Unleashing Performance Insights with
Online Probabilistic Tracing

M. Toslali* T, S. Qasim*, S. ParthasarathyT, F. A. Oliveira’, H. HuangT, G. Stringhini*, Z. Liut, A. K. Coskun*
*Boston University, fIBM Research,!University of Maryland

Abstract—Distributed tracing has become a fundamental tool for
diagnosing performance issues in the cloud by recording causally
ordered, end-to-end workflows of request executions. However, tracing
workloads in production can introduce significant overheads due to
the extensive instrumentation needed for identifying performance
variations. This paper addresses the trade-off between the cost of
tracing and the utility of the ‘‘spans” within that trace through Astraea,
an online probabilistic distributed tracing system. Astraea is based on
our technique that combines online Bayesian learning and multi-armed
bandit frameworks. This formulation enables Astraea to effectively
steer tracing towards the useful instrumentation needed for accurate
performance diagnosis. Astraea localizes performance variations using
only 20-35% of available instrumentation, markedly reducing tracing
overhead, storage, compute costs, and trace analysis time. '

Index Terms—Distributed Systems, Performance Diagnosis,
Microservices, Cloud Computing, online Bayesian learning.

1. INTRODUCTION

Performance variations constitute a common challenge in the
cloud, and diagnosing them can be a time-consuming process [1]—
[16]. For instance, diagnosing an unexpected slowdown in a
request can consume hours or even days [17]. Distributed tracing
has emerged as an essential tool for diagnosing performance
variations in the cloud [2], [4], [5], [9], [18]-[25]. Distributed tracing
enables tracking the journey of a request within a distributed cloud
application, as it moves through various services. A trace consists
of instrumentation choices known as spans, which capture causal
relationships and the propagation of latency from downstream to up-
stream operations. The end-to-end narrative of a request provided by
distributed tracing reveals what went wrong, making it easier to pin-
point and resolve the issues [2], [4]-{6], [8], [9], [18]-[24], [26], [27].

Tracing cost vs. utility trade-off. Predicting which code locations
to instrument to diagnose potential future problems is a challenging
task [19], [28]. Developers aim to trace all potential application
behaviors to enable diagnosis of new problems. However, recording,
processing, and storing traces from production workloads result in
significant overheads in terms of storage, computation, and network
usage [4], [29]. For instance, Facebook reported generating 1.16
GB/s of tracing data [4], necessitating substantial backend infras-
tructure and storage capacities [29]. Furthermore, the computational
overhead of tracing can lead to an increase in end-to-end request
latency, which is not tolerable for end users [30]. Fig. 1a shows the
response time overhead of tracing (i.e., Jaeger [25]) imposed on
the Train Ticket microservice application [17], revealing 180% and
16% overhead on the tail and average latency, respectively, observed

IThis work has been partially supported by Boston University Red Hat
collaboratory

in our experiments. Similarly, Google reported an average response
time increase of 16.3% in their search engine due to tracing [24].
Distributed tracing often employs request-based sampling as
a means to mitigate costs, allowing for tracing only a subset of
requests [23], [25], [30]. While request-based sampling partially
addresses the overhead problem, when it comes to performance
diagnosis, the key insight is that majority of spans in a sampled
request are extraneous to explain performance variation under
investigation [4], [17], [19], [22], [28]. For instance, an analysis
of the Alibaba traces reveals that 90% of the spans provide no
useful information, with only 10% of spans being essential for
performance diagnosis [10]. Fig. 1b substantiates these observations
by illustrating the cumulative variance of spans from Train
Ticket [17], Social Network [31], and a large-scale Internet
application (denoted as Production in Fig. 1), showing that 15%
of spans account for over 80% of the total variance. Identifying this
“vital” set of instrumentation with the most utility is a challenge as
this information is unknown a priori or even changes over time. For
example, researchers revealed that 28K revisions in Hadoop, HBase,
and ZooKeeper applications were made only to insert or modify
instrumentation choices concerning cost vs. utility trade-off [32].

