
BOTection: Bot Detection by Building Markov Chain Models of
Bots Network Behavior

Bushra A. Alahmadi
University of Oxford, UK

bushra.alahmadi@cs.ox.ac.uk

Enrico Mariconti
University College London, UK
enrico.mariconti.14@ucl.ac.uk

Riccardo Spolaor
University of Oxford, UK

riccardo.spolaor@cs.ox.ac.uk

Gianluca Stringhini
Boston University, USA

gian@bu.edu

Ivan Martinovic
University of Oxford, UK

ivan.martinovic@cs.ox.ac.uk

ABSTRACT
Botnets continue to be a threat to organizations, thus various ma-
chine learning-based botnet detectors have been proposed. How-
ever, the capability of such systems in detecting new or unseen
botnets is crucial to ensure its robustness against the rapid evo-
lution of botnets. Moreover, it prolongs the effectiveness of the
system in detecting bots, avoiding frequent and time-consuming
classifier re-training. We present BOTection, a privacy-preserving
bot detection system that models the bot network flow behavior
as a Markov Chain. The Markov Chains state transitions capture
the bots’ network behavior using high-level flow features as states,
producing content-agnostic and encryption resilient behavioral
features. These features are used to train a classifier to first detect
flows produced by bots, and then identify their bot families. We
evaluate our system on a dataset of over 7M malicious flows from
12 botnet families, showing its capability of detecting bots’ network
traffic with 99.78% F-measure and classifying it to a malware family
with a 99.09% F-measure. Notably, due to the modeling of general
bot network behavior by the Markov Chains, BOTection can detect
traffic belonging to unseen bot families with an F-measure of 93.03%
making it robust against malware evolution.

KEYWORDS
Malware; Botnet; Network Security; Malware Detection

ACM Reference Format:
Bushra A. Alahmadi, Enrico Mariconti, Riccardo Spolaor, Gianluca Stringh-
ini, and IvanMartinovic. 2020. BOTection: Bot Detection by BuildingMarkov
Chain Models of Bots Network Behavior. In Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security (ASIA CCS’20),
June 1–5, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3320269.3372202

1 INTRODUCTION
Botnets are the source of many Internet threats such as information
or credit card theft (e.g. Aurora [5]), network service disruption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’20, June 1–5, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6750-9/20/06. . . $15.00
https://doi.org/10.1145/3320269.3372202

through DDoS (e.g. DDoS on Estonia [22]), email spam (e.g. Geodo),
ClickFraud (e.g. ClickBot), and spreadingmalware (e.g. Zeus). 10,263
malware botnet controllers (C&C) were blocked by Spamhaus Mal-
ware Labs in 2018 alone, an 8% increase from the number of botnet
C&Cs seen in 2017.1 Cybercriminals are actively monetizing bot-
nets to launch attacks, which are evolving significantly and require
more effective detection mechanisms capable of detecting those
which are new or unseen.

Botnets rely heavily on network communications to infect new
victims (propagation), to communicate with the C&C server, or
to perform their operational task (e.g. DDoS, spam, ClickFraud).
Hence, network-based botnet detectors have been an active research
area aiming to either detect the C&C server and its communica-
tions [8, 15, 33], detect the infected machines (bots) [1, 13, 14], or
detect the botmaster [16]. Although previous work that consid-
ers network communication patterns exists [1, 6, 13, 14, 33], as
identified by Vormayr et al. [34], these either require unencrypted
network traffic (e.g. [13]), multiple bot infections on the network
(e.g. [13–15]), active propagation through scanning (e.g. [14]), or
do not consider local bots attacking local targets (e.g. [14]). Impor-
tantly, some proposals lack a classifier’s performance evaluation
in detecting unseen bots — bots not used in training the classifier.2

This is crucial in determining the classifiers’ performance over time
in detecting new bot families, and whether costly re-training of
classifiers is needed.

Botnets tend to launch their attacks in bursts [11, 29], meaning
they send multiple network connections in a short amount of time.
This provides an opportunity to model the bot network behavior as
a sequence of flows for bot detection. Recent work [19, 24] shows
the effectiveness of building Markov Chains from the sequence
of Android API calls for malware detection that can maintain its
detection capabilities over time. Similarly, modeling bot network
connections as a Markov Chain not only can provide insights on
bot behavior, but can be used to build machine learning classifiers
capable of detecting new bot families.

In this paper, we draw on the strengths of previous work and
investigate the efficiency of applying Markov Chains to represent
bot network communications sequence. We first explore the bursty
nature of bots, to determine how frequently bots send network
traffic. We then explore the discrepancies between bot network con-
nections and those produced by benign applications. Bot network

1Spamhaus Botnet Threat Report 2019 - https://www.deteque.com/app/uploads/2019/
02/Spamhaus-Botnet-Threat-Report-2019.pdf
2A comparative analysis of related work is given in Section 6.

https://doi.org/10.1145/3320269.3372202
https://doi.org/10.1145/3320269.3372202
https://doi.org/10.1145/3320269.3372202
https://www.deteque.com/app/uploads/2019/02/Spamhaus-Botnet-Threat-Report-2019.pdf
https://www.deteque.com/app/uploads/2019/02/Spamhaus-Botnet-Threat-Report-2019.pdf

traffic is then modeled using Markov Chains to explore its strength
in capturing bots’ network communication behavior during its C&C
interactions, propagation stage, and attack operations.

To evaluate the effectiveness of applying Markov Chains for bot
network connections, we propose BOTection, a novel system that
detects infected hosts (bots) on a network by monitoring their net-
work communication. We consider all types of malware-infected
hosts that communicate with a command and control server (e.g.
ransomware). In designing BOTection, we consider its real-world ap-
plication by using light-weight high-level network flow features, en-
abling large-scale network analysis and resiliency against encrypted
traffic. BOTection models are topology and protocol independent,
enabling the detection of any type of bot network activity. BOTec-
tion does not require multiple bot infections on the network for
detection. Instead, it focuses on detecting the various operational,
propagational, and C&C bot communications, thus rendering it
capable of detecting individual bots on a network. To foster further
research, we open-source the implementation of our system. 3

Our experimental results demonstrate that Markov Chains’ state
transitions capture the discrepancies between how bots use net-
work communications to launch their attacks compared to normal
use by benign applications. Hence, it can be effectively used to train
supervised machine learning classifiers to distinguish between be-
nign and bot network connections (bot detection). Importantly, the
state transition discrepancies between bots and benign traffic led to
BOTection detecting network communications belonging to unseen
bots that launch similar attacks to known bots with 93% F-measure.
Moreover, our system maintained its detection capabilities over
time, even detecting malware emerging three years later.

We considered a real world application of BOTection: once a ma-
licious network connection is detected, a security analyst’s first ac-
tion is to determine if that connection belongs to a known malware
family (bot family classification). BOTection is capable of inferring
from a bot connection the specific knownmalware family it belongs
to with a 99% F-measure. This assists the analyst in choosing the
best deterrence mechanism for a fast incident response.

2 BOTECTION SYSTEM DESIGN
BOTection system first detects a bot’s network activity, then classi-
fies such activity to a particular bot family. In designing BOTection,
we consider its use in the real world. For example, organizations
may deploy middle-boxes that intercept their network communi-
cations, thus allowing the deployment of content-based detection
mechanisms. Alternatively, some organizations outsource their se-
curity monitoring to third parties (Managed Security Service Provider
- MSSP), due to lack of cybersecurity expertise or to avoid high
security investments [23]. However, these organizations require
communications privacy, thus content inspection technologies are
discouraged. Therefore, using non-privacy invasive features is cru-
cial to foster BOTection’s adoption in scale.

Considering the limitations of existing approaches, we identify
five main design goals that the BOTection system has to fulfill:
1 resilience to obfuscation/encryption by avoiding deep packet
inspection (Section 2.1), 2 privacy preservation (Section 2.2), 3
independence of network topology and protocol (Section 2.2), 4

3https://github.com/balahmadi-Ox/botection

high detection and family classification accuracy (Section 4.2, 4.1),
and 5 capability of detecting unseen bots by capturing general
bot network behavior (Section 4.2). We show the BOTection system
in Figure 1, describing in this section its modules and how design
goals were considered.

2.1 Network Flow Reassembly
Previous work (e.g. [27, 33]) used a high-level representation of
the network (NetFlow) that are easier to obtain than full network
dumps (for privacy concerns) and ensuring resiliency to encryption.
Similarly, BOTection reassembles the network communications of
the bot traces to flows, extracting content-agnostic features — ful-
filling design goal 1 . Hence, data required for supervised machine
learning training are accessible, which is critical for the adoption
of the system at scale.

