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Abstract—The Android platform gives mobile device users
the opportunity to extend the capabilities of their systems
by installing developer-authored apps. Companies leverage
this capability to reach their customers and conduct busi-
ness operations such as financial transactions. End-users
can obtain custom Android applications (apps) from the
Google Play, some of which are security-sensitive due to
the nature of the data that they handle, such as apps from
the FINANCE category. Although there are recommendations
and standardized guidelines for secure app development with
various self-defense techniques, the adoption of such methods
is not mandatory and is left to the discretion of developers.
Unfortunately, malicious actors can tamper with the app
runtime environment and then exploit the attack vectors
which arise from the tampering, such as executing foreign
code with elevated privileges on the mobile platform.

In this paper, we present APPJITSU, a dynamic app
analysis framework that evaluates the resiliency of security-
critical apps. We exercise the most popular 455 financial apps
in attack-specific hostile environments to demonstrate the
current state of resiliency against known tampering methods.
Our results indicate that 25.05% of the tested apps have
no resiliency against any common hostile methods or tools,
whereas only 10.77% employed all defensive methods.

1. Introduction

Mobile applications (apps) are an essential part of the
day-to-day activities of individuals and businesses alike.
Companies develop custom apps to better reach their
customer base and provide a multitude of services. For
instance, in 2020 alone, 79% of smartphone owners have
used their device for an online purchase [1] and conducted
financial transactions.

Financial apps handle a variety of different transac-
tions and information, many of which are sensitive, such
as credit card information. It is therefore customary for
app developers to put security protection mechanisms in
place to thwart potential data theft threats and prevent
fraud. Unfortunately, 65% of fraudulent transactions in
the first quarter of 2018 were made by mobile devices,
compared to 39% in 2015 [2]. Furthermore, authorities
observed a recent spike in malicious actors targeting
mobile banking apps [3], and around one in every 20
fraud attacks takes place thanks to a rogue mobile app
[4], Recently, IBM Trusteer discovered that the problem
has exacerbated to a massively scaled real-time attack

campaign to steal millions of dollars from banks via
mobile emulator farms [5], [6].

The variety of attack vectors and the considerably
large attack surface of mobile applications (i.e., network
communications, framework and app security) led to de-
veloper resources, threat recognition, and industry stan-
dards such as the Android Security Tips [7], the OWASP
Top 10 Mobile Threat [8] and the OWASP Mobile App Se-
curity Testing Guide [9]. In addition, the industry provided
resources for developers, such as the SafetyNet Attestation
API [10], to easily integrate security solutions to their
apps. However, recent studies showed a decline in the
popularity of these solutions down to 11.13% in the most
popular apps [11].

Among the different security solutions app developers
may adopt, the OWASP guidelines suggest authors to
implement self-defense mechanisms. The main purpose
of this guideline is the app to detect if an app runs in
a compromised environment or an attacker has tampered
with the developer-authored app code. These defenses
include anti-debugging mechanisms, anti-tampering pro-
tection, and root detection mechanisms.

Previous work studied the presence of these self-
defense mechanisms in real-world apps. For example,
Nguyen-Vu et al. [12] investigated common root detection
and anti-root evasion techniques, whereas Kim et al. [13]
specifically studied the resiliency of financial apps, and
devised methods to bypass their self-defense mechanisms.
In addition, Berlato and Mariano’s [11] quantified the
adoption of anti-debugging and anti-tampering protections
in the most popular Android apps from the Google Play,
and observed the adoption of different defensive mecha-
nisms since 2015. However, their study used static analysis
techniques, which are susceptible to errors due to obfusca-
tion, and did not cover all the resiliency requirements set
forth by the OWASP. Prior works have also extensively
evaluated app hardening techniques [14], audited run-
time protection mechanisms [13], or scrutinized specific
defense mechanisms such as anti-root [12] or defense
libraries such as ProGuard [15]. While previous studies
used static analysis and focused on the usage of specific
protection methods, the presence of a defense mechanism
against a specific type of attack does not guarantee safety
against any tampering attack. This is mainly due to the
fact that there are multiple types of attacks available at the
disposal of an attacker, each of which requires a different
protection mechanism. For this reason, in contrast with
previous research, we argue that there is a need to perform
a comprehensive dynamic analysis study, and observe how



apps behave in the presence of multiple tampering attacks.
In this paper, we study the landscape of vulnerable

apps to hostile runtime environments. We are interested in
answering questions such as, what percentage of security-
sensitive apps employ defense mechanisms, and what is
the prevalence of different resiliency capabilities. Addi-
tionally, we are interested in how and when the apps
notify end-users regarding a hostile environment, and if
the notifications are accurate with respect to the tampering
method.

To answer such detailed questions, it is not sufficient to
analyze specific app self-defense mechanisms separately.
Instead, we argue that all potential runtime-attack vectors
must be evaluated on a variety of different hostile envi-
ronments, and we need to check if developers follow the
OWASP guidelines in each of these environments.

To test the resiliency of security-sensitive apps, we
build APPJITSU, a dynamic large-scale app resiliency
evaluation framework. APPJITSU tests each app in dif-
ferent, configurable hostile runtime environments, which
consist of a combination of attack vectors. Then, AP-
PJITSU observes the behavioral differences of the app in
the different tested environments, and deduces the self-
defense mechanisms in place. To achieve this goal, AP-
PJITSU uses a user-configurable combination of physical
devices and emulators. In these environments, it employs
different instrumentation tools to capture the app state
when the it reaches a steady state. Similar to prior work
which uses the information displayed on the User Interface
(UI) for UI driven testing [16]–[20], APPJITSU uses the
uiautomator tool [21] to capture the screen layout hierar-
chy as an indicator of the app’s state. We then derive the
necessary information about the implemented self-defense
mechanisms after the evaluation of behavioral differences
in incrementally changing hostile environments. Finally,
based on APPJITSU output, we perform an analysis to
detect potential defensive mechanisms implemented by the
analyzed apps, or their lack thereof.

We used APPJITSU to analyze the most popular 455
apps from the FINANCE category of the Google Play [22].
Our results indicate that a striking 25.05% of the tested
apps have no resiliency against any common hostile meth-
ods recommended in the OWASP guidelines. In contrast,
only 10.77% of the apps demonstrated observable behav-
ioral differences due to the potential threats we introduced
on mobile platform runtimes. In addition to our quantita-
tive results, we also provide a visual analysis to showcase
the different behaviors that apps exhibit across various
hostile environments, as well as the inaccurate messages
that some of the apps display. To the best of our knowl-
edge, our study is the first automated, dynamic-analysis-
based study on how Android apps behave in different,
configurable hostile environments. Furthermore, our work
is the first study able to detect all resiliency requirements
set forth by the OWASP guidelines. In summary, this paper
makes the following contributions:

• We design and implement APPJITSU, a system that
provides configurable combinations of different hos-
tile environments to test the resiliency of apps.

• Using APPJITSU, we perform a comprehensive study
to evaluate if the apps implement self-defense mech-
anisms.

• We analyze app behavior across different hostile
environments and make the following observations:
i) 25.05% of the apps have no behavioral differences
against hostile platforms, contrary to 10.77% which
employs all defenses, ii) 85.71% of the apps fail to
detect emulated instances at least once, iii) 46.37 of
apps are susceptible to repackaging attacks, while
iv) 52.53%, 57.8%, 68.35% and 56.92% of the apps
ran under modifiable ROM, rooted, memory hooked
and debugger attached environments, respectively.

Overall, we determine that the significant majority of
apps lack at least one recommended self-defense method
that increase their resiliency against commonly known
attack vectors. Therefore, based on our results, we rec-
ommend developers to adopt the standardized self-defense
methods to thwart the commonly recognized risks against
their apps.

2. Background

As a basis for the details of our proposed system AP-
PJITSU, this section describes open standards on Android
app resiliency and self-defense mechanisms, as well as a
brief explanation of common tampering techniques that
attackers can use.

