed feature is first ex-
tracted from the message. If Mf contains a tuple with
fv as a first element, the message is considered to
match the behavioral profile, and an anomaly score
of 0 is returned.

2) If there is no tuple in Mf with fv as a first element,
the message is considered anomalous. The anomaly
score in this case is defined as the probability p for
the account to have a null value for this model.
Intuitively, if a user rarely uses a feature on a social
network, a message containing an fv that has never
been seen before for this feature is highly anomalous.
The probability p is calculated as p = cnull

N . If Mf

does not have a tuple with null as a first element,
cnull is considered to be 0. p is then returned as the
anomaly score.

As an example, consider the following check against the
language model: The stream of a particular user is composed
of 21 messages. Twelve of them are in English, while nine are
in German. The Mf of the user for that particular model looks
like this:

(<English,12>,<German,9>).

The next message sent by that user will match one of three
cases:

• The new message is in English. Our approach extracts
the tuple <English,12> from Mf , and compares c =

12 to M̄ = 10.5. Since c is greater than M̄f , the
message is considered normal, and an anomaly score
of 0 is returned.

• The new message is in Russian. Since the user never
sent a message in that language before, the message is
considered very suspicious, and an anomaly score of
1 is returned.

• The new message is in German. Our approach extracts
the tuple <German, 9> from Mf , and compares c =
9 to M̄f = 10.5. Since c < M̄f , the message is
considered slightly suspicious. The relative frequency
of German tweets for the user is f = c

N = 0.42.
Thus, an anomaly score of 1 − f = 0.58 is returned.
This means that the message shows a slight anomaly
in the user average behavior. However, as explained in
Section 6.2, on its own this score will not be enough
to flag the message as malicious.

Computing the final anomaly score. Once our system has
evaluated a message against each individual feature model,
we need to combine the results into an overall anomaly score
for this message. This anomaly score is a weighted sum
of the values for all models. We use Sequential Minimal
Optimization [18] to learn the optimal weights for each
model, based on a training set of instances (messages and
corresponding user histories) that are labeled as malicious
and benign. Of course, different social networks will require
different weights for the various features. A message is said to
violate an account’s behavioral profile if its overall anomaly
score exceeds a threshold. In Section 4.1, we present a more
detailed discussion on how the features and the threshold
values were calculated. More details, including a parameter
sensitivity analysis on the threshold value, are presented
in our previous work [19], [20]. Moreover, we discuss the
weights (and importance) of the features for the different
social networks that we analyzed (i.e., Twitter and Facebook).
Robustness of the Models. In our original paper we show
that it is difficult for an attacker to mimic all the behavioral
models used by COMPA [15]. In addition, in our setup we
only used features that are observable from the outside — if
COMPA was deployed by a social network instead, they could
use additional indicators, such as the IP address that a user is
connecting from or the browser user agent.
Novelty of the modelled features. In our previous paper [15]
we show that most of the features used by COMPA are novel,
and were not used by previous work. In addition, existing
systems focus on detecting fake accounts, and therefore look
for similarities across different accounts to flag them as
malicious. In COMPA, conversely, we look for changes in the
behavior of legitimate accounts.

4.1 Training the Classifier

As discussed in Section 4, COMPA uses a weighted sum of
feature values to determine whether a new message violates
the behavioral profile of its social network account. Naturally,



this bears the question how to determine optimal feature
weights to calculate the weighted sum itself. To determine
the feature weights in COMPA, we applied Weka’s SMO [21]
to a labeled training dataset for both Twitter and Facebook. A
detailed discussion how we prepared the training datasets can
be found in our previous work [15]. Note that this dataset is
different than the one used to evaluate COMPA in Section 7.

While on Facebook, at the time of our experiment, we
could easily infer a user location from her geographic net-
works, Twitter does not provide such a convenient proximity
feature. Therefore, we omitted this feature from the evaluation
on Twitter. For Twitter, the weights for the features are
determined from a labeled training dataset consisting of 5,236
(5142 legitimate, 94 malicious) messages with their associated
feature values as follows: Source (3.3), Personal Interaction
(1.4), Domain (0.96), Hour of Day (0.88), Language (0.58),
and Topic (0.39).

On Facebook, based on a labeled training dataset of
279 messages (181 legitimate, 122 malicious), the weights
were: Source (2.2), Domain (1.1), Personal Interaction (0.13),
Proximity (0.08), and Hour of Day (0.06). Weka determined
that the Language feature has no effect on the classification.
Moreover, as discussed earlier, assessing the message topic
of an unstructured message is a complicated natural language
processing problem. Therefore, we omitted this feature from
the evaluation on the Facebook dataset.