A flow is a sequence of packets from a source host/port to a
destination host/port that belongs to a unique TCP/UDP session.
Thus, all packets in a flow are either going to (or coming from) the
same destination IP address/port. We use the Zeek Network Analysis
Framework (previously known as Bro)4 to perform the network
flow reassembly. Zeek generates 27 statistical and behavioral logs
about the network communication as well as the application level
protocols and exchanged payload of each network flow. As input,
Zeek takes the captured PCAP network traces and generates a
number of logs.5 BOTection utilizes features provided in conn.log,
one of the logs generated by Zeek.

Before building the Markov Chains, we split the traffic to win-
dows of flows of length n. Specifically, in network security applica-
tions, the length of the flow window determines how often network
flows are sampled for detection. Usually, in such systems, the traffic
is separated to time windows, meaning the system reports detec-
tions in a fixed amount of time (e.g. 5 min). Bots are known to
send traffic in bursts [11, 29], thus instead we split the conn.log to
sub-logs each containing n number of flows (bursts of n-flows).

2.2 Connection States Extraction
To build a Markov Chain, we need to first identify its states. Hence,
we use as states the behavioral features provided by Zeek in the
conn.log, some which were previously used for malware family
classification [4]. We build two types of Markov Chain models:
one using conn_state as states and one that is a combination of
conn_state, service, and protocol. It is worth noting that we avoid
using statistical features that may be susceptible to malware evolu-
tion [10]. We describe the two type of states used in the following.

Conn_state — Zeek represents the network flow connection
state (conn_state) using 13 different states, described in Table 1.
Conn_state depicts the status of a bot’s communication flows. For
example, if a bot sends a TCP scan that was rejected by the receiver,
the connection state will be REJ .

Protocol, Service, and Conn_state (PSC) — PSC is a compos-
ite of the conn_state attribute, connection network protocol (e.g.
TCP/UDP/ICMP) and application protocol or service (e.g. DNS). An
example of such a state is (udp |dns |S0).

4The Zeek Network Security Monitor - https://www.zeek.org
5This step is not required when the network trace is pre-assembled using Zeek.

https://www.zeek.org

1. Network Flow Reassembly
(Using Zeek)

PCAP

2. Connection
State Extraction

3. Markov Chain Modeling

REJ S0

State Transition Matrix

S0
S1

SF
REJ

OTH

..
.4

.2

.6

.8 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

..

S0
S1

SF
REJ

OTH

..
.4

.2

.6

.8 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

..

S0

S0 S1

S1

SF

SF

REJ

REJ

OTH

S2 OTH

..

..

.4

.2

.6

.8 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

..

(REJ,REJ) 4

(REJ, S0) 6

(S0, REJ) 2

(S0,S0) 8

(OTH,OTH) 0

Extract conn_state and
calculate the state

 transition frequencies

n

Flows in conn.log split to windows
of length n

F1 80 TCP HTTP S0
F2 53 UDP DNS REJ
F3 53 UDP DNS REJ
F4 53 UDP DNS REJ
…
Fn 80 UDP HTTP S0

conn.log
Zeek

m2

(S
0,

S0
)

(S
0,

S1
)

...(R
EJ

,R
EJ

)

(O
TH

,O
TH

)

m1

m3
...
..
mi

.8 0 0.4
p
p

p

p
..

p p

pp p

p

p
p

p p p
p

..

..

..

..

..

..

Cl
as

s

B
B
M
M

M

Markov Chain State
Transitions Dataset

4. Detection (Binary Classifier)
 Family Classification (Multi-Class Classifier)

Binary
Classifier

Malicious?Benign

Multi-Class
 Classifier

Training Multi-Class
 ClassifierKnown

Bot Families

Bot Detection Model

Bot Family
Classification Model

No

YES

Bot Family

Training set

Training set

Known, Unseen Bot
Families & benign

Training Binary
 Classifier

Testing set

3 Testing Binary
 Classifier

1

2
5

4 Result of Binary
Classifier

Result of Multi-Class
Classifier

...

Figure 1: Overview of BOTection System. (1) Convert PCAPs to logs using Zeek, then split each log to sub-logs of n flows.
(2) Extract the features (e.g. conn_state), producing a key-value store of state transitions and their frequency. (2) Use the state
transition frequency to buildMarkov Chainmodels and produce a feature vector for each sub-log. (4) Detect malicious n-flows
then classify it to a bot family.

Conn_state provides a more abstracted representation of the flow
while PSC provides more granularity to the flow behavior. Although
the PSC feature might provide a more detailed representation of the
network flow behavior, we need to consider the number of states
for the Markov Chain model. Conn_state could have 13 different
values, resulting in 132 = 169 Markov Chain state transitions used
as features. In contrast, PSC may have various combinations of
letters, resulting in over 14641 state transitions.

For each type, we extract the state transitions and calculate their
frequency (number of times the state transition occurred within a
window n). A state transition represents the connection states of
two consecutive network flows in the log. As shown in Figure 1,
the connection state transition from f1 to f2 is S0 → REJ (for
conn_state) and tcp |http |S0 → udp |dns |REJ (for PSC). We store
these state transitions for each sub-log as a key-value pair (i.e.
key = (S0, REJ) and the value is the frequency = 2). These state
transitions are extracted from flow headers and are thus resilient to
encryption and privacy preserving — fulfilling design goals 2 , 3 .

2.3 Markov Chain Modeling
Markov Chains model sequences of events named states s ∈ S ,
where S is the set of all possible states. Markov Chain models are
represented as a set of nodes (states) and edges between the nodes
labeled with the corresponding transition probabilities. Markov
Chains are memoryless, meaning the transition from state si to
state si+1 is dependent only on the current state si . The transition
probabilities are calculated by observing the frequencies of each
transition from each state sl ∈ S to state sj ∈ S , normalized by the

total number of transitions that start from node sl . The sum of all
the transition probabilities of the edges starting from any node (e.g.
sl), is one. The number of transition probabilities is the square of
the number of states, as each state can be connected to all other
states, including itself.

As an example, in Figure 2 we illustrate the Markov Chain of
network communication for theNeris bot family using conn_state as
the feature type. Neris performs port scanning; thus the sequences
start from an OTH packet to get to either S0 (attempt to establish a
connection, no reply), or REJ (connection rejected), or SF, where
the connection is established. The probabilities of transition are
given by the normalization of the occurrences of the transitions
between OTH and the other three states. The graph demonstrates
the port scanning behavior of this family, where connections were
attempted and sometimes were successful (P = 0.2), sometimes
rejected (with similar probability for this sample) and in all the
other cases were ignored (P = 0.57).

BOTection uses Markov Chains to generate the feature vectors
used for classification. Using the state transition frequencies (key-
value store), we compute the transition probabilities. This is rep-
resented as the state transition matrix for each sub-log. We then
represent each sub-log as a vector with all possible state transitions
(i.e. keys from the key-value store) representing the features (i.e.
columns). The feature vectors of all sub-logs represent our dataset.
For example, if the feature type is conn_state, then the states in the
Markov Chain model are those defined in Table 1. The 13 different
conn_state states result in 169 transitions. Hence, for each sample
sub-log, the probability of transition from one state to the other in
the Markov Chain represents the feature vector for that sample.

OTH S0 SF REJ0.58
0.22

0.2 tcp|smtp|S1
udp|dns|SF

tcp|ssl|SF
tcp|smtp|SF

0.65 0.24

0.59

0.33
0.98

0.44 0.48

Figure 2: Markov Chain for Neris ICMP port scanning (left) and Zeus C&C (right)

Table 1: Description of theflow connection state (conn_state)
feature obtained from Zeek conn.log logs.

State Description

S0 Connection attempt seen, no reply.
S1 Connection established, not terminated.
SF Normal establishment and termination.
REJ Connection attempt rejected.
S2 Connection established and close attempt by originator

seen (but no reply from responder).
S3 Connection established and close attempt by responder

seen (but no reply from originator).
RSTO Connection established, originator aborted (sent a RST).
RSTR Responder sent a RST.
RSTOS0 Originator sent a SYN followed by a RST,

but did not receive a SYN-ACK from the responder.
RSTRH Responder sent a SYN ACK followed by a RST,

we never saw a SYN from the originator.
SH Originator sent a SYN followed by a FIN,

we never saw a SYN ACK from the responder.
SHR Responder sent a SYN ACK followed by a FIN,

we never saw a SYN from the originator.
OTH No SYN seen, just midstream traffic.