2.1. OWASP Standards and Guides

The Open Web Application Security Project’s
(OWASP) Top 10 Risks [8] is a standard awareness doc-
ument for developers which represents a broad consensus
about the most critical security risks. Although primarily
started as a list of top Web app threats, the prevalence
of mobile platforms and widespread adoption of apps led
to the creation of OWASP Top 10 Mobile Threats [8],
which focuses on mobile apps. The most recent list from
2016 states code tampering [23] as one of the most critical
risks for mobile apps. To mitigate the security threats
in mobile apps, the OWASP also compiles a manual,
The Mobile Security Testing Guide (MSTG) [24], which
provides guidelines on how to assess the security of an
app.

2.1.1. Mobile Security Testing Guide (MSTG). This
comprehensive manual for mobile app security develop-
ment, testing and reverse engineering provides processes,
techniques and tools used by security auditors in the
evaluation of a mobile app’s security. Two of the most
relevant sections to our paper presents i) techniques and
tools for tampering and reverse engineering on Android,
and ii) Android anti-reversing defenses. More specifically,
anti-reversing defenses are categorized under resiliency
requirements against common tampering techniques, such
as rooting and hooking. For verification of testing results,
these resiliency requirements are grouped under a stan-
dardized document, Mobile AppSec Verification Standard
(MASVS).

2.1.2. Mobile AppSec Verification Standard (MASVS).
The standards set by MASVS [9] list a series of re-
siliency requirements against common tampering tech-
niques (§2.1.1). First six out of nine requirements spec-
ify the implementation of app self-defense techniques,



whereas the remaining three specify how the app should
react when defense mechanisms are triggered. For our
work, we study the presence of defenses, and hence focus
on the first six of the MSTG_RESILIENCE requirements.
We show a brief summary of resiliency requirements
regarding the presence of defenses along with APPJITSU
designations in Table 1. All the resiliency categories, with
the exception of MSTG-4, have unique requirements in
defenses. As for MSTG-4, the reverse engineering tools
and frameworks statement comprises both the root and
hook tools used in MSTG-1 and MSTG-6.

2.2. Android Resiliency

Based on the OWASP recommendations and guide-
lines, we devise a taxonomy of the mitigations against
potential security threats into 6 categories, which corre-
spond to MSTG resiliency requirements.

2.2.1. Root Detection (MSTG-1 & 4). Rooting an An-
droid image encompasses gaining privileged access (i.e.,
root) to the system. In general, a rooting framework
incorporates a modified su binary, which provides access
to the root user, as well as a root manager to provide
access control to the root capabilities on the device. Two
of the most common ways of root detection are to i) check
the presence of the su binary in various possible locations
in the file structure, or ii) to check the return value of
executing su.

2.2.2. Debugger Detection (MSTG-2). The debug cycle
has a critical importance during app development to an-
alyze runtime app behavior. Development environments
provide developers the means to compile apk packages
with a debug flag which specifies the app to be debug-
gable (i.e., permits attaching a debugger). An attached
debugger, such as ptrace-based strace or Java De-
bug Wire Protocol (JDWP) based tools, can arbitrarily
stop app execution, inspect variables and modify memory
states. Furthermore, app development environments also
provide tools, such as Android Debug Bridge (adb [25])
to access and manage access to both runtime environ-
ments and the app itself. Common debugger detection
techniques range from checking the return value of the
isDebuggerConnected method to detecting the na-
tive process tracing utilities such as ptrace.

2.2.3. Signature Verification (MSTG-3). Signature veri-
fication ensures that the app is packaged by the developer,
and hence ensures the integrity of the code base. This
defense technique compares the cryptographic signature of
a production release version of the app against the signa-
ture of the app on the mobile device, where discrepancies
indicate package tampering.

2.2.4. Emulator Detection (MSTG-5). Android emula-
tors allow running an app on platforms other than mobile
devices via emulation of the runtime environment with
Android (or derivative) system images. Emulated environ-
ments provide fast debugging, development, and modifica-
tion platforms to developers and reverse-engineers alike.
Emulator detection techniques can vary from emulator-
specific string matching to timing-checks. Although Safe-
tyNet Attestation API also provides methods to check

the integrity of a runtime environment, similar to code
integrity checks (§2.2.3), SafetyNet Attestation adoption
rate decreased in recent years [11].

2.2.5. Hook Detection (MSTG-4 & 6). Hooking frame-
works provide tools to execute foreign (i.e., not developer-
authored) code to redirect, replace, or modify an app’s
control flow, which can customize the behavior of apps or
provide additional functionalities. Common hook detec-
tion methods consist of identifying hooking framework-
specific strings in app names or call stack traces (e.g.,
de.robv.android.xposed for Xposed Framework),
and scanning open TCP ports for framework-operated
local servers (e.g., Frida server on default port 27042).

3. Threat Model

Our threat model incorporates a benign finance-related
app, which lacks one or more of the known self-defense
techniques against tampering attacks. Additionally, we as-
sume that the app runs on a hostile environment which is:
i) attacker-crafted, and equipped with reverse-engineering
tools, or ii) an end-user device, which has weakened
security measures due to prior compromise (i.e., exploits)
or user choices (e.g., rooting).

It is in the developers best interest to employ self-
defending methods in security-sensitive (e.g., financial)
apps to thwart tampering attacks. However, many of the
self-defense mechanisms, when implemented separately,
can easily be bypassed. In the first scenario, we con-
sider malicious actors who spawn multiple instances of
a finance app on hostile environments, and exploit weak-
nesses that arise from the lack of self-resiliency methods,
to conduct their operations at scale. Such exploits ease the
implementation of a large-scale campaigns for attackers,
and increase the damage to protected assets, as evidenced
by IBM’s findings [5], [6]. In the latter scenario, the
weakened security state of the user device enables poten-
tially malicious third-party applications to access sensitive
data of the finance app by the means of app-tampering
methods.

We base our threat model on the comprehensive list
of attack vectors that the OWASP-MSTG describes for
resiliency against tampering (§ 2.2). However it is possible
to augment the implementation of APPJITSU to incorpo-
rate other/additional security-requirements. Therefore, our
methodology can accommodate such additions without
any modifications. We present the security implications
that may arise due to lack of app-resiliency in conjunction
to OWASP-MSTG defined threats as follows:

Rooted Environment (MSTG-1 & 4): Root access en-
ables code execution as the root user, and provides
access to all the capabilities of the Android framework as
the superuser. Effectively, an attacker or a malicious app
with superuser privileges can circumvent the sandboxing
feature in Android, access and alter any sensitive data at
rest (e.g., databases or memory space) or in transmission
(e.g., network communications).

Attached Debugger (MSTG-2): Similar to root capa-
bilities, debuggers enable attackers to access app data,
modify control flow, and observe app memory. This allows
attackers to extract sensitive information such as credential
tokens.



MSTG Category MSTG Explanation AppJitsu Designation

MSTG-RESILIENCE-1 The app detects, and responds to the presence of a rooted or jailbroken device either by
alerting the user or terminating the app. Anti-Root

MSTG-RESILIENCE-2 The app prevents debugging and/or detects, and responds to a debugger being
attached. All available debugging protocols must be covered. Anti-Debug

MSTG-RESILIENCE-3 The app detects, and responds to tampering with executable files and critical data within
its own sandbox. Signature Verification

MSTG-RESILIENCE-4 The app detects, and responds to the presence of widely used reverse engineering
tools and frameworks on the device. Anti-Tool (root/hook)

MSTG-RESILIENCE-5 The app detects, and responds to being run in an emulator. Anti-Emulator

MSTG-RESILIENCE-6 The app detects, and responds to, tampering the code and data in its own memory
space. Anti-Hook

TABLE 1: MSTG Resilience requirements, explanations and APPJITSU correspondence.

Repackaged App (MSTG-3): Attackers can disassem-
ble, modify, and repackage an apk package to neutralize
existing app security mechanisms or craft data extraction
methods within the app itself. Without the signature ver-
ification, an attacker-repackaged app would run with all
modifications that compromise the app’s security.