5 Behavioral Profile Stability

Detecting deviations in account behavior is simplified if the
commonly occurring behavior follows mostly regular patterns.
Thus, in this section we ask (and answer) the question of
whether there is a class of social network accounts that are
particularly amenable to such an analysis. Arguably, a social
network strategy is a crucial part for the public relation
department of most contemporary companies. Intuitively, we
would expect a well managed company account to show a
more stable behavior over time than accounts operated by
regular users. To assess whether this intuition is valid we
conducted an experiment and evaluated the message streams
of popular companies for behavioral profile violations. As
positive example of social network compromises, we consid-
ered the four high-profile incidents described previously. As
a baseline comparison we also evaluated the message streams
of randomly chosen social network accounts.

5.1 Popular Accounts

To assess whether the behavioral profiles of popular accounts
are indeed mostly stable over time we performed the following
experiment. Alexa [22] is a service that ranks popular web-
sites. We assume that most popular websites are operated by
popular businesses. Thus we identify the Twitter accounts that
correspond to the top 5 entries in each of 16 categories ranked
by Alexa (e.g., arts, news, science, etc.). Additionally, we add
the Twitter accounts that correspond to the top 50 entries of

# Twitter Account Violations (%) # Twitter Account Violations (%)
1 163 0% 40 derspiegel 2%
2 alibabatalk 0% 41 espn 2%
3 ap 0% 42 imgur 2%
4 bloombergnews 0% 43 msnbc 2%
5 bostonglobe 0% 44 tripadvisor 2%
6 bw 0% 45 twitch 2%
7 ebay 0% 46 xe 2%
8 ehow 0% 47 yahoosports 2%
9 engadget 0% 48 walmart 2%

10 expedia 0% 49 bing 3%
11 forbes 0% 50 nfl 3%
12 foxnews 0% 51 reverso 3%
13 foxnewspolitics 0% 52 blizzardcs 4%
14 gsmarena com 0% 53 google 4%
15 huffingtonpost 0% 54 linkedin 4%
16 imdb 0% 55 yahoofinance 4%
17 latimes 0% 56 cnn 5%
18 lemondefr 0% 57 timeanddate 5%
19 msn 0% 58 yandexcom 5%
20 nbcnews 0% 59 urbandictionary 5%
21 nytimes 0% 60 netflix 6%
22 pchgames 0% 61 weebly 6%
23 reuters 0% 62 stumbleupon 7%
24 skype 0% 63 yahooanswers 7%
25 stackfeed 0% 64 reddit 9%
26 steam games 0% 65 yelp 9%
27 washingtonpost 0% 66 instagram 10%
28 yahoo 0% 67 youtube 10%
29 9gag 1% 68 nih 12%
30 amazon 1% 69 ancestry 13%
31 digg 1% 70 microsoft 13%
32 el pais 1% 71 paypal 13%
33 facebook 1% 72 tumblr 15%
34 ign 1% 73 wikipedia 15%
35 internetarchive 1% 74 wordpress 28%
36 pinterest 1% 75 AskDotCom 39%
37 yahoonews 1% 76 bookingcom 44%
38 abcnews 2% 77 twitter 46%
39 bbcnews 2% 78 guardian 47%

TABLE 1. Behavioral profile violations of news agency
and corporate Twitter accounts within most recent 100
tweets.

Alexa’s top 500 global sites. While a more exhaustive list
would be beneficial, identifying a social network account that
corresponds to a website is a manual process and thus does
not scale well. Table 1 presents the list of the resulting 78
Twitter accounts after removal of duplicate entries cross listed
in multiple categories.

For each account in this list COMPA then built the be-
havioral profile and compared the most recent 100 messages
against the extracted profile. As for any detection system,
COMPA needs to make tradeoffs between false positives and
false negatives. To tune our system, we used as ground
truth the 4 high-profile incidents described in Section 2. We
configured COMPA to detect such attacks. We then analyzed
the false positive rate that COMPA generates by using this
threshold. Note that since these incidents are the only ones that
have been reported for the involved accounts, this experiment
resulted in no false negatives.

Table 1 also shows how many of these 100 messages
violated their behavioral profile. The results indicate that the
majority of popular accounts have little variability in their
behavior. As we can see, the majority of the high profile
accounts that we evaluated have a very consistent behavior.



In fact, as we will show in the next section, such accounts
show a considerably more consistent behavior than average
social network accounts. In these cases COMPA could protect
these accounts and still reliably detect compromises without
fearing false positives.