2.4 Classification
Using feature vectors of Markov Chain state transitions belonging
to bot and benign samples, we train supervised machine learn-
ing models. Particularly, we use an ensemble classifier known to
overcome over-fitting issues. Since our system carries out two sub-
sequent tasks (i.e. bot detection and bot family classification), we
adopt two different classification approaches discussed in the fol-
lowing.

Binary Classifier (Bot Detection Model) — Binary classifica-
tion aims at partitioning the samples in the feature space in two
distinct and complementary sub-spaces. The partition is done in
such a way that a sub-space includes samples of a class while the
complementary sub-space includes the samples of the other class. In
our system, the classifier is trained using n-flow samples of known
malware families and benign traffic. The trained model is then used
to classify an n-flow into either the bot class (i.e. Malicious) or the
benign class (i.e. not Malicious).

Multi-Class Classifier (Bot Family ClassificationModel) —
Since our family classification task aims at discriminating between
malicious flows of different bot families, we rely on a classifica-
tion approach that partitions the feature space in multiple non-
overlapping sub-spaces. The multi-class classifier in our system
is trained using malicious n-flows belonging to multiple families.
Thus, once an n-flow is classified as malicious by the Bot Detection
Model, it is then attributed to a malware family by the Bot Family
Classification Model.

3 EXPERIMENTAL SETUP
We implement the system as a Python 2.7 application using the
Scikit-learn library. 6 The experiments were conducted on a 40-core
processor with 128GB RAM and 20G disk space, Centos OS. We
open-sourced the implementation of our system as a contribution. 7
We design the following experiments to determine BOTection’s
capability in modeling bot network communication, that can be
used for bot detection and family classification.

Bot and Benign Communication Patterns (results in Sec-
tion 4.1) — We model the bots’ and benign communications as a
Markov Chain to identify bots’ network behavior and explore the
discrepancies in bot and benign state transitions.

Bot Detection (results in Section 4.2 and Section 4.3) — We
build and evaluate two bot detection classifiers to: 1 detect known
bots and 2 detect previously unseen bots. The objective of the
unseen bot classifier is to assess the classifiers’ genernalylizability in
detecting communication for bot families that were not considered
in classifier training. We also attempt to answer the question ‘What
if a few wrong flows end up within the window n? ’ Hence, we study
the effect of injecting benign flows into the malicious n-flows on
the system detection.

Bot Family Classification (results in Section 4.4) — We iden-
tify network communications that are unique to each bot family.
Thus, once an n-flow is identified as malicious by the bot detec-
tion classifier, we evaluate the multi-class classifier’s accuracy in
classifying these malicious n-flows to a bot family.

3.1 Datasets
We use two datasets to evaluate the binary classifier (bot detection)
and multi-class classifier (bot family classification). In Table 2, we
show the number of malicious flows (both datasets) and benign
flows (ISCX only) and the percentage of flows belonging to each
family. We also show in Table 7 the bot families and the various
bot attacks captured in our datasets.
ISCX Botnet Dataset — for Binary Classifier. This dataset con-
tains malicious and benign traffic and is split into training and
testing sets with 5 and 13 bots respectively, where 8 bot families
in the testing set were not used to train the classifier (unseen bots).
We use this dataset to train and evaluate the binary classifier us-
ing malicious and benign network traces, in detecting unseen bots.
This is due to the testing set containing bot families that were not
present in the training set. The dataset contains traffic from 5283
and 9896 benign hosts for training and testing respectively with
27 bot-infected hosts. The benign traffic in the dataset contains
activities such as SSH, HTTP, Web browsing, World of Warcraft
gaming, bit-torrent clients such as Azureus, web and email traffic

6Scikit-learn: machine learning in Python - https://scikit-learn.org/
7https://github.com/balahmadi-Ox/botection

Table 2: Datasets used for evaluation - ISCX contains bot and benign flows used in binary classifier, MCFP contains bot traffic
only for multi-class classifier.

Dataset #Flows Bot Families

ISCX
Botnet
Dataset

Training
- 6,925,812 flows
- 43.92% Malicious

Testing
- 5,040,068 flows
- 44.97% Malicious

Training: Neris (12%), Rbot (22%), Virut (0.94%), Zeus (0.01%), Zeus C&C (0.01%)

Testing:
Known Bots — Neris (5.67%), Rbot (0.018%), Virut (12.80%), Zeus (0.109%),Zeus C&C (0.006%)

Unseen Bots — Menti (0.62%), Sogou (0.019%), Murlo (0.16%), Tbot (0.283%),
Zero Access (0.221%), Weasel (9.25%), Smoke Bot (0.017%), ISCX IRC Bot(0.387%)

MCFP 7,283,060 Bot flows
Miuref (2.8%), Zeus (3.5%), Geodo (3.4%) NSIS (0.3%), Bunitu (2.7%),WannaCry (0.9%), Conficker (0.8%), Zeus C&C (8.6%),
Neris (2.8%), Rbot (4.5%), Virut (1.23%), Sality (20.7%), TrickBot (0.5%), Stlrat (5.3%), Donbot (0.07%), Papras (41.8%),
Qvod (0.1%)

and backup and streaming media, and SMTP mimicking users’ be-
havior. We refer the reader to [7] for a detailed description of the
dataset.
Stratosphere IPS Project — for Binary Classifier. This datatset
provided by The Stratosphere Research Laboratory 8 contains over
300 malware samples of current malware that was first seen in
the wild between years 2013-2018 such asWannacry, Emotet, and
BitCoinMiner. This dataset is used to verify the binary classifier’s
performance over time, thus determining the date the samples were
first in the wild was essential. We verified each samples date of
"first seen in the wild" using VirusTotal9 reports.
Malware Capture Facility Project (MCFP) and Stratosphere
IPS Project — for Multi-class Classifier. To train our multi-class
bot family classifier, we used the CTU-13 botnet traffic dataset pro-
vided by the Malware Capture Facility Project [12]. In addition, we
use the samples of newer bots (e.g. Trickbot - 2016) and ransomware
(e.g. WannaCry - 2017) collected by The Stratosphere IPS Project .
The multi-class classifier classifies detected malicious traffic to a
family, therefore, only malicious traffic (C&C communication and
bot communication) is used to train and evaluate the classifier. The
botnet families represented in the dataset employed various proto-
cols (e.g. IRC, P2P, HTTP) and various techniques (e.g. spam, DDoS),
as shown in Appendix - Table 7. The motivation for using this
dataset is that network-traces of real botnet attacks were captured,
thus generating reliable datasets for model building.

3.2 Classifier Design
For bot detection, we use a binary classifier which classifies an
observation as malicious or benign. For bot family classification,
we use a Multi-Class classifier, meaning an observation is classified
into one of multiple bot family classes. For both approaches we use
Random Forest classifiers, an ensemble method that builds a strong
classifier relying on the consensus among classification results from
a number of weak learners (i.e. estimators), thus overcoming over-
fitting issues of an individual learner. In our work, we consider a
Random Forest composed of 101 decision trees as weak learners.

To address the class imbalance in the MCFP dataset used for bot
family classification, we apply a method that balances the training
set by associating a weight to samples of a specific class according
to the number of samples that class includes. Hence, it associates

8https://stratosphereips.org/
9www.virustotal.com

a higher weight to samples of under-represented classes. In the
Scikit-learn library, Random Forest classifier handles imbalanced
classification problems by setting the parameter class_weiдht =
balanced .
Window Flow Size. The window flow size represents the number
of flows in each sample in our dataset. For each sample conn.loд
in our dataset, we split the log into a number of sub-logs of size n.
Therefore when the window size n = 15, that means each observa-
tion in our final dataset contains bursts of 15 flows (15-flows for
short). We show the cumulative number of flows generated by a bot-
infected host per bot family during the first 7minutes in Figure 3. All
bots generate 15 or more flows within less than 170 seconds, then
continuously send over 15 flows each second. This confirms our
system design hypothesis that bots send traffic in bursts. To explore
the ideal window size, we experiment with various configurations
for the window n, where n = 10, 15, 20, 25, 30, 35.
Classifier Performance. To assess the performance of the known
bots binary classifier and multi-class classifier, we apply stratified
10-fold cross-validation. For the unseen bot classifier, we use the
training set to train the classifier and evaluate using the testing set
containing samples of bot families not considered in training. We
employ the evaluation measures of Precision and Recall to evaluate
classifiers’ performance. For the binary classifier, we also measure
the False Positive Rate (FPR) and the False Negative Rate (FNR).