Emulated Environment (MSTG-5): An emulated run-
time is an environment where the entire execution stack
is under a developer or attacker’s control. Attackers can
defeat anti-tampering mechanisms at different levels of
emulation with customized runtime environments (e.g.,
custom Smali emulator [26]), or massively scale their
efforts [5], [6].

Hooked Functions (MSTG-4 & 6): Attackers can place
hook functions to redirect security-related API calls, mod-
ify the API’s return values, and hence circumvent the
authentication or self-defense mechanisms on the mobile
platform.

4. System Design

In this paper, we aim to subject security-sensitive
apps to a variety of potentially hostile environments to
determine their resilience to potential threats. As such,
our main goals for the design of our framework are to:
i) exercise an app to determine which hostile environments
an app reacts against, ii) quantify app states and determine
their relationship to the hostile runtime configurations, and
iii) study the relationship between behavioral differences
and self-defense techniques that an app employs (if any).
Therefore, we design and implement a system with the
following design criteria:

Dynamic analysis: Running an app on different run-
time environments yields information on how differently
an app behaves. Additionally, dynamic analysis yields
information related to network activities of an app that
a static analysis cannot provide.

Self-defense awareness: When an app reacts to the
hostile environment, the system should be able to deter-
mine how the app reacted based on behavioral patterns.

Multiple hostile environments: Since every hostile
environment can incorporate different methods to com-
promise an app’s security, the analysis framework should
provide at least one sample technique per method.

To achieve these goals, we implemented APPJITSU,
a dynamic app analysis framework with multiple hostile
runtime configurations to evaluate resiliency in security-
sensitive apps.

Figure 1: APPJITSU System Overview.

4.1. System Overview

Figure 1 shows the overview of APPJITSU, which
comprises four main high-level components for app eval-
uation and data processing: i) Configuration Manager,
ii) System Builder, iii) App-State Manager, and iv) De-
fense Detector. Within the system, the Configuration Man-
ager and System Builder operate together to form a Con-
structor module. The Configuration Manager is the pri-
mary module in the Constructor, responsible for parsing
the user-provided runtime environment configurations and
selecting necessary tamper-modules. We define a tamper-
module as hostile plugins, binaries, and frameworks that
potential attackers can embed in their analysis environ-
ment to compromise the integrity of a system. The System
Builder is the secondary module in the Constructor, which
creates the runtime platform according to the specifica-
tions and tamper-modules that the Configuration Manager
provides. Depending on the runtime configuration, the
platform can be an emulated instance or a modification
of a real hardware image. The App-State Manager is the
runtime-platform controller and data extraction module
of APPJITSU, which manages the User Interface (UI)
actions during the experiment, captures and extracts the
runtime-state of an app. Finally, the Defense Detector
module receives the runtime-state of an app and compares
different app-states when an app runs in different hostile
environments to detect indicators of resiliency. We will
now present a general overview of each module of our
system, as depicted in Figure 1.

4.1.1. Configuration Manager. APPJITSU evaluates an
app on multiple custom-built runtime environments, each
having different characteristics in terms of the tools and



techniques they employ. To manage and build such run-
time environments, APPJITSU relies on a series of config-
urations and a configuration parser, which serves as the ba-
sis of Configuration Manager module. The Configuration
Manager uses configuration parameters to select which
tools to include in a runtime environment, and resolves
dependencies or conflicts between tools and techniques.
Additionally, this module ensures that configurations meet
each of the APPJITSU-designated resiliency requirements
from Table 1.

4.1.2. System Builder. The fundamental requirement of a
dynamic analysis system is the runtime environment, and
APPJITSU uses user-specified configurations to specify the
characteristics of an app evaluation platform. Since the
total number of configurations can be arbitrary, we use the
System Builder module to instantiate a runtime environ-
ment according to the specific configurations from Config-
uration Manager. Additionally, System Builder saves the
delta images1 of each unique experimental environment
to optimize storage space and avoid re-instantiation of
identical runtime platforms.

4.1.3. App-State Manager. During dynamic analysis, AP-
PJITSU needs to control an app’s behavior, grant permis-
sion requests, report unresponsive apps, and finally capture
the app-state indicators. One of the major indicators of
an app’s state is the UI elements that Android renders.
Similarly, changes in the UI or pending actions, such
as window slide animations or requests for user action,
often indicates a state transition. Therefore, we define
the app-state indicator as the screen layout of an app
after the app reaches a steady-state (i.e., after the app
completes initialization, and all permissions are granted).
However, the concept of app-state can be expanded with
any other relevant information for the purpose of deter-
mining system state. As APPJITSU uses app-state indi-
cators to determine resiliency mechanisms, our system
requires App-State Manager to control, navigate, and ex-
tract information from the UI of the runtime-platform.
The App-State Manager module directly interacts with the
runtime platform and controls the experiment to manage
app installation, initialization, and further interaction.

4.1.4. Defense Detector. The main goal of APPJITSU is to
study behavioral variations of app-states across different
runtime platforms due to the self-defense methods that
an app employs. While App-State Manager can extract
the app-state of a particular app on a single runtime
environment configuration, a successful behavioral com-
parison requires app-states from multiple runtime plat-
forms. Therefore, we use the Defense Detector to collect
multiple app-states from all runtime configurations and
systematically evaluate the app-state differences.

The analysis of Defense Detector depends on a pair-
wise comparison between a baseline behavior on a default
runtime environment and a deviant behavior on the hostile
runtime platforms. This comparative approach provides a
close approximation of the differences between a non-

1. Modifications to an Android image result in base and delta images
in the QEMU copy-on-write file format. A delta image only stores the
changes made to the base image.

malicious user on a non-modified mobile platform and a
malicious actor on a hostile runtime environment.

4.2. System Implementation

This section elaborates on the details of the APPJITSU
prototype. Due to their inter-dependent functionalities,
we chose to operate Configuration Manager and System
Builder as a single Constructor module. We implemented
Constructor as a combination of shell and Python scripts.
In the spirit of open science and to facilitate reproducible
experiments, we plan to release our implementation of
APPJITSU under an open source license.

4.2.1. Configuration Manager. The Configuration Man-
ager includes a custom configuration parsing module to
identify the tamper-module requirements given a runtime-
environment. An example of the configuration syntax,
a sample configuration file and the respective tamper-
module dependencies are listed in Listing 1.
<RUNTIME> ::= {[<FILE_INTEGRITY>] [<PLATFORM>]

[<PRIVILEGE>] [<MEMORY_MOD>:<DEPENDENCY>]
[<DEBUGGER>]}

<FILE_INTEGRITY> ::= (signed | repackaged)
<PLATFORM> ::= (hardware | emulator)
<PRIVILEGE> ::= (none | root:<PLATFORM>)
<MEMORY_MOD> ::= (none | frida:( <FILE_INTEGRITY> |

<PRIVILEGE> ) )
<DEBUGGER> ::= (none | strace | jwdp)

// Example 1: baseline configuration of a hardware
device

{[signed] [hardware] [none] [none] [none]}

// Example 2: Frida hooks on a rooted Android emulator.
{[signed] [emulator] [none] [frida:root:emulator]

[none]}

Listing 1: Runtime Environment Configuration Example.