A handful of high profile accounts, however, showed a
very variable behavior. In the worst case, the behavior of
The Guardian’s Twitter account was so inconsistent that 47
out of 100 messages would have been flagged by COMPA as
malicious. We suspect that these accounts are not used by a
single person, but instead are managed by a set of different
actors who have different preferences in terms of Twitter
clients and slightly different editing styles. Our system is
currently not able to characterize accounts with such multi-
actor behavior patterns. In the general case of a single user
operating a given account, however, COMPA can reliably
detect and block changes of behavior.

5.2 Regular Accounts

To assess the consistency of behavioral profiles for regular
accounts, we used COMPA to create 64,368 behavioral profiles
for randomly selected Twitter users over a period of 44 days.
We used the same threshold selected in Section 5.1 for this
experiment. To this end, every minute, COMPA retrieved the
latest tweet received from the Twitter stream and built a
behavioral profile for the corresponding account. 2,606 (or
4%) of these messages violated their account’s behavioral
profile. As we would not expect random messages to violate
the behavioral profile of the underlying account, we consider
these 4% the base false discovery rate of COMPA. Unfortu-
nately, a 4% false discovery rate is exceedingly high for a
practical deployment of a detection system such as COMPA.
Thus, when dealing with regular accounts, instead of detect-
ing compromises of individual user accounts, COMPA first
groups accounts by means of message similarity into large-
scale campaigns. COMPA declares members of a campaign as
compromised only if a significant fraction of messages within
that campaign violate their respective behavioral profiles.
Detecting Large-scale Social Network Compromises A
single message that violates the behavioral profile of a user
does not necessarily indicate that this user is compromised
and the message is malicious. The message might merely
reflect a normal change of behavior. For example, a user might
be experimenting with new client software or expanding her
topics of interest. Therefore, before we flag an account as
compromised, we require that we can find a number of similar
messages (within a specific time interval) that also violate the
accounts of their respective senders.

Hence, we use message similarity as a second component
to distinguish malicious messages from spurious profile vio-
lations. This is based on the assumption that attackers aim to
spread their malicious messages to a larger victim population.
In the following section, we discuss how our system groups
together similar messages and assesses their maliciousness.

6 Detecting Large-scale Social Network
Compromises

6.1 Grouping Messages

To perform this grouping of messages, we can either first
group similar messages and then check all clustered messages
for behavioral profile violations, or we can first analyze all
messages on the social network for profile violations and then
cluster only those that have resulted in violations. The latter
approach offers more flexibility for grouping messages, since
we only need to examine the small(er) set of messages that
were found to violate their user profiles. This would allow
us to check if a group of suspicious messages was sent by
users that are all directly connected in the social graph, or
whether these messages were sent by people of a certain
demographics. Unfortunately, this approach requires to check
all messages for profile violations. While this is certainly
feasible for the social networking provider, our access to these
sites is rate-limited in practice. Hence, we need to follow
the first approach: More precisely, we first group similar
messages. Then, we analyze the messages in clusters for
profile violations. To group messages, we use the two simple
similarity measures, discussed in the following paragraphs.
Content similarity. Messages that contain similar text can
be considered related and grouped together. To this end, our
first similarity measure uses n-gram analysis of a message’s
text to cluster messages with similar contents. We use entire
words as the basis for the n-gram analysis. Based on initial
tests to evaluate the necessary computational resources and the
quality of the results, we decided to use four-grams. That is,
two messages are considered similar if they share at least one
four-gram of words (i.e., four consecutive, identical words).
URL similarity. This similarity measure considers two mes-
sages to be similar if they both contain at least one link to a
similar URL. The naı̈ve approach for this similarity measure
would be to consider two messages similar if they contain an
identical URL. However, especially for spam campaigns, it is
common to include identifiers into the query string of a URL
(i.e., the part in a URL after the question mark). Therefore,
this similarity measure discards the query string and relies on
the remaining components of a URL to assess the similarity
of messages. Of course, by discarding the query string, the
similarity measure might be incorrectly considering messages
as similar if the target site makes use of the query string to
identify different content. Since YouTube and Facebook
use the query string to address individual content, this simi-
larity measure discards URLs that link to these two sites.

Many users on social networking sites use URL shortening
services while adding links to their messages. In principle,
different short URLs could point to the same page, therefore,
it would make sense to expand such URLs, and perform the
grouping based on the expanded URLs. Unfortunately, for
performance reasons, we could not expand short URLs in our
experiments. On Twitter, we observe several million URLs



per day (most of which are shortened). This exceeds by far
the request limits imposed by any URL shortening service.

We do not claim that our two similarity measures represent
the only ways in which messages can be grouped. However, as
the evaluation in Section 7 shows, the similarity measures we
chose perform very well in practice. Furthermore, our system
can be easily extended with additional similarity measures if
necessary.