Automated control of instrumentation. To address the tracing cost
vs. utility trade-off, ideally, a tracing system should adaptively and
automatically control instrumentation choices to enable vital ones
needed to diagnose performance variations [19], [28]. The key re-
quirements of such a system are: (R1) correctly identifying the vital
instrumentation needed to explain on-going performance variations,
(R2) adapting to new sources of performance variations that might
evolve over time, (R3) providing a low-overhead and scalable mech-
anism to efficiently control instrumentation, and (R4) addressing all
requirements in a practical and developer-friendly manner.
Researchers have designed automated techniques to selectively
enable the instrumentation needed (§1I). VAIF [19] and Log2 [28]
are two automated instrumentation systems that are tailored
for performance diagnosis. Log? captures all logging records in
individual processes and persists ones that contribute to performance
variation. However, it inherently lacks the causal context provided
by distributed tracing, which captures latency propagation among
distributed services (RT and R?). Its tail-based approach, focused
on persisting logging records post-execution, primarily reduces
storage overheads but neglects the computational overheads (R3).
VAIF [19], our previous work, is an automated tracing system
tailored for performance diagnosis in distributed cloud applications.
In an offline profiling phase, VAIF memorizes execution paths of
requests through exhaustive workloads [19]. When triggered by

Qa0 H (Plain app)
ET U (w/ Tracing)
e w/ Tracing
£ 300 . 182.9%« A .99
; Plain app
gzoo
o} Ap =16.2%
@100 === . Tl 22 S N N S B I ,,,,, I
o
NEREEEEN
10 20 30 40 50 60 70 80 90 99
Percentile

() Tracing overhead on mean (A) and tail (A:99) latency

100

wer Tl

39

g DA —— Production

S c / AR

Es 80 S Train ticket

o2 II -~ Social network
0 25 50 75 100

Span ratio (%)

(b) Cumulative latency variance of spans

Fig. 1: The practicality of tracing is limited by (a) overhead and (b) large portion of extraneous instrumentation. (a) Tracing overheads
can increase end-to-end request latency. Tracing in this experiment is conducted with a 100% sampling rate to emphasize the overhead.
(b) The majority of spans in a trace are extraneous to explain variation.

developers at runtime, it enables spans within the region of code
that currently exhibits the highest variance. VAIF is effective in
localizing sources of performance variations, however, considerable
developer effort is needed to run comprehensive workloads a
priori to collect representative traces for VAIF, which is further
exacerbated by the need for recurring developer-driven profiling
efforts for each new code delivery (R4). Second, VAIF’s span
decisions are binary, offering only options of enabling or disabling
spans. While this simplifies decision-making and implementation,
completely disabling spans may result in a loss of accuracy as no
new observations are captured for ongoing or new performance
variations, as shown in §IV-C (RT and R?).

Our work. We present Astraea 2, a system backed by statistical

rigor to accurately and adaptively control instrumentation to address
the cost vs. utility trade-off of distributed tracing in performance
diagnosis. Astraea works on top of request-based sampling to further
reduce the size of individual traces utilizing span-level sampling
probability. Astraea operates online from the start, eliminating the
need for time-consuming offline phases. It begins with the same de-
fault level of instrumentation as current distributed tracing practices.
As Astraea learns, it gradually decreases the sampling probability
of unnecessary instrumentation, leading to continuous performance
improvement. Astraeca employs a probabilistic approach, enabling
nuanced decision-making by sampling spans with varying prob-
abilities for efficient resource utilization, accurate coverage, and
adaptability to changing execution patterns or new issues.

Astraea formulates the cost vs. utility trade-off as an exploration
vs. exploitation problem [33]. It continuously learns spans that
explain performance variations (explore) and dynamically steers
tracing toward them (exploit). This formulation enables an online
learning setting tailored for automated control of instrumentation
to enhance tracing utility. The Bayesian framework of Astraea
enables space- and time-efficient computation by mapping large
trace data to a low-dimensional Bayesian belief representation,
gradually building beliefs of spans, thus eliminating the need for
extensive trace data storage (§III). Based on accumulated beliefs,
Astraea employs a probability matching decision strategy where
the sampling probability of a span is proportional to the fraction
of observations that a span emerges as a vital contributor to

2 Astraea is accessible at https:/github.com/aidcloudops/Astraea.

variation, aiding in continuously exploring and resolving uncertainty
to identify vital spans [34].