4 RESULTS
4.1 Bot and Benign Communication Patterns
To understand the discrepancies of benign and bot network flows,
we visualize the average Markov Chain conn_state state transitions
in Figure 4 for bot and benign samples. Benign state transitions are
concentrated on a few state transitions compared to bots, which
are more diverse. There are similarities in both, which is due to
how the Internet works and similarities in the traffic. For example,
although both have a high transition probability for OTH → OTH ,
the diversity of the states in a bot’s n-flow makes it detectable. Bots
generate more unique connection state sequence behavior that
benign traffic does not attempt.
Bot Traffic Over Time. We show the overall amount of traffic
by each bot family in Table 2 over time in Appendix - Figure 12.
The majority of the bot families constantly produce a significant
amount of network traffic during the different phases of its mali-
cious operations. To understand the various communications a bot

https://stratosphereips.org/

50 100 150 200 250 300 350 400
Time (seconds)

100

101

102

103

104
Cu

m
ul

at
iv

e
Nu

m
be

r o
f f

lo
ws

 (l
og

)
BlackHole
ZeroAccess
Menti
Murlo
Neris
Osx_trojan
RBot
SmokeBot
Sogou
TBot
Virut
Weasel
Zeus

Figure 3: Cumulative number of flows (log scale) generated by each bot family every second over a time frame of 7 minutes.

Figure 4: Average connection state transitions for net-
work communications of bot (red-upper) and benign (blue-
bottom) samples in ISCX dataset.

performs during propagation, C&C communication, and other at-
tack operations we modeled the communication as a Markov Chain.
We discuss the most prominent bot network communication found
in the MCFP dataset. In order to simplify the Markov Chain for
visualization, we show only the state transitions with probability
p > 0.1.
C&C Communication. We show Zeus’s C&C communication
Markov Chain in Figure 2. Zeus is known to initiate the communi-
cation to its C&C by sending aGET message, receiving a reply with
the encrypted configurations. Zeus then sends encrypted stolen in-
formation via a POST message [9]. This can be seen in the Markov
Chain with the HTTP connection with state SF followed by an

SSL connection with p = 0.44. Following the SSL state, the bot
establishes a connection with the C&C (p = 0.98) that is terminated
by the bot.
SMTP Spam. Multiple bots in our dataset send email spam, specif-
ically Neris, Sality and Geodo. For brevity, we show the average of
all the Markov Chains for the Geodo bot performing email spam in
Figure 11. We found 29, 575 Simple Mail Transfer Protocol (SMTP)
flows in our dataset for Geodo. Overall, there are 2 types of SMTP
connections found. One was not terminated (SF), whilst the second
was terminated by a FIN bit sent by both ends (S1). These two types
were captured in the Markov Chain model, showing the next state
after a completed SMTP connection is a DNS connection (P = 1),
whilst an unterminated connection will either (1) remain in the
same state (P = 0.41), (2) receive a SYN Ack followed by a FIN
from destination (tcp | − |SHR)(P = 0.27), (3) make a DNS request
(P = 0.32).
Port Scanning. We were also able to identify ICMP port scanning
(Figure 2), where an ICMP connection flow with conn_state OTH
is followed by a UDP flow with states S0, or a TCP connection
with conn_state SF or REJ . Bot families Rbot, Neris, Virut, Qvod, and
Donbot all perform port scanning and have shown to have similar
state transitions.
DDoS. We are also able to observe two types of DDoS attack, TCP
and ICMPDDoS in Rbot. DDoSwas observed as multiple connection
requests sent to a single host, where these requests could be an
ICMP request or TCP request. For ICMP DDoS, the bot establishes
an ICMP request which has a conn_state OTH , whilst TCP DDoS
connections have conn_state REJ .

4.2 Performance of Binary Classifier
Classifier Performance. We show the performance of the binary
classifiers in detecting known and unseen bots in Figure 5, with the
flows’ conn_state and PSC as Markov Chain states. When analyzing
the known bots, the flow window had no effect on the classifier
performance and the classifier performed well (99% F-measure).
However, when we try to identify unseen bots the detection per-
formance varies based on the window size: larger window sizes
allow a better identification in the PSC while smaller ones work
slightly better for conn_state. Overall, conn_state works best for
the goal of detecting network connections belonging to unseen
bots. Specifically, for detecting unseen bots, conn_state had the

best performance with a detection rate of 93.03%, when n = 15. In
contrast, using PSC as a feature yielded a better accuracy (91.06%)
when (n = 35).

We also report the FPR and FNR for each classifier in Table 3.
The Unseen Classifier performed best when n = 10,n = 15 with
0.4% and 5.87% FPR respectively. The FPs originated from only a
small number of hosts and for specific cases. We discuss this in
more detail in Section 5.1.
Classifier Performance Based on the Type of Feature. Clearly,
conn_state performance was best in detecting known (F-measure=
99.78%), and unseen bots (F-measure= 93.03%) compared to PSC
where detection efficiency was high for unseen bots only when the
burst window size was above 20.
Classifier Performance When Injecting Benign Flows. We
explore the effect of injecting random benign flows b into the bot
15-flow (n = 15) at random locations on the detection performance.
In practice, this means that we inject states that are randomly
selected among the most frequent conn_states in benign traffic, as
reported in Section 4.1 and shown in Figure 4. For example, REJ
conn_state was not injected in this experiment as it rarely occurs
in benign traffic.

In this experiment, we injected benign flows (i.e. b random be-
nign conn_states), in the malicious 15-flows. For example, for 15-
flow ofmalicious flows, we can inject 2 benign flows (b = 2), meaning
that the other 13 flows are malicious (m = 13), where (n = b +m).
We conducted experiments with various configurations of b andm.
For each configuration, we repeated the experiment 40 times, and
obtained the average of number of detected malicious flows by the
known bot classifier.

We show the results of this experiment in Figure 6. The x-axis
represents the number of benign flows injected b. For example,
when less than 4 benign flow was injected (b = 4, m = 11), the
classifier was capable of detecting 80% of the 15-flows even after
injecting a random state into the sequence. This may be due to the
diversity of the states in a bot n-flow, as discussed in 4.1.

4.3 Classifier Performance Over Time
Machine learning detectors need to maintain their performance
over time to facilitate real world application. This is crucial to pre-
vent the costly re-training of classifiers and ensuring its detection
capability to new malware. As such, we conduct an experiment
using current malware from the Stratosphere IPS dataset.

In training and testing the classifier, we take into consideration
the Temporal Training Consistency, where all samples in the training
are temporally precedent to samples in the testing set [25]. Thus
we split the test set, depending on the year the malware was "first
seen", which was verified from VirusTotal reports.

We show the results of training the binary classifier (n = 15) in
Table 4. Interestingly, the classifier’s performance over time is 86%
when trained with samples appearing before 2015. However, the
classifier performance increases to 98% when trained with samples
appearing after 2015. These results show that the binary classifier
generalizes well enough to not be affected by the temporal bias
problem defined in [25]. This means that our classifier (i) can detect
traffic from previously unseen bot families, and (ii) is robust over
time, thus it does not need to be frequently re-trained.

10 15 20 25 30 35
1uPbeU of)lows

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

si
fie

U 3
eU

fo
UP

an
Fe

 (%
)

FonnBstate, .nown %ots
FonnBstate, 8nseen %ots
pUoto-seUviFe-FonnBstate, .nown %ots
pUoto-seUviFe-FonnBstate, 8nseen %ots

Figure 5: Binary classifier F-measure for detecting
known/unseen bots for each state type.

Table 3: False Positive Rate (FPR), False Negative Rate (FNR)
of the known and unseen classifiers for each value n.

Classifier n conn_state PSC
FPR FNR FPR FNR

Unseen Bots 10 0.004 0.111 0.353 0.256
15 0.060 0.096 0.386 0.055
20 0.100 0.074 0.407 0.056
25 0.093 0.073 0.175 0.043
30 0.079 0.065 0.142 0.030
35 0.097 0.067 0.142 0.026

Known Bots 10 0.003 0.000 0.002 0.003
15 0.003 0.001 0.001 0.002
20 0.004 0.001 0.001 0.008
25 0.008 0.001 0.003 0.001
30 0.004 0.001 0.000 0.000
35 0.001 0.000 0.002 0.009

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1o.)lows InjeFted

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%o
t n

-Il
ow

s
de

te
Ft

ed
 (%

)

% deteFted

Figure 6: Percentage of bot 15-flows detected when we inject
b benign flows in the sequence.