6.2 Compromised Account Detection

Our approach groups together similar messages that are gen-
erated in a certain time interval. We call this the observation
interval. For each group, our system checks all accounts to
determine whether each message violates the corresponding
account’s behavioral profile. Based on this analysis, our ap-
proach has to make a final decision about whether an account
is compromised or not.
Suspicious groups. A group of similar messages is called a
suspicious group if the fraction of messages that violates their
respective accounts’ behavioral profiles exceeds a threshold
th. In our implementation, we decided to use a threshold that
is dependent on the size of the group. The rationale behind this
is that, for small groups, there might not be enough evidence
of a campaign being carried out unless a high number of
similar messages violate their underlying behavioral profiles.
In other words, small groups of similar messages could appear
coincidentally, which might lead to false positives if the
threshold for small groups is too low. This is less of a concern
for large groups that share a similar message. In fact, even the
existence of large groups is already somewhat unusual. This
can be taken into consideration by choosing a lower threshold
value for larger groups. Accordingly, for large groups, it
should be sufficient to raise an alert if a smaller percentage of
messages violate their behavioral profiles. Thus, the threshold
th is a linear function of the size of the group n defined as
th(n) = max(0.1, kn + d).

Based on small-scale experiments, we empirically deter-
mined that the parameters k = −0.005 and d = 0.82 work
well. The max expression assures that at least ten percent
of the messages in big groups must violate their behavioral
profiles to get the group’s users flagged as compromised. Our
experiments show that these threshold values are robust, as
small modifications do not influence the quality of the results.
Whenever there are more than th messages in a group (where
each message violates its profile), COMPA declares all users
in the group as compromised.
Bulk applications. Certain popular applications, such as
Nike+ or Foursquare, use templates to send similar mes-
sages to their users. Unfortunately, this can lead to false posi-
tives. We call these applications bulk applications. To identify
popular bulk applications that send very similar messages
in large amounts, COMPA needs to distinguish regular client
applications (which do not automatically post using templates)
from bulk applications. To this end, our system analyzes a
randomly selected set of S messages for each application,

drawn from all messages sent by this application. COMPA

then calculates the average pairwise Levenshtein ratios for
these messages. The Levenshtein ratio is a measure of the
similarity between two strings based on the edit distance.
The values range between 0 for unrelated strings and 1 for
identical strings. We empirically determined that the value
0.35 effectively separates regular client applications from bulk
applications.

COMPA flags all suspicious groups produced by client
applications as compromised. For bulk applications, a fur-
ther distinction is necessary, since we only want to discard
groups that are due to popular bulk applications. Popular
bulk applications constantly recruit new users. Also, these
messages are commonly synthetic, and they often violate the
behavioral profiles of new users. For existing users, on the
other hand, past messages from such applications contribute
to their behavioral profiles, and thus, additional messages do
not indicate a change in behavior. If many users made use of
the application in the past, and the messages the application
sent were in line with these users’ behavioral profiles, COMPA

considers such an application as popular.
To assess an application’s popularity, COMPA calculates

the number of distinct accounts in the social network that
made use of that application before it has sent the first
message that violates a user’s behavioral profile. This number
is multiplied by an age factor (which is the number of seconds
between the first message of the application as observed by
COMPA and the first message that violated its user’s behavioral
profile). The intuition behind this heuristic is the following:
An application that has been used by many users for a long
time should not raise suspicion when a new user starts using it,
even if it posts content that differs from this user’s established
behavior. Manual analysis indicated that bulk applications that
are used to run spam and phishing campaigns over com-
promised accounts have a very low popularity score. Thus,
COMPA considers a bulk application to be popular if its score
is above 1 million. We assume that popular bulk applications
do not pose a threat to their users. Consequently, COMPA flags
a suspicious group as containing compromised accounts only
if the group’s predominant application is a non-popular bulk
application.

7 Evaluation

We implemented our approach in a tool, called COMPA and
evaluated it on Twitter and Facebook; we collected tweets in
real time from Twitter, while we ran our Facebook experi-
ments on a large dataset crawled in 2009.

We show that our system is capable of building meaningful
behavioral profiles for individual accounts on both networks.
By comparing new messages against these profiles, it is pos-
sible to detect messages that represent a (possibly malicious)
change in the behavior of the account. By grouping together
accounts that contain similar messages, many of which violate
their corresponding accounts’ behavioral profiles, COMPA is



able to identify groups of compromised accounts that are used
to distribute malicious messages on these social networks.
Additionally, COMPA identifies account compromises without
a subsequent grouping step if the underlying behavioral profile
is consistent over time. We continuously ran COMPA on a
stream of 10% of all public Twitter messages on a single
computer (Intel Xeon X3450, 16 GB ram). The main limita-
tion was the number of user timelines we could request from
Twitter, due to the enforced rate-limits. Thus, we are confident
that COMPA can be scaled up to support online social networks
of the size of Twitter with moderate hardware requirements.