Overall, Astraea enhances the accuracy and adaptability of
identifying spans required to explain both current and new
performance variations (addressing R1 and R2), while maintaining
low overheads and scaling effectively to handle large production
traces (addressing R3). Astraea eliminates the need for cumbersome
offline training or retraining phases (addressing R4). The primary
goal of Astraea is to elevate the practical utility of distributed tracing
to new heights. It empowers developers to instrument their source
code during the development phase without worrying about the costs
and manual analysis associated with managing a large number of
extraneous spans in response to performance variations at runtime.

Our contributions and highlights.

We devise and formulate the tracing cost vs. utility trade-off as an
exploration vs. exploitation problem, enabling an online learning
setting. Building on our formulation, we design and implement
Astraea, which dynamically steers tracing toward vital regions.
We show that Astraea accurately localizes injected performance
variations 92% of the time, using only 20-35% of instrumentation
in three widely used distributed cloud applications (Social
Network, Media, and Train Ticket) (§1V). In contrast, Log2 and
VAIF achieve 65% and 71% accuracy, enabling comparable or
larger instrumentation and incurring 3-24x more latency overhead.
We demonstrate the efficacy of Astraea in diagnosing
performance variations in Social Network, Media, and Train
Ticket applications deployed on two public clouds, namely
CloudLab (on VMs) and New England Research Cloud’s (NERC)
OpenShift Container Platform. Astraea pinpoints sources of high
variance due to implementation bugs, resource-related issues,
network delays, deployments, and inefficient instrumentation,
enabling only 20-35% of available instrumentation (§V).

II. BACKGROUND AND RELATED WORK
This section provides a background on distributed tracing and
reviews prior work on tracing, instrumentation, and their automation.
A. Distributed tracing overview

Figure 3 shows how distributed tracing frameworks operate in
general [4], [25]. An instrumented service (e.g., Social Network
in Fig. 3) creates a span when receiving a new request and attaches

Client request

—{

"

Response

nginx-web-server

compaose-post

A
LP[media]—j L[hometimeline-redis-update]l
—_— \ﬂ—/

M = 32us
o=7

M =972us
o =483

Fig. 2: A simplified trace from Social Network. Analysis on and
of span latency helps localize a performance issue.

context information (e.g., traceld and spanld) to outgoing requests.
A span represents a logical unit of work with an operation name,
start time, and duration. Spans are nested and ordered to model
causal relationships (i.e., parent/child relationships represent
caller/callee). The tracing backend collects, orders, and stitches
span records with the same traceld to create end-to-end traces. A
final trace is an execution path of a request through the system [19].
The causal ordering of spans enables composing a narrative
of a request’s execution, making it easier to pinpoint issues.
The following example illustrates how distributed tracing helps
diagnose a performance issue we found using Astraea (§V). Fig.
2 demonstrates a simplified trace, along with various statistics of
operation durations (mean () and standard deviation ()) from
the Social Network application. The root cause of the issue is an
inefficient implementation that sends one request for each key to
Redis instead of querying with multiple keys [35], [36]. Analysis
via distributed tracing reveals that the Redis update operation shows
high variance and significantly contributes to response time.
Distributed tracing helps pinpoint the code regions that initiate per-
formance problems [5], [37]. However, there are challenges with effi-
cient and practical use of distributed tracing in production. Develop-
ers wish to comprehensively trace the source code to easily diagnose
new problems [19], [28]; however, they struggle with the cost vs. util-
ity trade-off [32]. Reducing latency is one of the primary concerns
that lead developers to use distributed tracing. However, overheads
of distributed tracing also contribute to latency, as shown in Fig. 1.
Understanding this impact is vital in choosing the right granularity
for tracing. We briefly describe overheads with respect to Fig. 3
(marked with circled numbers). (1) Spans are created on the critical
path of requests. This step incurs computational runtime overhead.
@ Tracing agents listen for spans from the application, receive, and
route them to the tracing backends. This step incurs network over-
heads. (3) Tracing backends persist the trace data, where they can
be later queried. This step incurs storage and compute overheads.