Here, we define a <RUNTIME> environment as a 5-
tuple of the MSTG Resilience categories and their possible
values within APPJITSU. Additionally, configuration pa-
rameters also specify their specific dependency modules,
if any, for their integration to the runtime environment.
Within APPJITSU, every tool or dependency module that
System Builder uses to realize a runtime platform be-
comes part of the hostile environment, and hence called
a tamper-module. For every configuration parameter, the
Configuration Manager selects a tamper-module, which
consists of binaries, frameworks, and installation scripts
for the given configuration. If the Configuration Manager
detects a dependency module which the initial configura-
tion did not specify, it also includes tamper-modules of
the detected dependency into the runtime environment.
For instance, we use Frida [27] as a memory tampering
framework (Example 2 of Listing 1), which requires root
privileges2. Consequently, here, the Frida configuration
states root access as a dependency module. Although
the initial configuration did not require a rooted runtime
environment (i.e., PRIVILEGE configuration is set to
”none”), the Configuration Manager still includes the
necessary tamper-module, which enables root privileges in

2. Although it is possible to use Frida without root access, this method
requires repackaging the app with frida-gadget shared library, and
hence breaks the app integrity. Since app repackaging interferes with the
FILE_INTEGRITY configuration of APPJITSU, we prefer a runtime
platform modification to an app modification.



the runtime-environment. Finally, Configuration Manager
collects a set of tamper-modules based on the environment
configuration, and passes the set to the System Builder.

4.2.2. System Builder. The System Builder module reads
tamper-modules and modifies a default runtime environ-
ment in the order that the Configuration Manager spec-
ifies. The initial runtime-environment parameter is the
<PLATFORM>, which, if specified as ”emulator”, requires
the default runtime environment to be emulated. In this
case, the System Builder loads an unmodified x86 com-
patible Android image on the Android Emulator based
on QEMU and applies necessary modifications. We use
a specific version of Android image, which is capable of
translating ARM instructions to x86 without impacting the
entire system [28]. This capability enables us to analyze
ARM variants of the apps on our x86 experimental plat-
form. Otherwise, we use a Nexus 6P from Huawei as the
hardware platform.

To provide privileged root access to both hardware and
emulated instances of the runtime environment, we use the
binaries and root manager of SuperSU v2.82. As previ-
ously mentioned, we chose Frida for the dynamic memory
tampering and hooking framework due to its compatibility
across different Android versions as well as the ability
to be used on Android Emulator. Unfortunately, Xposed
Framework [29], which is another well-known hooking
framework, does not support Android versions 9.0+, and
hence is incompatible with our setup. Furthermore, EdX-
posed [30], which is a modern replacement and variant of
Xposed Framework, is also incompatible with the Android
Emulator. EdXposed depends on installable modifications
(i.e., modules) on top of an alternative root framework
called Magisk. Magisk modules lack persistence on em-
ulated instances, which hinders their capabilities on the
Android Emulator.

Well known hooking frameworks like Xposed and
Frida consist of an instrumentation layer (modified init
process or a server on the system), and a module which
specifies the memory modification target (i.e., modules
which specify hooks). Our empirical analysis with a
custom self-defending app showed that the presence of
hooking frameworks can be detected even when there are
no active method hooks present in the system.3 Therefore,
since apps can still detect the mere presence of the hook-
ing framework, and react accordingly, the APPJITSU con-
figuration which uses Frida instrumentation server does
not have an active hook to any target.

At the end of the operations of the Constructor (i.e.,
Configuration Manager and System Builder), the AP-
PJITSU operates a total of 6 different runtime platforms
with the configurations we present in Table 2.

4.2.3. App-State Manager. The App-State Manager
module is responsible for controlling the app installation,
UI interaction, and extracting the app-state indicators.
During our experiments, we launch an app with Android
Debug Bridge (adb) [25] monkey [31] with a single
event injection. Similar to Bianchi et al. [32], to control

3. For Xposed Framework, hook detection with stack trace analysis
still shows the framework components. An active Frida instrumentation
server, on the other hand, is visible with a simple port scan. Neither of
the tests had an active hook to any Java method.

the UI of both the hardware and emulators, we rely on
uiautomator [21], which is an Android testing framework
that provides a set of APIs to perform UI operations. We
control the uiautomator through a Python wrapper [33]
which connects to the device though the adb. During the
evaluation of an app, the App-State Manager installs the
app via adb, obtains UI-related information and controls
the device’s screen actions, such as granting permissions.

At the time of app initialization, it is possible to
observe error indicators which stem from compatibility
issues or runtime errors. These errors appear in system
dialogs, which are separate from UI warnings that informs
users of a hostile environment. Therefore, the App-State
Manager continuously scans for such errors, and repeats
the corresponding experiment if a runtime error occurs.

To determine which errors occur and what the in-
dicators of aforementioned errors are, we conducted an
initial study. Our analysis is based on the insight that
an event-injection fails when there are errors in the app
initialization. Therefore, we first installed apps on our
hardware platform, and attempted to inject 2 events with
a 10 second time delay using adb monkey. For all
the failed event-injects, we used the uiautomator API to
obtain the UI layout, extracted the common elements,
and clustered layout hierarchies based on their text field.
Then, we analyzed the common values of the clusters and
extracted the indicators of errors in UI layout.

Finally, we observed three types or initialization er-
rors: i) app not responding (ANR), which is usually an
app-related crash, ii) missing Google Play components,
which occurs when Google Play package is not present in
the system4, and iii) UI crashes. We present these common
elements (i.e.,indicators of errors) in Listing 2.

To detect the aforementioned errors, the App-State
Manager uses uiautomator API to extract and parse the
UI layout in XML format, and checks for the indicators
of an error. At the same time, an app which needs ac-
cess to permission-protected methods requests a runtime
permission request. This request displays a dialog box on
the UI, which shows the resources the app is requesting
access to, along with ”Allow” and ”Deny” buttons. Since
Android has a centralized access management system,
the dialog box stems from the Android system’s package
installer, and possesses a fixed layout with a deterministic
resource ID within the layout hierarchy (com.android.
packageinstaller). Therefore, we use the same parsing
logic to detect the Allow button of a runtime permission
request dialog, and grant all requested permissions until
all the permissions are granted.5 We present the resource
ID of the ”Allow” button in the partial UI layout dumps in
Listing 2, below the resource ID’s of our error indicators.

<?xml version="1.0" ?> <hierarchy rotation="0"> <node

// Err1: App Not Responding
resource-id="android:id/alertTitle"
text="AppName has stopped"

// Err2: Missing Google Play Components
2a: resource-id="android:id/message"
2b: resource-id="appName:id/device_alert_info_tv"

4. Google Play app is only available in a production-build Android
image, which also lack some debugging capabilities.

5. Some apps present a custom pre-permission-request dialog, which
we discuss in §6.1



Runtime Platform
Configuration File Integrity Platform App Binary

Interface Image Build Privilege Memory
Modification Test Target

HW Developer Signed Nexus 6P ARM Production N/A N/A BASELINE
HW MOD Re-signed Nexus 6P ARM Production N/A N/A MSTG-Resilience-3

GPLAY Developer Signed Emulator x86 Production N/A N/A MSTG-Resilience-5
GAPI Developer Signed Emulator x86 Debug N/A N/A MSTG-Resilience-2

GAPI ROOT Developer Signed Emulator x86 Debug SuperSU v2.82 N/A MSTG-Resilience-1
GAPI FRIDA Developer Signed Emulator x86 Debug SuperSU v2.82 Frida MSTG-Resilience-6
GAPI DEBUG Developer Signed Emulator x86 Debug N/A strace/JWDP MSTG-Resilience-2

TABLE 2: APPJITSU runtime platform configurations, their properties and test targets

text="AppName is missing required components and must
be reinstalled from the Google Play."

// Err3: System UI crash
resource-id="android:id/alertTitle" text="System UI

isn’t responding"/>

// Allow button for the permission request dialog
resource-id="com.android.packageinstaller:id/
permission_allow_button" text="ALLOW"

/> </node> </hierarchy>

Listing 2: UI Layout Element ID’s in XML Format

If the App-State Manager detects any of the aforemen-
tioned errors on the UI, it reinstalls the app and tries to
achieve a steady state (i.e., no UI errors or permission
requests). Upon achieving the steady state, the App-State
Manager captures app-state as a full set of app-state
indicators. Here, a full set of app-state indicator consists
of: 1) full hierarchical structure of the UI in xml format,
and 2) a screenshot of the UI which results from rendering
of the aforementioned screen layout.