We first detail the dataset we used to perform the evaluation
of our work. Subsequently, we discuss a series of real world
account compromises against popular Twitter accounts that
COMPA could have prevented, and conclude this section
with an evaluation of large-scale compromises that COMPA

detected on the Twitter and Facebook social networks.

7.1 Data Collection

Twitter Dataset We obtained elevated access to Twitter’s
streaming and RESTful API services. This allowed us to
collect around 10% of all public tweets through the streaming
API, resulting in roughly 15 million tweets per day on average.
We collected this data continuously starting May 13, 2011
until Aug 12, 2011. In total, we collected over 1.4 billion
tweets from Twitter’s stream. The stream contains live tweets
as they are sent to Twitter. We used an observation interval
of one hour. Note that since the stream contains randomly
sampled messages, COMPA regenerated the behavioral profiles
for all involved users every hour. This was necessary, because
due to the 10% random sampling it was not guaranteed that
we would see the same user multiple times.

To access the historical timeline data for individual ac-
counts, we rely on the RESTful API services Twitter provides.
To this end, Twitter whitelisted one of our IP addresses, which
allowed us to make up to 20,000 RESTful API calls per hour.
A single API call results in at most 200 tweets. Thus, to
retrieve complete timelines that exceed 200 tweets, multiple
API requests are needed. Furthermore, Twitter only provides
access to the most recent 3,200 tweets in any user’s timeline.
To prevent wasting API calls on long timelines, we retrieved
timeline data for either the most recent three days, or the user’s
400 most recent tweets, whatever resulted in more tweets.

On average, we received tweets from more than 500,000
distinct users per hour. Unfortunately, because of the API
request limit, we were not able to generate profiles for all
users that we saw in the data stream. Thus, as discussed in
the previous section, we first cluster messages into groups
that are similar. Then, starting from the largest cluster, we
start to check whether the messages violate the behavioral
profiles of their senders. We do this, for increasingly smaller
clusters, until our API limit is exhausted. On average, the
created groups consisted of 30 messages. This process is then
repeated for the next observation period.
Facebook Dataset Facebook does not provide a convenient

way of collecting data. Therefore, we used a dataset that was
crawled in 2009. We obtained this dataset from an independent
research group that performed the crawling in accordance
with the privacy guidelines at their research institution. Un-
fortunately, Facebook is actively preventing researchers from
collecting newer datasets from their platform by various
means, including the threat of legal action. This dataset was
crawled from geographic networks on Facebook. Geographic
networks were used to group together people that lived in
the same area. The default privacy policy for these networks
was to allow anybody in the network to see all the posts
from all other members. Therefore, it was easy, at the time,
to collect millions of messages by creating a small number
of profiles and join one of these geographic networks. For
privacy reasons, geographic networks have been discontinued
in late 2009. The dataset we used contains 106,373,952 wall
posts collected from five geographic networks (i.e., London,
New York, Los Angeles, Monterey Bay, and Santa Barbara).
These wall posts are distributed over almost two years (Sept.
2007 - July 2009).

7.2 Detection on Twitter

The overall results for our Twitter evaluation are presented
in Table 2. Due to space constraints, we will only discuss the
details for the text similarity measure here. However, we found
considerable overlap in many of the groups produced by both
similarity measures. More precisely, for over 8,200 groups,
the two similarity measures (content and URL similarity)
produced overlaps of at least eight messages. COMPA found,
for example, phishing campaigns that use the same URLs and
the same text in their malicious messages. Therefore, both
similarity measures produced overlapping groups.

The text similarity measure created 374,920 groups with
messages of similar content. 365,558 groups were reported as
legitimate, while 9,362 groups were reported as compromised.
These 9,362 groups correspond to 343,229 compromised
accounts. Interestingly, only 12,238 of 302,513 applications
ever produced tweets that got grouped together. Furthermore,
only 257 of these applications contributed to the groups that
were identified as compromised.

For each group of similar messages, COMPA assessed
whether the predominant application in this group was a
regular client or a bulk application. Our system identified
12,347 groups in the bulk category, of which 1,647 were
flagged as compromised. Moreover, COMPA identified a total
of 362,573 groups that originated from client applications. Of
these, 7,715 were flagged as compromised.

Overall, our system created a total of 7,250,228 behavioral
profiles. COMPA identified 966,306 messages that violate the
behavioral profiles of their corresponding accounts. Finally,
400,389 messages were deleted by the time our system tried to
compare these messages to their respective behavioral profiles
(i.e., within an hour).