B. Related work

Distributed tracing & diagnostics. Past research has shown a
variety of use cases of distributed tracing in cloud [2], [4]-[6], [8],
[9], [20], [21], [23], [24], [26], [37]-[41]. Zeno [39] uses traces
to infer off-path root causes such as resource contentions. SAGE
[20] is a machine learning-based system that leverages tracing
to identify culprit services responsible for QoS violations. These
state-of-the-art systems aim to facilitate rich use cases but are not
geared towards resolving the cost vs. utility of the spans trade-off.

Request-based sampling. To help with various overheads of
distributed tracing, existing techniques include head- and tail-based
request sampling [23]-[25], [42]. Head-based method decides
whether to trace a request uniformly at random at the beginning
of a request, circumventing computational, network, and storage
overheads (1), (2), and (3) in Fig. 3). On the other hand, tail-based
methods capture traces for all requests and later decide whether to
persist a trace, circumventing only storage overheads (@ in Fig.
3). For example, Sifter [23] biases sampling decisions towards
outlier traces with respect to their frequency. While effective
at reducing various overheads, these techniques are orthogonal
to the cost vs. utility of the spans trade-off. That is, they don’t
control the instrumentation at the granularity of spans while
tracing; thus, resultant traces include a large portion of extraneous
spans that constitute the majority of costs. When diagnosing the
current performance variation, only a few spans are useful, as a
large portion of them are extraneous, constituting the majority of
cost [19], [22], [28]. For example, the Fig. 1b shows that 16% of
spans constitute more than 80% of the total variation.

Dynamic instrumentation. Some techniques allow inserting in-
strumentation at runtime in almost arbitrary locations in applications
[22]. These techniques provide crucial flexibility during perfor-
mance debugging. However, manual and iterative exploration of
potential instrumentation locations in source code is a labor-intensive
process, incurring prolonged diagnosis times [30]. Unlike dynamic
instrumentation, Astraea does not rely on end users to manually
explore data and identify problems but automates this process.
Automated control of instrumentation. To address cost vs. utility
trade-off, researchers have proposed automated techniques that
selectively enable instrumentation choices needed [19], [28], [32],
[43]. However, most focus on correctness (or failure) problems,
not performance variations. For example, Log20 [32] enables log
points to differentiate request workflows, aiming to help identify
faulty executions. However, they are not sufficient for performance
diagnosis because additional instrumentation may be needed to
identify where on a unique workflow a performance problem lies. In
contrast, Astraca focuses on identifying areas of the code that lead
to requests’ overall execution to be slow. For example, inefficient
implementation of a Redis update might not break functionality,
however, can cause a significant slowdown (Fig. 2). The systems
closest to our work are VAIF and Log?, tailored for performance
variations. We compare Astraea with these systems in §IV.

III. ASTRAEA

While an ideal tracing solution would focus effort on parts
of an application that are important for performance diagnosis,
this information is unknown a priori, hence the need for
learning at runtime. Astraca is an online, probabilistic tracing
system designed to combat this challenge. Fig 3 shows Astraea
components that implement the logic of effectively learning the
parts of an application that are needed for diagnosis (exploration)
and confidently steering tracing toward the most rewarding
instrumentation choices (exploitation). Astraca works in a
continuous loop. As the application receives user traffic, spans are
collected and stitched together by collector(Jaeger) and stored in a
database. Astraea periodically queries the tracing database to build

Astraea Tracing Module

ABS

algorithm

Utility
beliefs

ASTRAEA
Container

Span)Prob.