4.4 Performance of Multi-Class Classifier
Markov Chain Models. Due to space limitations, we show the
Markov Chain state transitions for the conn_state feature in Fig-
ure 7 for some bot families. Highlighting only the most important
state transitions for each bot family, we show in the figure only
state transitions with probability > 0.6. We notice that connection
transition SF → SF and S0 → S0 are seen in most bot connections.
Having an SF → SF is expected, as bots will typically have normal
connections.

Figure 7: Markov Chain Model Transition Probabilities of the conn_state feature for each botnet family. For brevity, we show
only transition probabilities greater than 0.6. For example, Virut had a high transition probability between states S1 and REJ.

Table 4: Binary Classifier Performance: F1 (F-measure), Pre-
cision (P) and Recall (R) over time with Temporal Training
Consistency. We train the classifier using bot samples first
seen in the years precedent of the samples in the testing set.

Training
set

Testing set
2015 2016 2017 2018

F1 P R F1 P R F1 P R F1 P R
Pre 2015 .86 .89 .87 .87 .89 .87 .86 .89 .87 .86 .89 .87
Pre 2016 - - - .987 .987 .987 .983 .983 .983 .982 .982 .982
Pre 2017 - - - - - - .981 .982 .981 .981 .981 .981
Pre 2018 - - - - - - - - - .989 .989 .989

Classifier Performance. We show in Figure 9 the performance
of the multi-class bot classifier for each of our connection state
types. When the flow window size is at least 20, the scores are
stable and close to 100. Our classifiers performs well, reaching
98% F-Measure score for bot family classification when n = 20,
reaching its maximum 99.09% when n = 35. The conn_state feature
performs very well independently from the window size value,
while the other feature sets had these performances with n ⩾ 20.
We show the classifier’s performance in more detail per bot family
when n = 20 in Figure 8. As discussed in 3.2, we take precautions to
ensure that the classifier is not impacted by the imbalanced training
set. This is shown in Figure 8, as the classifier maintained a high
precision per bot family. We observe that the Geodo bot is the only
family presenting an F-Measure score less than 90%, with some
connections misclassified to either Bunitu or Stlrat.
Classifier Performance Based on Type of Feature. Conn_state
performed the best across the various window sizes, however, we
find that PSC might provide a more complete representation of
a bot’s behavior. For example, we observed for Virut that state
transitions from S0 to S0 for TCP flows were of a spam attack.
However, when the bot used a UDP connection for DNS services
(udp |dns |S0 → udp |dns |S0), it indicated that it is sending DNS
queries. While these differences are transparent to the conn_state
features, they are shown by the PSC. The email spamwas confirmed

when we uncovered that the destination port was port 25. Hence,
in certain attacks, destination port, service, and protocol are crucial
to distinguish types of attacks with similar state transitions.

5 DISCUSSION
5.1 Understanding Classifiers’ Errors
Binary Classifier: False Positives.We focus our discussion here
on the performance of the binary classifier (for unseen bots). The
classifier misclassified 20561 (5.87%) benign n-flows of the testset
as malicious. In a real world setting, a defender (e.g. analyst) needs
to know which are the infected hosts, in order to remove them
from the network. The process of investigating FPs is known to
be a tedious tasks for analysts [29]. However, we found that the
falsely-labeled flows originated from only a small number of hosts
(FPR > 0.1) — 36 out of 1164 benign hosts, as shown in Figure 10.

For example, benign host IP = 10.0.0.254 had the highest percent-
age of FPs, where 87% of its benign traffic was flagged as malicious.
The misclassified n-flows had either only conn_state OTH or S0
— a state transition that we found to be high in both benign and
malicious (Figure 4). The FPR could be improved by white-listing
connection states that are highly present in benign and malicious
flows or n-flows containing only one kind of state (e.g. only OTH).
Therefore, although the FPR might look high, investigating these
false positives is a rather reasonable load for a security defender.
Binary Classifier: False Negatives. We attempt to understand
the misclassification of bot flows to benign of the unseen binary
classifier. In Table 5, we show the number of false negatives for
each bot family, where n = 15. Over the 136, 288 bot 15-flows in
our testing dataset, 8124 were misclassified as benign. Interestingly,
Virut bot produced the highest number of False Negatives, although
the bot family was considered in the training set. 99.87% of the mis-
classification for Virut are 15-flows with three connection state
transitions (4 RSTRH → S0, 4 S0 → RSTRH , and 7 S0 → S0).
These misclassified connection states represent Virut’s IRC commu-
nication and spam behavior. Virut sends IRC communication to port
6667 with conn_state = RSTRH followed by sending spam on port

ZeusC&C Neris
WannaCry TrickBot Bunitu Virut Miuref Geodo Stlrat Rbot

Conficker NSIS Qvod Donbot Papras Zeus Sality
0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Pe
rfo

rm
an

ce

Performance metrics
Precision
Recall
F-measure

Figure 8: Multi-Class classifiers’ performance per bot family (n=15).

10 15 20 25 30 35
No. Flows

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ie

r P
er

fo
rm

an
ce

 (%
)

Feature: conn_state

F-Measure
Precision
Recall

10 15 20 25 30 35
No. Flows

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ie

r P
er

fo
rm

an
ce

 (%
)

Feature: protocol-service-conn_state

F-Measure
Precision
Recall

Figure 9: Multi-Class classifiers’ performance for each
Markov Chain state feature type.

25 with conn_state = S0. Such state transitions were not seen in the
training set for Virut and other bot families, while present in 57%
of the testing set explaining the misclassification. On examining
these misclassified flows, we found that in our training set, Virut
attempts to establish an IRC connection by sending packets to a
server that either rejects the connection (REJ or S0) or accepts the
connection (SF). In contrast, the testing set contains unsuccessful
IRC connections (S0) to the server followed by a RSTRH response
from the server (meaning the connection was timed out). Hence,
this is not a result of Virut changing its behavior but was a result
of the server delay in its reply and connection timing out.
Multi-Class Classifier. We attempt to investigate the misclassi-
fication (when n = 20) per bot family. Geodo had the lowest F-
Measure score of 84%, with some 20-flows classified to Bunitu or
Sltrat. Most flows misclassified to Bunitu are connections with only
state transition SF → SF . This explains the misclassification, as
the classifier learned that 20 consecutive SF flows is a behavior
of Bunitu, resulting in the low classification accuracy for Geodo.
However, as SF → SF state transition represents a normal network
connection, n-flows with only connection state SF should be white-
listed. Similarly, Geodo flows with only S0 → S0 transitions are
classified as Sltrat, which has the same flows.

5.2 Lessons Learned
Emerging bots are stealthy and may seek a passive propagation ap-
proach (e.g. spear phishing), avoiding noisy active propagation (e.g.
scanning) that some previous bot life-cycle detection approaches
(e.g. [1–3, 13]) expect. In Figures 2 and 11 we showed the Markov
Chain for various bot communications such as C&C communica-
tions, ICMP scanning and email spam respectively. Each bot attack
resulted in a different Markov Chain representing that attack. These
models are not only valuable in understanding bot behavior but
may be used to determine bot attack stages and whether bots do
actually follow the bot life-cycle.

Although bots share similarities in their Markov Chains, there
are still differences that make it possible to distinguish between the
network traffic of different bot families. BOTection was able to clas-
sify a n-flow to its bot family with 99% accuracy — fulfilling design
goal 4 . Each bot family had a set of uniquely identifiable Markov
Chain state transitions (Figure 7). In fact, bots may operate the same
attack in different ways. For example, Figure 11 shows the behavior
of two spam families, Geodo and Sality. They both successfully use
the TCP SMTP protocol (tcp |smtp |SF) and perform DNS queries
through UDP (udp |dns |SF), but they use them in different ways.
When Geodo successfully sends an email, it always goes back to the
DNS queries (P = 1). However, Sality is often sending many emails
in a row as state tcp |smtp |SF has 0.64 probability of returning to
itself in the next step of the chain. Another example is the Markov
Chains for Papras that shows TCP DNS requests, while normally
DNS is sent over UDP. This may be due to the DNS response or
request data size exceeding the size of a single packet. Papras flows
in our dataset contain DGA communication; this unique DNS re-
quest behavior is peculiar of Papras DGA behavior that is captured
by our system.