Some of the apps include a screen protection mecha-
nism, which disables screenshots of the UI when the app is
on the foreground. When App-State Manager attempts to
take a screenshot, the FrameBuffer protection mechanism
produces an error which we can observe through adb
logcat.6 In such cases, APPJITSU uses the UI layout
hierarchy in xml format only. Followingly, App-State
Manager sends the set of full app-state indicators to the
Defense Detector.

4.2.4. Defense Detector. The Defense Detector primarily
acts as the detection module for app resiliency given the
app-state indicators from the App-State Manager. More
specifically, the Defense Detector compares the screen
layout information of an app which we subject to dif-
ferent tamper-modules to observe behavioral differences.
During our experiments, the hardware platform provides
information on an app’s intended state on a real device,
and serves as a behavioral baseline for our framework.
The remaining configurations present a hostile runtime
platform with a variety of different techniques to attack a
runtime-environment’s integrity and trigger potential self-
defense mechanisms. The Defense Detector compares the
variations in the screenshots and captures any differences
while recording which configuration caused the app-state
difference. For comparison of the screenshots, we use
hashes of the entire UI at the time of an app’s steady
state. To hash the screenshot of a steady state, we use the
Perceptional Hash (pHash) algorithm from the ImageHash

6. An attempt to take a screenshot fails with the following er-
ror in adb logcat: W/SurfaceFlinger: FB is protected:
PERMISSION_DENIED

Python library [34], which produces the same hash for two
images given that the differences between image hashes
are negligibly small.7 The reasoning behind a perceptional
hash is to disregard small differences between screenshots
such as the clock display. We use the default parameters
for the pHash implementation, which produces an 8-byte
locally-sensitive fuzzy hash.

The Defense Detector organizes the pHash of screen-
shots in a structured repository, which can identify any
hash value given the app name and the runtime-platform
configuration. If the Defense Detector detects differences
between the hashes of the same app across all the runtime-
configurations, it marks the app as an outlier and runs
its detection logic. For instance, if APPJITSU captures
different screenshots from non-rooted and rooted environ-
ments, Defense Detector evaluates the difference as root
detection. The generalize, the Defense Detector detects the
self-defense mechanism as the latest incremental change
(i.e., the latest tamper-module that the system has added).
Therefore, we define the parameters of defense detection
logic as follows:

• P is the set of configuration parameters, where:
P ∈ { integrity, platform, privilege, memory mod,
platform access, debugger } (see Listing 1).

• C is the runtime platform configuration, where:
C ∈ { P1, P2 ... Pα } with α = 7 for APPJITSU.

• RC is the runtime environment with configuration C.
Given the initial configuration parameters from Table 2,
APPJITSU constructs C such that C ∈ { hw, hwmod, gplay,
gapi, gapiroot, gapifrida , gapidebug }. Finally, LRC is the
amount of incremental changes to the runtime platform
for configuration C, which we rank with the following
inequations:

• LRhw < LRhw mod

• LRgapi < LRgapi debug

• LRhw < LRgplay < LRgapi < LRgapi root < LRgapi frida

Since APPJITSU primarily evaluates app-state indica-
tors, we define S as the app-state indicator, where SRC1 and
SRC2 denote the app-state indicators of an app on different
runtime environments RC1 and RC2. The detection logic
is then defined such that:

if (SRhw = SRC1 ) ∧ (SRhw 6= SRC2 ) where C ∈ { hw,
hwmod, gplay, gapi, gapiroot, gapifrida , gapidebug } ⇔ the
incremental change of LRC1 → LRC2 is the tamper module
that APPJITSU detects.

Apart from detecting the defense indicators across
runtime configurations, the Defense Detector serves as a
system error correction module for the entire APPJITSU

7. Our threshold is 20 for an 8 byte pHash output, which we empir-
ically determined to optimize for minimum number of false positives
over a corpus of 72,000 UI screenshots.



architecture. For instance, if the APPJITSU captures the
screenshot in a runtime with root and hook, while it
lacks the screenshot from root-only runtime, then the
experiment on the root-only runtime may be faulty. The
reasoning behind this logic is that if an app runs on
an environment with higher number of modifications, it
should run on environments which include only a subset of
these modifications. Hence, we define the error detection
logic as follows:

if SRC1 = ∅ while ∃ SRC2 6= ∅ for LRC1 < LRC2

⇔ possible error for RC1.
Defense Detector uses this error logic to notify App-State
Manager of any potential errors in the experiment, and
requests the particular experiment to be repeated. This
ensures that APPJITSU has as few transient errors in app-
initialization as possible.

4.3. Analysis Methodology

Our analysis mainly focuses on how many apps
present different app-states for every runtime configura-
tion of APPJITSU. With the results we obtain from this
analysis, we can determine how many apps deploy self-
defense methods, how prevalent different defensive behav-
iors in apps are, and which common defense methods are
the most common. Therefore, we analyze our results with
the following methodology:

First, we extract an indicator hash set. We define the
indicator hash set as all the hashable app-state indicators
per app (i.e., screenshot and layout hierarchy or layout hi-
erarchy only), where every element of the set corresponds
to the hash of an app-state for a given runtime environment
configuration.

HashSetindicator = [hw, hw mod, gplay, gapi,

gapi root, gapi frida, gapi debug]

We then apply a pairwise comparison between app-
state hashes such that, every indicator element in the set
is compared to the app-state of the hw configuration,
which constitutes a baseline behavior for our purposes.
If the hash difference of a compared pair is above a
predetermined threshold (i.e, 20, see §4.2.4 footnotes), we
mark the compared app-state with a 1, otherwise 0. At the
end of our comparisons, we obtain a set of similarities
(i.e., the similarity set) to the baseline behavior, which
we encode in a binary vector. An example of a similarity
set is shown below:

Setsimilarity = [0, 1, 0, 1, 1, 1]

Since there are a total of 26 possible values8 for a
similarity set, we construct an 8x8 matrix, which we call a
discrepancy matrix, to represent all possibilities of a simi-
larity set. We construct the coordinates of our discrepancy
matrix such that, out of 6 runtime configurations, possible
combinations of the first 3 represents the Y-axis, whereas
the latter 3 yields the X-axis. Therefore, to determine the
position of a similarity set in the discrepancy matrix, we

8. Out of 7 configurations, the first value corresponds to the self-
comparison of the hw configuration. Since this value takes a constant
zero value, we ignore the first bit of information.

evaluate the digits of the similarity set using the following
formula:

Coordinatey = base10 (Setsimilarity [0 : 2])

Coordinatex = base10 (Setsimilarity [3 : 5])

For instance, based on our example, the similarity set
above would have the coordinates (7, 2).9

Finally, we count the number of apps that present the
same similarity sets, and we use these values to populate
the discrepancy matrix, which we will present in Figure 2
of §6.

5. Evaluation

We assess the ability of APPJITSU to detect app self-
defense methods by testing our system on the most popu-
lar Android apps from Google Play’s FINANCE category.
We chose this category since the majority of apps handle
sensitive data, such as banking credentials or account
information. We also examine the inaccurate warnings for
end-users which we detect during our experiments.

5.1. Experimental Setup

For app analysis on real hardware, we use Google
Nexus 6P from Huawei with an ARM-compatible Android
image. The emulated runtime environments run on a single
computer with a octa-core Intel® Core™ i7-9750H proces-
sor, 16GB of RAM and an NVIDIA GeForce RTX 2060
Mobile GPU with 6GB GDDR6 memory. As the basis
for our emulated runtime environment, we chose an x86-
compatible Android image with ARM code translation ca-
pabilities. Our empirical analysis showed that roughly one
third of the apps are not x86 compatible (i.e., included
ARM shared libraries and lacked an x86 version), and thus
we build our system to be inclusive for all the target apps.