fetch) 0.91

routej 0.12

Policy

| DB | g 3) Storage Overhead

B. Push Span Sampling Policy(Dictionary)

A.Pull batch of traces—}(Collector(Jaeger) J
['Social Network App - — — — — - Send Spans. — — — 1!
I @ Network Ovethad |
- Compose Post Social Graph I
client I Service Service |
|Computationa| Runtime Oyerhead |
L l——C. ATM pulls dictionary/updates span sampling probabilityﬁ—

Fig. 3: An overview of the distributed tracing architecture with Astraea on a cloud deployment. The bottom displays a simplified Social
Network application, with the top featuring Astraea components guiding tracing to rewarding spans. Tracing overheads are demonstrated

with circled numbers.

Bayesian belief distributions to estimate span sampling probabilities
which represents the usefulness of a span for performance diagnosis
(81I1-A); as more data is available, the belief distributions converge
to the true values of the utility (§III-B). It then publishes this
dictionary of spans (policy) to Object store. Astraea tracing agents

pull this policy periodically and updates their in memory dictionary.

Initially this policy has 100% sampling rate for all spans.

Fig. 3 shows a snippet of a sample policy inside Astraea container,
where fetch is the span and its sampling probability is 0:91. Astraea
continuously builds and updates this policy to steer tracing toward
vital spans, using its Approximate Bayesian Sampling algorithm
considering exploration vs. exploitation trade-off (§III-B).
Output. Astraca is designed to help developers diagnose
unanticipated performance variations by dynamically controlling the
instrumentation in running systems concerning the cost vs. utility of
spans trade-off. The main output from Astraea is, in fact, distributed
traces; however, the data contained in the traces is the set of vital
spans that are most able to explain performance variations. Second,
Astraea provides users a query interface that reports the ranking of
spans based on their utilities, top-k problematic spans, confidence
levels (e.g., the probability that a span is vital), and significantly
correlated tags (e.g., service.version) within traces to help developers
interpret the results regarding localized code regions (§V).

Design principles. Astraca adheres to the following principles to
address practicality, accuracy, and efficiency requirements (§I).

Statistical rigor: While Astraca doesn’t offer explicit accuracy
guarantees, our method diverges from a greedy strategy of
consistently opting for the highest variance span. Rather, Astraea
constructs Bayesian belief distributions, guiding decisions based
on statistical confidence. Consequently, it demonstrates superior
accuracy in pinpointing performance issues, as evidenced by the

experimental results (§1V).

Adaptive: Binary decisions on enabling (or disabling) spans
prevent existing tools from adapting to changing sources of
variations. Astraea’s probabilistic approach enables keeping pace
with the changes on-the-fly (§811I-B).

Low-overhead & scalable: Astraea’s low-dimensional Bayesian
approach enables space- and time-efficient computations to
decide whether to create spans based on accumulated beliefs,
which helps avoid computational, network, and storage overheads
(D), 2), and (3)). Because Astraca maps large trace data to
compact Bayesian representation, it circumvents storing large
chunks of trace and can scale well with production workloads
that have 1000’s of spans.

Online: Training the entire tracing solution is cumbersome, ex-
acerbated by retraining due to frequent code updates. Astraca em-
bodies an online learning framework to eliminate offline phases.

A. Span utility

‘We now examine how Astraea decomposes latency contributions

of spans and present the span utility measure, which assesses the
effectiveness of spans in performance diagnosis.
Latency decomposition. Fig. 4 shows the latency decomposition
of spans. Trace includes a root span that corresponds to the client’s
request to the web server (span A) that calls various operations in
parallel (span B and C) and sequentially (span D) after receiving
responses from preceding operations. The latency contribution of
a leaf span (e.g., span D) is determined by the processing duration
of itself. On the other hand, a non-leaf span with one or more
children (e.g., span A) is further decomposed into segments (i.e.,
self_segment and child_waiting). Astraea relies on the self_segment
that represents the amount of time spent by span itself.