We explored two types of states used in theMarkovChainmodels.
Both conn_state and PSC are effective in detecting bot communica-
tions, but PSC provides a higher level of granularity. For example,
a flow with conn_state SF might be sent using either UDP or TCP,
and might be an SSL communication, a DNS request, or an HTTP
request, each representing a different flow behavior. However, PSC
has 404 state transitions compared to conn_state (132 = 169) increas-
ing the dimensionality thus the computation needed for classifier
training. We highlight the importance of evaluating the system
performance in detecting bots not used when training the classifier.
Our system was able to detect known bots with an F-measure of
99% and new bots with an F-measure of 93% — fulfilling design
goals 4 and 5 .

Bot Markov Chain models are different to benign ones as bots
have more diverse state transitions, as seen in Figure 4. Hence, BO-
Tection was able to capture bot behavior and recognize it in flows

10
.0
.0
.2
54

11
1.
89

.1
34

.9
3

17
2.
16

.2
.1
1

17
2.
16

.2
.1
12

17
2.
16

.2
.1
13

19
2.
15

0.
18

.2
00

19
2.
16

8.
1.
10

1
19

2.
16

8.
2.
10

6
19

2.
16

8.
2.
10

7
19

2.
16

8.
2.
10

8
19

2.
16

8.
2.
11

1
19

2.
16

8.
3.
11

4
19

2.
16

8.
3.
11

5
19

2.
16

8.
3.
11

6
19

2.
16

8.
3.
11

7
19

2.
16

8.
4.
11

9
19

2.
16

8.
4.
12

1
19

5.
22

8.
24

5.
1

19
8.
10

5.
19

3.
76

20
2.
23

5.
19

6.
11

7
20

2.
43

.1
95

.1
3

20
3.
69

.4
2.
35

20
3.
73

.2
4.
75

20
6.
22

0.
42

.1
81

20
8.
11

1.
16

0.
6

20
8.
11

1.
16

1.
25

4
20

9.
85

.1
35

.1
04

20
9.
85

.1
35

.1
47

64
.2
14

.2
32

.1
21

66
.2
25

.2
26

.1
1

66
.2
25

.2
26

.2
7

68
.7
1.
20

9.
20

6
72

.1
1.
13

2.
25

3
74

.8
6.
15

8.
24

4
91

.1
90

.1
70

.7
1

97
.7
4.
10

4.
20

1

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

Figure 10: Host IPs that produced the highest FPR for the
binary classifier (FPR > 0.1%)

of families not included in the training set. Markov Chain models
are robust to bot evolution due to the abstraction of network com-
munication to finite states, thus less susceptible to the introduction
of new states. Applying conn_state in the Markov Chain models
ensures that no additional states could be introduced.

We evaluated our binary classifier’s performance over time. Fol-
lowing recommendations provided in [25] to overcome the temporal
bias problem, we trained the classifier with samples first seen in
the years preceding the test samples, complying with the temporal
training consistency. We also ensured that samples in the test sets
have been seen for the first time in the same year. As we reported
in Table 4, our method maintained its performance over time with
a 98% F-measure. This ensures that a classifier can detect new bots
without frequent and time-consuming re-training.

For binary classification, we used the ISCX dataset that contains
network flows labeled (malicious/benign) according to the host gen-
erating them. We studied the effect of mixed traffic on BOTection’s
performance by injecting a benign flow in the malicious 15-flow.
BOTection was able to still detect 80% of the malicious n-flow even
when four benign flows were injected into the bots 15-flow. As
shown in Figure 3, bots have a “bursty attacks” nature that can
be seen in network traces [11, 29]. We observed that bots in our
dataset generated 15 or more flows within less than 3 minutes from
their first execution. Such bots also sent a significant amount of
flows every second during their various attack stages (see Appendix
- Figure 12). Hence, BOTection is capable of detecting a bot-infected
host during its early communications as detecting a single burst
can lead to its discovery.

5.3 Evasion and Limitations
Bots may evade detection by reducing the number of network com-
munications or increasing the time interval between them. Our
detection method relies on a bot’s bursts of network flows, thus the
detection of a stealthier bot may be a challenge. Moreover, fewer
flows may affect the reliability of the Markov Chain, as the sta-
tistical models can change. Nevertheless, we argue that most bot
operational communications (e.g. scanning, spam, DDoS) inevitably
generate communication bursts. In particular, a spam bot sends
a high number of SMTP packets in a few seconds, while a DDoS
attack misuses specific packets. Those operations result in network
communication behaviors that are different from benign user ac-
tivities. Thus, a bot would not be able to carry out its operational
communications while attempting to evade detection at the same

Table 5: Number of flows, 15 window length samples, and
number of bots per family in the ISCX testing dataset, and
the number of False Negatives (FN) for each bot family and
benign traffic.

Family
Total
Flows

15-flow
window # Hosts # FN

IRC Attack 773370 51558 8 107
Menti 13024 1628 1 8
Murlo 81135 5409 1 68
Neris 402000 2680 1 28
Osx_trojan 375 25 1 0
Rbot 116505 7767 1 10
SmokeBot 1755 117 1 0
Sogou 20625 1375 1 1
TBot 5205 347 4 5
Virut 437550 29170 1 7726
Weasel 508080 33872 2 165
ZeroAccess 19440 1296 2 9
Zeus 15660 1044 4 9
Benign 2,948,550 196570 1164 16100

time. Covert channels [35] can be used by bots (e.g. encoding the
data in TCP/IP header bits). Another evasion technique is imitating
patterns of benign communications. These patterns can be repli-
cated only to some extent (e.g. sending flows with conn_state = SF)
and for specific particular activities (e.g. a spam bot mimicking nor-
mal traffic results in sending fewer emails). Although these evasion
techniques are already implemented by some samples in the wild,
their evasion efforts might introduce constraints on their behavior,
affecting their full functionality [31].

BOTection uses states that are protocol dependent, thus an at-
tacker might attempt to evade the detection by changing the proto-
col (e.g. from TCP to UDP). However, changing the protocol limits
bot capabilities. A bot would not be able to carry out DDoS attacks
with a specific method protocol different from the original one (e.g.
ICMP ping of death, UDP Flood, SYN packets on TCP handshake).
ClickFraud uses HTTP, thus it is dependent on the TCP protocol.
Despite SMTP using TCP, UDP is also used in rare benign appli-
cations so can be easily detected by a rule-based system. Bots are
known to have similar attack objectives, thus attempting to change
its network behavior will be detected as its new behavior may be
similar to another family’s attack behavior.

As with other machine learning based approaches, a bot might
try to evade BOTection via adversarial learning techniques [17]. It
might also try to mimic the patterns of multiple families to impact
the classification. However, the main objective of malware family
classification is to identify the one that exhibits the most similar
network behavior to assist the defender in deploying proper miti-
gation. In the case of a new bot family, one solution is to classify
such malicious traffic to a “New Family” class using the confidence
of multi-class Random Forest classifiers applied previously in [32].
Thus, classifications with a confidence level below a threshold will
not be attributed to a known family but as “New Family”.

In evaluating our system, we considered its performance in de-
tecting traffic generated by bot families that were not included in
the training set. Our system was able to detect such traffic with
a 93% F-measure due to these bot families exhibiting similar attacks

Figure 11: Markov Chain for Sality (right) and Geodo (left) spam behavior (only state transition probabilities, where p > 0.1).

(e.g. DDoS) to families that are present in the training set. Hence,
unseen bots that use novel techniques (i.e. new types of attacks
that use protocols in a unique way) may not be detectable in our
system (e.g. zero-days).