5.2. Data Collection

5.2.1. App Collection. To collect a representative list of
most popular Android apps, we used AndroidRank [35],
which is a website that keeps track of the app metadata
through the Google Play [22]. We then selected all the
most popular apps by download count from FINANCE
category due to their security-sensitive data handling op-
erations. To obtain apk files, we used the gplaydl [36]
package, an open-source wrapper for the reverse engi-
neered Google Play API, and downloaded the files directly
from the Google Play. For this purpose, we setup our
real hardware device with a Google account, and used
our account credentials as well as the specific device
configuration parameters. Finally, we collected a total of
455 apps, which we all verified to run on a non-modified
Android phone.

Since APPJITSU also tests the resiliency of apps
against repackaging attacks, we used apktool [37] to
disassemble apk files, repackage the app files and sign
the repackaged app with our own cryptographic keys.

9. Assuming matrix coordinates start with (0,0) on the top right corner.
Note that the indices of the first 3 configurations represent the Y-axis
for a more user-friendly representation.



During repackaging process, we use apktool with the
aapt2 [38] app packaging tool so that our repackag-
ing process is compatible with the latest development
toolsets.10

5.2.2. Output Data. The output of APPJITSU consists
of the app-state indicators, which we define as the screen
layout of the UI after app initialization with all the permis-
sions granted via the built-in permission dialog. For every
screen layout, we keep a database of layout hierarchy in
XML format, screenshots and the perceptional hash of the
screenshot. Finally, Defense Detector associates apps with
their potential self-defense methods based on the app-state
indicators.

5.3. Evaluation Strategy

We assume all the apps under scrutiny are benign apps
and do not actively evade the tampering mechanisms, but
rather warn the user of potential threats or weaknesses in
the system. This is a reasonable assumption given that our
apps are the most popular apps from the official Google
Play. Prior to the experiment, we create a list of runtime
environment configurations, which consists of possible
combinations of all the parameters we list in Listing 1.
During this process, we eliminate the combinations which
create potential duplicates in the runtime environment due
to the dependency requirements. Before the experiment,
the APPJITSU reads the configuration files and creates an
environment for every specified runtime configurations,
and saves them. This ensures that we do not repeat the
runtime-environment creation process for every app, and
every app runs on the same set of runtime environments.

During the experiment, APPJITSU installs one app at
a time for every runtime environment configuration, then
executes the following actions:

1) checks for initialization errors,
2) grants permissions,
3) extracts app-state (i.e., capture screenshot and dump

UI layout hierarchy in xml format), and
4) evaluates defense mechanisms.

If APPJITSU detects a potential error during the app
initialization, it repeats the experiment process of the
runtime configuration for which the error is detected. The
error correction mode is a single-time process for every
app, which can be triggered right after Defense Detector
detects indicators of errors from the Listing 2 in the App-
State Manager output. We should note that self error-
correcting mechanism is useful for transient errors such
as network connection problems or timing mismatches of
events that App-State Manager injects to the app.

6. Results

In this section, first we use the results of our study to
answer the following research questions:

• RQ1: How many apps deploy self defense mech-
anisms and what is the prevalence of different re-
siliency capabilities?

10. aapt2 is enabled by default for the recent Android developer tools
such as Android Studio and Android Gradle Plugin.

platform hardware emulator

config orig mod gplay gapi gapi
root

gapi
hook

gapi
debug

run 455 294 341 314 291 232 293
fail 0 87 114 141 164 223 162

TABLE 3: APPJITSU results in numbers.

Figure 2: Discrepancy matrix of app similarity sets.

• RQ2: Which self defense methods are the most com-
mon?

Then, we present case studies about significant behav-
iors we observed in the analyzed apps. Table 3 presents
the aggregated numerical results relative to all the device
configurations tested by APPJITSU. The first column (hw)
corresponds to a configuration in which we use a real
hardware device with an unmodified app, while the sec-
ond column (hw_mod) corresponds to a configuration in
which we use a real hardware device with a repackaged
app. The other four columns correspond to configurations
which use emulated instances with the following device
image properties.

• gplay: original app on stock Google Play image;
• gapi: modifiable image with Google APIs;
• gapi_root: rooted image with Google APIs;
• gapi_hook: rooted image with Google APIs with

a running Frida instrumentation server.
• gapi_debug: modifiable image with Google APIs

with a JDWP or strace attached to the app process.
APPJITSU successfully repackaged 381 apps (83.73%)

in our dataset. Among these apps, 211 apps successfully
launched on real hardware with the same app-state. This
result shows that 46.37% of FINANCE apps we tested are
susceptible to a repackaging attack.

To answer RQ1 and RQ2, we need a detailed break-
down of exactly how many app-state indicators have dis-
crepancies with respect to the baseline per every combina-
tion of APPJITSU configurations. We study the prevalence
of defensive behaviors based on the discrepancy matrix
we construct with the methodology we explained in §4.3.
Figure 2 presents the discrepancy matrix of our results.

First, we look at the top 3 most populated similar-
ity sets, which are (1, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1) and
(0, 0, 0, 0, 0, 0). The most common case is the similarity
set of (1, 1, 1, 1, 1, 1), which corresponds to the case when



an app runs on every single APPJITSU configuration we
tested. This striking result indicates that 25.05% of the
most popular apps have no resiliency against any common
hostile methods or tools. The second set (0, 1, 1, 1, 1, 1)
corresponds to the interesting case in which the app only
detects repackaging, but lacks defensive capabilities for
emulated instances. Such apps can be defeated by dy-
namic tampering attacks, even when the app integrity is
preserved. In our dataset, this scenario occurs in 12.96%
of the apps. The third most common set (0, 0, 0, 0, 0, 0)
corresponds to the cases in which the app only presents an
app-state indicator iff it runs with an unmodified package
and on real hardware. This particular behavior is an
indication of high resistance against hostile environments,
which we observe in 10.77% of the apps. Equivalently,
89.23% of top FINANCE apps do not employ at least one
recommended self-defense mechanism.

We then determine how many apps in total lack
defenses against specific hostile configurations. To do
so, we observe successful execution of apps on hostile
environments such that the respective index of the sim-
ilarity set indicates no observable behavioral difference.
To determine the failure to detect an emulator, we select
the similarity sets where there is at least one app-state
in an emulated instance is equivalent to the baseline. We
observe that 390 apps (85.71%) of the apps failed to detect
emulator in at least once hostile environment that runs on
Android Emulator. Using a similar technique, we identify
apps which fail to detect modifiable ROM images, rooted
environment, hooking framework and, finally, app process
debugging. Our results indicate that 239 apps (52.53%)
do not detect modifiable ROM images, 263 apps (57.8%)
run despite the presence of superuser privileges, 311 apps
(68.35%) fail to detect the active on-device server of the
hooking process, and 259 apps (56.92%) do not detect a
debugger attached to the app process.

6.1. Case Studies

In this section, we present interesting case studies
found by our analysis. First, we focus on apps without
any enforcement mechanisms, i.e., apps which provide
no information to the user on the perils of the runtime
modifications and still run on every hostile environment.
Then, we study how different resiliency indicators influ-
ence our app-state indicators. Finally, we exemplify errors
we observed in user notifications and other non-standard
behaviors we found.

6.1.1. Defenseless Apps. In this category, we observe
the lack of user notifications against tamper-modules of
hostile environments that APPJITSU contains. We identi-
fied a set of apps that do not implement any self-defense
mechanism. In fact, these apps run without issues in every
single combination of configurations within APPJITSU.
Consequently, we argue that an attacker could use any
commonly known attack vector to compromise the secu-
rity of these apps.

Splitwise [39], a popular finance app which enables
users to record and share expenses with multiple entities
and make payments via payment processors, is one exam-
ple in this category. Another example is the IRS2Go [40]
app. IRS2Go is the official app of the US Internal Revenue

Figure 3: Repackaging Detection
com.sbi.SBIFreedomPlus (left) and
com.cimbmalaysia (right). Both apps fail to
launch on the same hardware platform after repackaging
and re-signing with our keys.