Network & Similarity Measure Twitter Text Twitter URL Facebook Text
Groups Accounts Groups Accounts Groups Accounts

Total Number 374,920 14,548 48,586
# Compromised 9,362 343,229 1,236 54,907 671 11,499

False Positives 4% (377) 3.6% (12,382) 5.8% (72) 3.8% (2,141) 3.3% (22) 3.6% (412)
# Bulk Applications 12,347 1,569 N/A N/A
# Compromised Bulk Applications 1,647 178,557 251 8,254 N/A N/A

False Positives 8.9% (146) 2.7% (4,854) 14.7% (37) 13.3% (1,101) N/A N/A
# Client Applications 362,573 12,979 N/A N/A
# Compromised Client Applications 7,715 164.672 985 46,653 N/A N/A

False Positives 3.0% (231) 4.6% (7,528) 3.5% (35) 2.2% (1,040) N/A N/A

TABLE 2. Evaluation Results for the Text (Twitter and Facebook) and URL (Twitter) Similarity measure.

False Positives Using the text similarity measure, COMPA

identified 343,229 compromised Twitter accounts in 9,362
clusters. We performed an exhaustive false positive analysis of
COMPA in our previous work [15]. Due to space limitations,
we omit repeating this description here. In summary, 377 of
the 9,362 groups (4%) that COMPA flagged as containing
compromised are labeled as false positives. Note that each
group consists of multiple tweets, each from a different Twitter
account. Thus, the above mentioned results are equivalent to
flagging 343,229 user as compromised, where 12,382 (3.6%)
are false positives.

One characteristic that directly affects the probability of a
false positive detection is the length of the message stream
that is used to learn the behavioral profile. Intuitively, the
longer a user’s messages stream is, the more comprehensive is
the resulting behavioral profile. For a detailed discussion and
analysis of this intuition, we again refer to [15].
False Negatives Precisely assessing false negatives in large
datasets, such as the ones we are evaluating COMPA on, is
a challenging endeavor. However, we found after extensive
sampling (64,000 random accounts) that the grouping feature
in COMPA did not cause undue amounts of false negatives.
In our previous work we detail our analysis to conclude that
COMPA suffers from roughly 4% false negatives in detecting
compromised accounts of regular Twitter users.

7.3 Detection on Facebook

As the Facebook dataset spans almost two years we increased
the observation interval to eight hours to cover this long times-
pan. Furthermore, we only evaluated the Facebook dataset
with the text similarity measure to group similar messages.

Our experiments indicated that a small number of popular
applications resulted in a large number of false positives.
Therefore, we removed the six most popular applications,
including Mafia Wars from our dataset. Note that these six
applications resulted in groups spread over the whole dataset.
Thus, we think it is appropriate for a social network admin-
istrator to white-list applications at a rate of roughly three
instances per year.

In total, COMPA generated 206,876 profiles in 48,586
groups and flagged 671 groups as compromised (i.e, 11,499
compromised accounts). All flagged groups are created by

bulk applications. 22 legitimate groups were incorrectly clas-
sified (i.e., 3.3% false positives) as compromised; they con-
tained 412 (3.6%) users.

7.4 Case studies

As mentioned in Section 5.1, COMPA successfully detected
four high-profile Twitter compromises. In the following, we
discuss those incidents in more detail, highlighting what type
of anomalies were picked up by COMPA compared to the
typical behavior of these accounts. In addition, we discuss
a compromise that was simulated by the fast-food company
Chipotle on their Twitter account, for promotional reasons.
We demonstrate that in this case the message did not show
particular anomalies compared to the typical behavior of the
account, and therefore COMPA would have correctly detected
it as being authored by their legitimate owners.
Associated Press. Comparing the malicious message message
against the behavioral profile of the @AP account resulted in
significant differences among many features that our system
evaluates. For example, the fake news was posted via the
Twitter website, whereas the legitimate owners of the @AP
account commonly use the SocialFlow application to send
status updates. Furthermore, the fake tweet did not include
any links to additional information, a practice that the @AP
account follows very consistently.