6 RELATEDWORK
In reviewing the literature, we consider infected host (bot) detec-
tion and classification of malware family using network flow and
behavior modeling via Markov Chains. We refer the reader to a
comprehensive survey on botnet detectors [16].
MarkovChainModeling. Mariconti et al. in [19, 24] usedMarkov
Chains to fingerprint malicious and benign behaviors in terms of
sequences of Android API calls. In [18] Markov Chains were used
to distinguish between network packages generated by targeted
malware samples and generic ones. Abaid et al. [2] applied Markov
Chain, modeling the botnet’s infection sequence, to identify be-
havior that may lead to an attack. However, they do not consider
detection of unseen bots and rely on content-based inspection sys-
tems (e.g. Snort) to generate the Markov Chain states which do not
tolerate encrypted traffic. Mcgrew et al. [20] identified intra-flow
features, modeled as a Markov Chain, that could be used for ma-
chine learning classifiers to identify threats for encrypted traffic.
However, they did not evaluate the classifier’s performance over
time in detecting new malware families.
Malware Family Classification. Malware family classification
using network flow clustering was proposed by Perdisci et al. [26]
to derive HTTP network behavior similarities of HTTP-based mal-
ware, building malware detection models. Similarly, Firma [28]
applied clustering to generate network signatures for malware net-
work traffic detection. Mohaisen et al. [21] classified malware to
families through behavioral analysis of malware network behavior
by applying n-gram document analysis to train supervised classifi-
cation models. AlAhmadi et al. [4], propose a system that classifies
network flow sequences to a malware family using Bro/Zeek gen-
erated features. However, the feature generation process has a high
computation complexity in comparison to BOTection.
Bot Detection. BotHunter [13] explored the detection of the bot
network activities using infection dialog to detect the multiple
stages of the botnet lifecycle. As discussed in [34], BotHunter is
only effective on unencrypted network traffic and requires multiple
bot infection on the network to detect bot activity. Similarly, Bot-
Miner [14] requires multiple bot infections for detection and does
not consider active bot propagation through scanning [34]. How-
ever, it does improve on BotHunter by not requiring unencrypted
traffic. In [6], the authors extended the infection dialog proposed by
BotHunter [13] to include passive propagation mechanism such as

spam. Abaid et al. [1] analyzed botnet network behavior and iden-
tified those that are synchronized across multiple bots. However,
they only focused on the detection of spam and port scanning.

ProVeX [30] is a system that focused on the detection of C&C us-
ing encrypted communications by focusing on network messages
and extracting the C&C protocol semantics. BotSniffer [15] pro-
posed a network anomaly based botnet detection system to detect
malware (in particular botnets) C&C communication using proto-
cols such as IRC and HTTP. The approach utilizes spatial-temporal
correlation and statistical algorithms to detect strong synchroniza-
tion of hosts’ network traffic. The authors hypothesized that botnet
C&C communication has a certain pattern that is a result of pre-
programmed activities, thus hosts infected with a similar botnet
will have similar network patterns that are different from benign
hosts. However, this approach requires multiple infected bots on
the same network. DISCLOSURE [8] also aimed at detecting C&C
communication, improving detection accuracy by including black-
lists of known IP addresses and domain names of C&C servers.
However, detection of unseen bots was not evaluated [34].

BotFinder [33] is a botnet detection system that monitors net-
work traffic for C&C communication to detect bot-infected hosts.
Compared to BotSniffer [15], the approach detects individually in-
fected hosts and therefore does not require correlating network
activities of multiple hosts. Moreover, it does not rely on payload
information but high-level network data such as NetFlow in the de-
tection, thus applicable also for encrypted botnet traffic. However,
BotFinder uses statistical time-related features (e.g. time interval)
of the network flows assuming that bots use constant time inter-
vals between C&C communications. However such time-related
features are affected by the network quality (i.e. speed) and may
vary in future unseen malware variants [10]. In contrast, BOTection
uses behavioral features that are resistant against such variations,
as proven by its effectiveness in detecting unseen bots.

In Table 6, we provide a comparative analysis on BOTection and
previous work on bot detection. Specifically, we compare based on
the type of detector, its resiliency to encryption, single bot detection
capability and its evaluation of the detection performance of unseen
bots. To ensure a fair and systematic evaluation, we provide only
an empirical comparison of the detection results to previous work
that use same dataset. For example, Zao et al. [36] used the ISCX
dataset for bot detection yielding a true positive rate of over 90%
and a false positive rate under 5%. In addition, they evaluated their
system in detecting unseen bots, which, although yielding a high
detection rate, had a FPR (specifically for Weasel) of 82%. A high FP
increases the burden on analysts to filter out these false positives,
thus is not adoptable in real world settings. In contrast, BOTection
was able to achieve a high detection accuracy whilst having a low
FPR generated from only a few number of hosts. AlAhmadi et

Table 6: Comparison of previous Bot Detection Approaches
and proposed system BOTection

Approach
Type of
Detector

Encryption
Resiliency

Single Bot
Detection

Unseen
Bots

BotSniffer [15] C&C N N N
BotFinder [33] C&C Y Y N
DISCLOSURE [8] C&C Y Y N
BotHunter [13] Operation N N N
BotMiner [14] Operation Y N Y
Abaid et. al [1] C&C N N Y
Abaid et. al [2] Operation N Y N

BOTection
C&C
Operation Y Y Y

al. [4] used the CTU-13 dataset for malware family classification.
In comparison, BOTection uses a light-weight feature with a higher
classification accuracy than 96%.

7 CONCLUSION AND FUTUREWORK
We present BOTection, a novel topology and protocol-independent
system capable of detecting and classifying flows to a bot family
with a 99% accuracy. Importantly, BOTectionmodels capture similar
network behavior, thus are capable of detecting unseen bot network
behavior with 93% accuracy without re-training the classifier. We
evaluated our approach using the network communication of vari-
ous bots performing propagation, C&C communication and attacks.
Our results demonstrate the effectiveness of using Markov Chains
to understand bot network behavior for better detection. Previous
work [1, 6, 13] on botnet detection focused on detecting bot activi-
ties by modeling the bot activities using bot life-cycle, mostly using
the life-cycle proposed in [13]. In the future, we plan on using the
BOTection Markov Chain models of the various bot attack stages
to evaluate whether the previously proposed bot life-cycle is still
valid nowadays.

8 ACKNOWLEDGMENTS
Bushra A. AlAhmadi is supported by the Ministry of Higher Edu-
cation in the Kingdom of Saudi Arabia and King Saud University.
This work was supported by a grant from Mastercard.

REFERENCES
[1] Zainab Abaid, Mohamed Ali Kaafar, and Sanjay Jha. 2017. Early Detection of

In-the-Wild Botnet Attacks by Exploiting Network Communication Uniformity:
An Empirical Study. IFIP Networking (2017).

[2] Zainab Abaid, Dilip Sarkar, Mohamed Ali Kaafar, and Sanjay Jha. 2016. The Early
Bird Gets the Botnet: A Markov Chain Based Early Warning System for Botnet
Attacks. In Proc. of IEEE LCN.

[3] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. 2006. A
Multifaceted Approach to Understanding the Botnet Phenomenon. In Proc. of
ACM IMC.

[4] Bushra A AlAhmadi and Ivan Martinovic. 2018. MalClassifier: Malware family
classification using network flow sequence behaviour. In Proc. of IEEE eCrime.

[5] M Antonakakis, C Elisan, D Dagon, G Ollmann, and E Wu. 2010. The Command
Structure of theOperationAurora Botnet: History, Patterns, and Findings. Atlanta,
GA: Damballa, Inc (2010).

[6] Ayesha Binte Ashfaq, Zainab Abaid, Maliha Ismail, Muhammad Umar Aslam,
Affan A Syed, and Syed Ali Khayam. 2016. Diagnosing bot infections using
Bayesian inference. Journal of Computer Virology and Hacking Techniques (2016).

[7] Elaheh Biglar Beigi, Hossein Hadian Jazi, Natalia Stakhanova, and Ali A Ghorbani.
2014. Towards effective feature selection in machine learning-based botnet
detection approaches. In Proc. of IEEE CNS.

[8] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher
Kruegel. 2012. Disclosure: detecting botnet command and control servers through
large-scale netflow analysis. In Proc. of ACM ACSAC.

[9] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha, Amr
Youssef, Mourad Debbabi, and Lingyu Wang. 2010. On the analysis of the Zeus
botnet crimeware toolkit. In Proc. of ACM PST.

[10] Z Berkay Celik, Robert J Walls, Patrick McDaniel, and Ananthram Swami. 2015.
Malware traffic detection using tamper resistant features. In MILCOM 2015-2015
IEEE Military Communications Conference. IEEE, 330–335.

[11] Paul Dokas, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivastava,
and Pang-Ning Tan. 2002. Data mining for network intrusion detection. In Proc.
of NSF NGDM.

[12] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. 2014. An
empirical comparison of botnet detection methods. Computers & Security 45
(2014), 100–123.

[13] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. 2007. BotHunter: Detecting Malware Infection Through IDS-Driven Dialog
Correlation.. In Proc. of USENIX Security.

[14] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. 2008. BotMiner: Clustering Analysis of Network Traffic for Protocol-and
Structure-Independent Botnet Detection.. In Proc. of USENIX Security.

[15] Guofei Gu, Junjie Zhang, and Wenke Lee. 2008. BotSniffer: Detecting botnet
command and control channels in network traffic. In Proc. of USENIX Security.