Figure 4: Emulator Detection com.snapwork.hdfc
(left) and com.rbs.mobile.android.natwest
(right). Both applications display errors and fail to launch
on any emulated instance.

Service. This app enables users to make payments, check
information related to their tax records, and generate login
security codes. Due to its nature, this app handles sensitive
information such as Social Security Numbers. During our
experiments, we observed that both of these apps run on
every runtime environment we tested, and neither have
displayed any dialog box or error message to warn the
users against potential threats.

6.1.2. Signature Detection. We identify a signature de-
tection as i) a deviation from the baseline behavior of an
unmodified app on real hardware, or ii) an error during
the initialization of an app.

In Figure 3, on the left we see an app showing a
warning to the user, after it detects tampering of its own
apk file. On the right, we show a case in which an
app displays an error message during its initialization,
after it detects being tampered. Here, APPJITSU-based
tampering and the resulting modified signature caused the
app’s remote server to fail processing a request from the
repackaged app, leading to an initialization error.

6.1.3. Emulator Detection. We detect anti-emulator be-
haviors by checking if i) an app refuses to run in an
emulated runtime environment, or ii) an app shows a
specific message to the user, complaining about being run
in an emulator. In Figure 4, we show an explicit (on the
left) and implicit (on the right) error message triggered by
emulator detection. In both cases, the analyzed apps did
not properly launch. However, in the latter case (image on
the right), the error message content is non-specific, since
it generically mentions the failure of a “Security check.”

We will present further inconsistencies in what apps
show to the user in §6.2.

6.1.4. ROM Detection. We define a ROM detection as
the scenario in which an app reacts to the lack of Google
Play in the operating system image, even when Google
APIs are present. In Figure 5, we present how different



Figure 5: ROM Detection com.bbva.bbvacontigo
(left) and com.boi.mpay (right). Both warnings appear
only when the apps run on emulators with a modifiable
Android image.

Figure 6: Root Detection. com.icicbank.pockets
(left) attempts to execute the su binary, which trig-
gers a permission request from the root manager.
com.enstage.wibmo.hdfc (right) allows users to
continue given that the user acknowledges security risks.

apps react to this scenario. Neither of the ROM detection
errors that apps display specify the type of changes that the
app detects. Therefore, the end-users are still oblivious to
the potential threats, and uninformed if the error is because
of a rooted platform or if the operating system image
is merely a custom Android image without any further
modifications. Here, APPJITSU’s differential evaluation
logic (§4.2) detects that apps display errors only when
Google Play is not present on the runtime environment,
and recognizes the ROM detection defense.

6.1.5. Root Detection. Our analysis shows that upon root
detection, some apps warn their users, but provide them
with the option to continue app execution. We show an
example of this behavior in Figure 6 (right). Another
root detection behavior we observed is the app’s attempt
to execute the su binary. In our testing environments,
executing the su binary displays a pop-up window from
the SuperSU app (Figure 6, left image), which is the root
permission manager. As a result, APPJITSU detects this
pop-up window and determines that the app which exhibits
this behavior performs root detection through su binary
execution method.

Additionally, we also found that some apps use the
term root detection interchangeably with emulator or
ROM detection, in their warning messages shown to the
user. These cases will be further discussed in §6.2.

6.2. Inaccuracies in Warning Messages

During our evaluation of app-state comparisons which
the Defense Detector marked due to the discrepancies
across different runtime configurations, we discovered
inaccuracies in the user-targeted warning messages. These
message and notification elements conveyed the message

Figure 7: Emulator detection with a root detection
warning from com.alb.mobilebanking (left) and
com.cimbmalaysia (right) apps. Both warnings ap-
pear in all emulated runtime platforms, regardless of the
presence of root binaries on the emulator.

to the user such that the app was running on a rooted
runtime environment, whereas the actual platform was
not. In fact, the configuration with non-rooted debug
build version of Android which lacks the tamper-modules
related SuperSU (su binary and the root manager app)
also received the same warnings as a rooted configuration.
Therefore, we see that app developers use the term root
detection interchangeably for various resiliency methods,
more prominently in emulator or ROM detection. We
present two examples from two different apps in Figure 7,
where all the emulated instances of these apps display
a root detection warning irrespective of if the device is
rooted or not.

7. Discussion and Limitations

Our goal in this paper is to investigate the indicators of
self-defense in Android applications against hostile envi-
ronments. Here, we explain the corner-cases we observed
during our systematic analysis along with their respective
examples of the rendered UI elements.

7.1. Detection of Defenses

APPJITSU heavily relies on hashable app-state indi-
cators in the form of screenshots, for both resiliency
detection and behavioral analysis. One of the limitations
of APPJITSU is that it evaluates the failure to notify users
against hostile environments and successful execution
alongside tamper-modules as lack of resiliency. The main
reasoning behind this method is due to one major underly-
ing assumption: apps in our dataset are benign and do not
benefit from stealthy detection of the hostile environment.
As we focus on the finance apps which handle sensitive
information, the benefits of avoiding reverse engineering,
tampering, and privilege escalation tools outweighs the
inconvenience that an app may cause to end-users.

Unfortunately, a successful execution on APPJITSU’s
hostile environments may not always indicate a missing
self-defense mechanism. Although such a behavior would
not benefit either party in the app ecosystem, it is entirely
possible that, by design, there are no indicators of detec-
tion visible to the user, or the developer, in any form, such
as warning messages, failed app initialization, or app logs.

Another issue that arises from self-defense techniques
is how a detection mechanism works. For instance, a
root detection mechanisms which rely on executing code
as root user may not be effective, unlike detecting root
by the presence of a root manager app in the runtime



environment. In the former case, APPJITSU does not
automatically grant root privileges to an app, and the
app would therefore fail to execute code as the root user,
leading to a failed anti-root defense. However in the latter
case, the app would be able to detect the presence of
root-related tools,and succeed in the self-defense logic
evaluation.

7.2. Method Coverage

APPJITSU cannot detect an app which uses self-
defense mechanisms only after complex user interactions.
While APPJITSU exercises apps even after their initial-
ization to elicit their different functionalities, it cannot
guarantee to dynamically cover all the code that an app
can potentially execute. Likewise, APPJITSU cannot detect
an app that performs self-defense checks but does not
change its behavior in any way in response to these
checks. However, we expect that most of the analyzed
apps perform their self-defense checks and exhibit behav-
ioral differences immediately after their initialization. In
fact, it is more beneficial for self-defending apps to warn
users against a hostile environment or deploy countermea-
sures as soon as possible. By doing so, an app can avoid
that a user inserts sensitive information to the app which
runs in a potentially-compromised environment.

Consequently, we expect apps to conform with the
aforementioned principle and warn users during initial-
ization phase. We claim that, in most of the cases, it
is sufficient to observe the steady state of an app after
initialization, and any further exercising of the app’s func-
tionality would not yield extra information. Hence, our
results are not strongly coupled with the total amount of
executed app-code, but directly tied to the code which is
executed during app initialization.

7.3. False Positives and False Negatives

We evaluated a random selection of 25 apps on all
hostile environments to determine false positives (PF) and
false negatives (FN). To evaluate FPs, we selected the apps
which APPJITSU determined to have a defense mecha-
nism, and then manually inspected the nature of behavioral
differences between baseline and hostile runtimes. We
determined the cause of FPs to be UI inconsistencies, and
based on our Consistency Detector results, we determined
that APPJITSU has a 5.5% False Discovery Rate.

To evaluate FNs, we select apps which ran on AP-
PJITSU without behavioral differences for OWASP-MSG
related hostile platforms. We then manually subject these
apps to the OWASP-MSTG related attack vectors and
further explore the app states. Based on our evaluation,
we determined that, security-related warnings can trigger
due to unexplored UI states (§7.4.5 and §7.4.3), such as
1) custom permission request dialogues, 2) skipping in-
troductory pages and, 3) login attempts. We conclude that
∼8% of the apps we tested had a FN due to unexplored UI
states, where the self-defense mechanisms manifest them-
selves after aforementioned user interactions. We consider
the cases related to the state exploration of apps to be
outside the scope of our work.