Only two features in our behavioral model did not signify
a change of behavior. The time when the tweet was sent
(i.e., 10:07UTC) and the language of the tweet itself. The
authors of the @AP account as well as the attackers used the
English language to author their content. While the language is
undoubtedly the same, a more precise language analysis could
have determined an error in capitalization in the attacker’s
message.
FoxNews Politics. This tweet violated almost all the features
used by our system. For example, the tweet was sent in the
middle of the night (i.e., 23:24UTC), through the main Twitter
web site. Furthermore, it did not include a link to the full story
on the Fox News website. The tweet also made extensive use
of hashtags and mentions, a practice not commonly used by
the @foxnewspolitics account.
Skype. COMPA successfully detected the compromise be-
cause the offending message significantly diverged from the



behavioral profile constructed for the Skype account. The
only two features that did not diverge from the behavioral
profile were the time and language information. Since the
Skype profile as well as the malicious message were au-
thored in English, COMPA did not detect a deviation in this
feature. More interestingly, however, the time the message
was sent, perfectly aligned with the normal activity of the
Skype account. We would assume that an observant legitimate
owner of the account would detect such a malicious message
during their regular activity. However, presumably because of
the holiday season, it took more than two hours before the
offending message was removed by the legitimate owners of
the Skype account. In the meantime, the offending message
got retweeted over 8,000 times. This incident prominently
demonstrates the advantages an automated technique for the
detection of compromised accounts would entail, as such
attacks can have significant negative impact on a brand’s
online reputation.
Yahoo! News. Our system detected significant deviations
of the offending message when compared to the extracted
behavioral profile for the account. Similarly to the above men-
tioned cases, the attackers used Twitter’s web portal to send
the offending messages, whereas YahooNews predominantly
relies on the TweetDeck application to post new content.
While YahooNews frequently links to detailed information
and often mentions their source by using the direct com-
munication feature (i.e., @-mentions), the offending tweets
featured neither of these characteristics.
Chipotle. On July 21, 2013 multiple news websites reported
that the main Twitter account of the Chipotle Mexican Grill
restaurant chain got compromised1. Indeed, twelve “unusual”
successive messages were posted to the @chipotletweets
account that day, before the apparent legitimate operator
acknowledged that they experienced issues with their account.
Because this was in the midst of other compromises of high-
profile accounts (e.g., Jeep, Burger King, and Donald Trump),
this alert seemed credible. However, when we ran COMPA

on these twelve messages in question, only minor differences
to the behavioral profile of the Chipotle account emerged.
More precisely, the offending messages did not contain any
direct user interaction (i.e., mentions) – a feature prominently
used by the legitimate operator of that account. However,
because this was the only difference compared to the learned
behavioral profile, COMPA’s classifier did not consider the
deviation significant enough to raise a warning about an
account compromise. Interestingly, three days later, Chipotle
acknowledged that they had faked the account compromise
as a publicity measure [23]. This illustrates that even trying
to fake an account compromise is a non-trivial endeavor. As
mentioned, all other features besides the direct user interaction
were perfectly in line with the behavioral profile. When we
investigated the application source model for the Chipotle
account we learned that it is almost exclusively managed via

1. At the time of writing, the public timeline of the @chipotletweets
account still contains these tweets.

the SocialEngage client application. Thus, for an attacker to
stealthily compromise Chipotle’s account, he would also have
to compromise Chipotle’s SocialEngage account. A similar
attempt of faking an account compromise staged by MTV [24]
did also not result in COMPA raising an alert. Because of our
limited view of Twitter’s traffic (i.e., we only see a random
10% sample), we could not evaluate the faked compromise of
the BET account staged in the same campaign by the same
actors.

8 Limitations

An attacker who is aware of COMPA has several possibilities
to prevent his compromised accounts from being detected
by COMPA. First, the attacker can post messages that align
with the behavioral profiles of the compromised accounts.
As described in Section 4, this would require the attacker to
invest significant time and computational resources to gather
the necessary profile information from his victims. Further-
more, social networks have mechanisms in place that prevent
automated crawling, thus slowing down such data gathering
endeavors.

In the case of COMPA protecting regular accounts an
attacker could send messages that evade our similarity mea-
sures, and thus, although such messages might violate their
compromised accounts’ behavioral profiles, they would not
get grouped together. To counter such evasion attempts,
COMPA can be easily extended with additional and more
comprehensive similarity measures. For example, it would
be straight-forward to create a similarity measure that uses
the landing page instead of the URLs contained in the mes-
sages to find groups of similar messages. Furthermore, more
computationally expensive similarity measures, such as text
shingling or edit distances for text similarity can also be
implemented. Other similarity measures might leverage the
way in which messages propagate along the social graph to
evaluate message similarity.

9 Related Work

The popularity of social networks inspired many scientific
studies in both, networking and security. Wilson et al. ran
a large-scale study of Facebook users [25], while Krishna-
murthy et al. provide a characterization of Twitter users [26].
Kwak et al. analyze the differences between Twitter and the
more traditional social networks [27].