[16] Sheharbano Khattak, Naurin Rasheed Ramay, Kamran Riaz Khan, Affan A Syed,
and Syed Ali Khayam. 2014. A taxonomy of botnet behavior, detection, and
defense. IEEE COMST 16, 2 (2014), 898–924.

[17] Daniel Lowd and Christopher Meek. 2005. Adversarial learning. In Proc. of ACM
SIGKDD.

[18] EnricoMariconti, JeremiahOnaolapo, Gordon Ross, and Gianluca Stringhini. 2016.
What’s your major threat? On the differences between the network behavior of
targeted and commodity malware. In Proc. of IEEE ARES.

[19] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting Android
Malware by Building Markov Chains of Behavioral Models. In Proc. of NDSS.

[20] David McGrew and Blake Anderson. 2016. Enhanced telemetry for encrypted
threat analytics. In Proc. of IEEE ICNP. 1–6.

[21] Aziz Mohaisen, Andrew GWest, AllisonMankin, and Omar Alrawi. 2014. Chatter:
Classifying malware families using system event ordering. In Proc. of IEEE CNS.

[22] J Nazario. 2008. Political DDoS: Estonia and beyond. In Proc. of USENIX security.
[23] Jon Oltsik. 2015. SOC-as-a-service for Midmarket and Small Enterprise Organiza-

tions. Technical Report. The Enterprise Strategy Group.
[24] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristo-

faro, Gordon Ross, and Gianluca Stringhini. 2019. MaMaDroid: Detecting android
malware by building markov chains of behavioral models (extended version).
ACM TOPS 22, 2 (2019), 14.

[25] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware
Classification across Space and Time. In Proc. of USENIX Security.

[26] Roberto Perdisci, Wenke Lee, and Nick Feamster. 2010. Behavioral Clustering
of HTTP-Based Malware and Signature Generation Using Malicious Network
Traces.. In Proc. of USENIX NSDI.

[27] Michal Piskozub, Riccardo Spolaor, and Ivan Martinovic. 2019. MalAlert: De-
tecting Malware in Large-Scale Network Traffic Using Statistical Features. ACM
SIGMETRICS Performance Evaluation Review 46, 3 (2019), 151–154.

[28] M Zubair Rafique and Juan Caballero. 2013. Firma: Malware clustering and
network signature generation with mixed network behaviors. In Proc. of RAID.

[29] Elias Raftopoulos and Xenofontas Dimitropoulos. 2011. Detecting, validating
and characterizing computer infections in the wild. In ACM IMC.

[30] Christian Rossow and Christian J Dietrich. 2013. Provex: Detecting botnets with
encrypted command and control channels. In DIMVA. 21–40.

[31] Elizabeth Stinson and John C Mitchell. 2008. Towards Systematic Evaluation of
the Evadability of Bot/Botnet Detection Methods. Proc. of USENIX WOOT (2008).

[32] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2018.
Robust smartphone app identification via encrypted network traffic analysis.
IEEE TIFS 13, 1 (2018), 63–78.

[33] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. 2012.
BotFinder: Finding Bots in Network Traffic Without Deep Packet Inspection. In
ACM CoNEXT.

[34] Gernot Vormayr, Tanja Zseby, and Joachim Fabini. 2017. Botnet Communication
Patterns. IEEE COMST 19, 4 (2017), 2768–2796.

[35] Sebastian Zander, Grenville Armitage, and Philip Branch. 2007. A survey of
covert channels and countermeasures in computer network protocols. IEEE
COMST 9, 3 (2007), 44–57.

[36] David Zhao, Issa Traore, Bassam Sayed, Wei Lu, Sherif Saad, Ali Ghorbani, and
Dan Garant. 2013. Botnet detection based on traffic behavior analysis and flow
intervals. Computers & Security 39 (2013), 2–16.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780
Time (seconds)

100

101

102

103

Cu
m

ul
at

iv
e

Nu
m

be
r o

f f
lo

ws
 (l

og
) BlackHole

ZeroAccess
Menti
Murlo
Neris
Osx_trojan
RBot
SmokeBot
Sogou
TBot
Virut
Weasel
Zeus

Figure 12: Number of flows generated by each malware family every 20 seconds.

A APPENDIX
A.1 Background on Bot Network

Communications
Network communication is essential for botnets to carry out their
attacks, as a bot receives commands from the C&C server, propa-
gates, and executes the received commands.We discuss bot network
communication during different stages, which serves as a baseline
of what bot detectors aim to detect.

Rallying. As a first step, rallying [16] process consists of a new
bot that notifies its presence to the C&C server. To do so, a bot could
contact a domain hard-coded in its binary (which is vulnerable to
blacklists), or use a Domain Generation Algorithm (DGA) (e.g. Zeus,
Bunitu, Sality). A bot may also use fast-fluxing (e.g. Bunitu) to add
resiliency to the domain generation process.

Propagation. Botnets aim to recruit new bots by using active
(e.g. scanning) or passive (e.g. phishing emails) propagation. In
active propagation, the bot exhibits a worm-like behavior infecting
new victims via known vulnerabilities (e.g. Duqu 2.0) [16]. Some
bots scan the network before the infection (e.g.Conficker,WannaCry,
Sality) by identifying reachable hosts via ICMP echo requests or by
port scanning to detect vulnerable services (e.g. Neris, Rbot, Virut,
Donbot, Qvod) [34]. In passive propagation, bots propagate through
less noisy means such as infected removable media, phishing emails,
and drive-by download (e.g. Zeus). Although network activities due
to passive approaches can be detected, correlating these activities
with the actual bot infection is difficult since propagation and in-
fection could occur at different times [34].

Operation. A bot could be used to carry out various types of
attacks that have a different impact in terms of network communica-
tions [34]. For example, bots (e.g. Rbot, Stlrat, Papras) can launchDis-
tributed Denial of Service attacks (DDoS) by sending huge amounts
of requests (usually TCP/UDP HTTP requests), overloading systems,
and making a network resource unavailable. Bots (e.g. Geodo, Neris,
Sality, Stlrat) can also send unsolicited emails (i.e. spam) via Simple
Mail Transport Protocol (SMTP). ClickFraud is an attack that uses
bots (e.g. Miuref, Neris) to access pay-per-click ads via HTTP/S
requests, thus defrauding advertisers. Bots can also collect network
information (e.g. Duqu 2.0, Phatbot), log-in information harvesting
(e.g. Storm), self-updating (e.g. Zeus, Phatbot), bitcoin mining (e.g.
Miner), receiving C&C instructions (e.g. Stuxnet), or network traffic
modification (e.g. Miner).

A.2 Bot traffic over time
We show the overall amount of traffic by each bot family in Table 2
over time in Figure 12. In particular, the y-axis has a logarithmic
scale and each data-point consists of the traffic in an interval of
20 seconds. We can notice that the majority of the bot families
constantly produce a significant amount of network flows. This
means that a bot is more likely to be detected in different phases of
its malicious operations since our method has available an abundant
quantity of n-flows for the classification.

A.3 Bots’ Network Communications Dataset
In Table 7, we show the bot families attack network communications
in the dataset used to train the multi-class classifier.

Table 7: BotNetwork communication used to train themulti-
class classifier(PS: Port Scanning, NS: Network Scanning, FF: Fast-Fluxing,

CF: ClickFraud).

Family Propagation C&C Operational
PS NS DGA FF CC DDoS Spam CF

Miuref ✓
Zeus ✓
Geodo ✓
Bunitu ✓ ✓ ✓
WannaCry ✓
Conficker ✓ ✓
Zeus C&C ✓ ✓
Neris ✓ ✓ ✓
Rbot ✓ ✓
Virut ✓ ✓
Sality ✓ ✓ ✓
Stlrat ✓
Donbot ✓
Papras ✓ ✓
Qvod ✓

	Abstract
	1 Introduction
	2 BOTection System Design
	2.1 Network Flow Reassembly
	2.2 Connection States Extraction
	2.3 Markov Chain Modeling
	2.4 Classification

	3 Experimental Setup
	3.1 Datasets
	3.2 Classifier Design

	4 Results
	4.1 Bot and Benign Communication Patterns
	4.2 Performance of Binary Classifier
	4.3 Classifier Performance Over Time
	4.4 Performance of Multi-Class Classifier

	5 Discussion
	5.1 Understanding Classifiers' Errors
	5.2 Lessons Learned
	5.3 Evasion and Limitations

	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgments
	References
	A Appendix
	A.1 Background on Bot Network Communications
	A.2 Bot traffic over time
	A.3 Bots' Network Communications Dataset