7.4. Efficacy of UI-based detection

7.4.1. UI-based defenses. Prior research has demon-
strated the effectiveness of UI-obfuscation against auto-
mated tools [41]. However, these obfuscation methods fall
outside the scope of the current MSTG guidelines, as this
defense has a narrow focus on safeguarding information
on the UI only.

7.4.2. Dynamic Content and Non-Determinism. If an
app deploys dynamically changing content (i.e., non-
constant among app’s different executions), APPJITSU
cannot capture the consistent steady-state of the app.
Dynamic, full-page advertisements (ads) are a common
cause of this behavior. However, they are uncommon for
official apps of financial institutions. As for third-party
apps, we have only observed banner ads (i.e., a single
ad bar at the bottom), which we render ineffective with
our thresholding approach used by the perceptional image
hashing.

To detect such cases of UI non-determinism, we im-
plemented a Consistency Detector module, which runs an
app on the same baseline runtime environment three times
consecutively, and observes UI steady-states. The mod-
ule compares perceptional hashes of displayed elements,
and checks if the app consistently displays the same UI
across different runs. We evaluated our dataset with the
Consistency Detector, and observed that 4% of the apps
demonstrate non-deterministic content on their steady-
state due to dynamically changing content. An additional
1.5% of all apps had device configuration related incon-
sistencies, such as Android version, which can vary based
on implementation details and cause non-deterministic UI.

7.4.3. UI of Unexplored States. As we mentioned in
§7.2, APPJITSU evaluates the UI of the app after launch,
and hence performs a shallow state exploration. There-
fore, our evaluation is limited to defensive mechanisms
that occur in the steady-state of the initialization page.
However, as we demonstrated in §7.3, certain app designs
allow a UI state which triggers self-defense mechanisms
after users take a certain action (e.g., click on ”Login”
button). As the app’s UI states can be arbitrarily complex,
a defensive mechanism that triggers on a UI state other
than the initial state would avoid APPJITSU’s detection
(i.e., delayed response). We consider state exploration of
app states to fall outside the scope of our work.

7.4.4. Non-Defesive State Indicators. We designed AP-
PJITSU to detect app resiliency indicators. However, AP-
PJITSU would observe UI layout differences based on
other detection mechanisms as well. For instance, it is
possible for an app to detect a resource (e.g., SIM card),
which is directly related to the operation of an app, and
display an error accordingly. In such rare cases, APPJITSU
may evaluate the app-state difference as an indicator of a
self-defense mechanism.

7.4.5. Custom Permission Requests. APPJITSU’s App-
State Manager module can handle permission requests
through the UI layout hierarchy thanks to the centralized
access control system in Android (§4.2.3). However, dur-
ing our evaluation, we discovered that some apps present



Figure 8: Custom permission di-
alogs from com.bbt.myfi (left) and
es.bancosantander.apps (right) apps. Custom
pop-ups appear before a standard system dialog to ask for
permissions, and hinders the permission-granting activity
of APPJITSU.

a pop-up notification that the user needs to dismiss before
they can grant permissions. Since the developers can
construct the UI layout arbitrarily, there are no standard
methods to detect and dismiss this notification 11. In such
cases, APPJITSU is limited to the app-state before we
grant permissions. Consequently, any app which relies
on a method, which is a part of a permission-controlled
standard Android API, to deploy self-defense methods
would fail to detect the hostile environment. A prominent
example of such a case is the permission to make phone
calls, which also gives access to fields that can reveal the
emulator-specific strings. We present an example of two
custom pre-permission request windows in Figure 8.

8. Related Work

Earlier works which evaluated Android apps at a
large-scale [42], [43] focused on malware detection and
analysis. Similarly, our previous large-scale work Libspec-
tor [44] identified different types of library usage in top
Android apps, whereas BorderPatrol [45] demonstrated
protection against malicious libraries at-scale. However
such large-scale studies did not provide an understanding
on the state of resiliency against app and runtime environ-
ment tampering in benign apps. As a response, researchers
studies the attacks on Android app integrity. One of the
early works is Protsenko et al’s [46], which found 97% of
top paid apps were susceptible to repackaging attacks. As
a response, authors have built a native self-protection for
tamper proofing Android apps. Unfortunately, their work
provides protection against the repackaging, debugger and
reverse engineering tools with limited scope.

For a wider understanding of how multiple resiliency
methods are in place, researchers also analyzed more
than one attack vector at a time. Haupert et al, [14]
examined a widely used library which provides app self-
protection, and demonstrated two runtime attacks against
the protections in place to disable security measures. In
their work, they analyzed the custom libraries which can
provide multiple self-protection methods, however were
able to exploit the integrity of apps regardless. More
related to our work is by Berlato and Ceccato. [11], where
authors statically analyzed the presence and adoption of
anti-debug and anti-tampering code in Google Play apps
from 2015 and 2019.Their insights showed a decreasing
popularity for anti-debug and anti-tampering methods.

11. Users can only grant permissions through standard system per-
mission dialogs or system settings. Custom permission request windows
serve as informational messages.

Their work showed decreasing adoption of propriety anti-
tamper library usage across years, and limited use of the
Google-provided SafetyNet Attestation API, which can
check the runtime environment integrity. Unfortunately,
their system relies on static analysis and does not span
over the entire OWASP resiliency requirements which are
related to detection of tamper methods.

In response to the growing attacks to financial industry,
researchers studied potential vulnerabilities in banking
apps. Nguyen-Vu et al. [12], examined the root detection
and anti-root evasion techniques. They surveyed 110 root
checking apps and the implementation of root checking
methods, then evaluated 28 thousand Android apps (in-
cluding 7200 malware samples) to see if such methods
are in place. Although a comprehensive study in Android
rooting, their work falls short on coverage of the OWASP
resiliency requirements. Similar to our work, Phumkaew
and Visoottiviseth [47] analyzed hospital and stock trade
applications from Thailand and extracted data-at-rest from
mobile devices with adb to demonstrate importance of
OWASP Top 10 mobile threat analysis. However, their
work is limited to modifying app packages and using a
rooted device for code tamper-detection, which only satis-
fies two of the resiliency requirements. Another work by
Kim et al. [13] identifies API calls to check device rooting
and app integrity. They examined 76 popular financial
Android apps in the Republic of Korea, and then devised
methods to bypass mechanisms of five libraries which
provide self-defense methods. Another static analysis by
Chen et al. [48] scrutinized banking app packages to detect
weaknesses in input/output structures, data storage and
sensitive data transmission. Authors of STAMBA [49] cre-
ated a framework to test mobile banking apps in terms of
the secure communication requirements of apps, however
they did not study anti-tampering requirements.

Finally, UI-driven app testing has been a method of
choice in earlier works [16]–[20]. Similar to an earlier
work of Bianchi et al [32], our app-state indicator also
uses uiautomator to control the Android UI and use
perceptional hash on the screen layout hierarchy.

9. Conclusions

In this paper, we designed and built APPJITSU, a dy-
namic app analysis framework that evaluates the resiliency
in security-sensitive apps. Using our APPJITSU prototype,
we analyzed the most popular 455 FINANCE apps from
the Google Play on multiple systematically-constructed
hostile runtime environments. We then presented our
implementation on how APPJITSU detects indicators of
resiliency in Android apps, as well as our data analysis
methodology methodology. Finally, we demonstrated the
lack of self-defense methods in popular finance-related
apps, and studied the manifestation of each specific re-
siliency indicator in their respective runtime environment
configuration. Our results indicate that 25.05% of the
tested apps lack all recommended self-defense mecha-
nisms, whereas only 10.77% employed all defensive meth-
ods we tested. In conclusion, APPJITSU determined that
nearly one fourth of Financial apps do not employ any
defense at all, while only a small fraction demonstrates
resiliency against commonly known attack methods.
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