Yardi et al. [28] ran an experiment on the propagation of
spam on Twitter. Their goal was to study how spammers use
popular topics in their messages to reach more victims. To do
this, they created a hashtag and made it trending, and observed
that spammers started using the hashtag in their messages.

Early detection systems for malicious activity on social
networks focused on identifying fake accounts and spam
messages [8], [9], [10] by leveraging features that are geared
towards recognizing characteristics of spam accounts (e.g., the
presence of URLs in messages or message similarity in user

https://twitter.com/chipotletweets


posts). Cai et al. [29] proposed a system that detects fake pro-
files on social networks by examining densely interconnected
groups of profiles. These techniques work reasonably well,
and both Twitter and Facebook rely on similar heuristics to
detect fake accounts [30], [31].

In response to defense efforts by social network providers,
the focus of the attackers has shifted, and a majority of the
accounts carrying out malicious activities were not created
for this purpose, but started as legitimate accounts that were
compromised [12], [2]. Since these accounts do not show a
consistent behavior, previous systems will fail to recognize
them as malicious. Grier et al. [2] studied the behavior of
compromised accounts on Twitter by entering the credentials
of an account they controlled on a phishing campaign site.
This approach does not scale as it requires identifying and
joining each new phishing campaign. Also, this approach is
limited to phishing campaigns. Gao et al. [12] developed a
clustering approach to detect spam wall posts on Facebook.
They also attempted to determine whether an account that
sent a spam post was compromised. To this end, the authors
look at the wall post history of spam accounts. However,
the classification is very simple. When an account received
a benign wall post from one of their connections (friends),
they automatically considered that account as being legitimate
but compromised. The problem with this technique is that
previous work showed that spam victims occasionally send
messages to these spam accounts [10]. This would cause
their approach to detect legitimate accounts as compromised.
Moreover, the system needs to know whether an account has
sent spam before it can classify it as fake or compromised.
Our system, on the other hand, detects compromised accounts
also when they are not involved in spam campaigns. As an
improvement to these techniques, Gao et al. [11] proposed a
system that groups similar messages posted on social networks
together, and makes a decision about the maliciousness of the
messages based on features of the message cluster. Although
this system can detect compromised accounts, as well as fake
ones, their approach is focused on detecting accounts that
spread URLs through their messages, and, therefore, is not
as generic as COMPA.

Thomas et al. [14] built Monarch to detect malicious
messages on social networks based on URLs that link to
malicious sites. By relying only on URLs, Monarch misses
other types of malicious messages. For example, our previous
work [15] illustrates that COMPA detects scams based on
phone numbers and XSS worms spreading without linking
to a malicious URL.

WARNINGBIRD [13] is a system that detects spam links
posted on Twitter by analyzing the characteristics of HTTP
redirection chains that lead to a final spam page.

Xu et al. [32] present a system that, by monitoring a
small number of nodes, detects worms propagating on social
networks. This paper does not directly address the problem of
compromised accounts, but could detect large-scale infections
such as koobface [33]. Chu et al. [34] analyze three cate-

gories of Twitter users: humans, bots, and cyborgs, which are
software-aided humans that share characteristics from both
bots and humans. To this end, the authors use a classifier
that examines how regularly an account tweets, as well as
other account features such as the application that is used to
post updates. Using this paper’s terminology, compromised
accounts would fall in the cyborg category. However, the
paper does not provide a way of reliably detecting them,
since these accounts are often times misclassified as either
bots or humans. More precisely, their true positive ratio for
cyborg accounts is only of 82.8%. In this paper, we showed
that we can detect such accounts much more reliably. Also,
the authors in [34] do not provide a clear distinction between
compromised accounts and legitimate ones that use third-party
applications to post updates on Twitter.

Yang et al. [35] studied new Twitter spammers that act
in a stealthy way to avoid detection. In their system, they
use advanced features such as the topology of the network
that surrounds the spammer. They do not try to distinguish
compromised from spam accounts.

Recent work in the online abuse area focused on detecting
accounts that are accessed by botnets, by either looking at
accounts that are accessed by many IP addresses [36] or by
looking at accounts that present strong synchronized activ-
ity [37]. COMPA can detect compromised accounts that are
accessed by botnets as well, but has the additional advantage
of being able to identify and block hijacked accounts that are
used in isolation.

10 Conclusions

In this paper, we presented COMPA, a system to detect com-
promised accounts on social networks. COMPA uses statistical
models to characterize the behavior of social network users,
and leverages anomaly detection techniques to identify sudden
changes in their behavior. The results show that our approach
can reliably detect compromises affecting high- profile social
network accounts, and can detect compromises of regular
accounts, whose behavior is typically more variable, by ag-
gregating together similar malicious messages.
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