
3rd International Workshop on Security and Social Networking

PoX: Protecting Users from Malicious Facebook Applications

Manuel Egele*t, Andreas Moser*t, Christopher Kruegelt, and Engin Kirda+

* Vienna University of Technology, Austria

{manuel,andy}@seclab.tuwien.ac.at
t University of California, Santa Barbara

{maeg,chris}@cs.ucsb.edu

+ Northeastern University, Boston

ek@ccs.neu.edu

Abstract-Online social networks such as Facebook, MyS­
pace, and Orkut store large amounts of sensitive user data.
While a user can legitimately assume that a social network
provider adheres to strict privacy standards, we argue that it
is unwise to trust third-party applications on these platforms
in the same way.

Although the social network provider would be in the best
position to implement fine-grained access control for third party
applications directly into the platform, existing mechanisms are
not convincing. Therefore, we introduce PoX, an extension for
Facebook that makes all requests for private data explicit to
the user and allows her to exert fine-grained access control over
what profile data can be accessed by individual applications.
By leveraging a client-side proxy that executes in the user's
web browser, data requests can be relayed to Facebook without
forcing the user to trust additional third parties. Of course, the
presented system is backwards compatible and transparently
falls back to the original behavior if a client does not support
our system. Thus, we consider PoX to be a readily available
alternative for privacy-aware users that do not want to wait for
privacy-relevant improvements to be implemented by Facebook
itself.

I. INTRODUCTION

Social networks have recently enjoyed tremendous success

and growth. Statistics for Facebook, arguably the most pop­

ular social network, indicate that its user base now exceeds

500 million users [1]. The amount and detail of private data

stored in user profiles on these networks makes an attractive

target for marketing companies, spammers, spear phishers,

and identity thieves. The operators of social networking sites

are very well-aware of the privacy implications of such

a collection of personal data. Therefore, they provide a

multitude of settings that allow users to control what parties

have access to their profile data, and the content they create

on the social network.

Third-party applications. Many social networks also offer

the possibility to create additional applications that extend

the functionality of the network. The two major platforms

for such applications are the Facebook Platform and Open

Social [2]. While applications designed for the Facebook

Platform can only be executed in Facebook, Open Social is a

combined effort to allow developers to run their applications

on any social network that supports the Open Social platform

(e.g., MySpace and Orkut). The popularity of third-party so­

cial networking applications can be appreciated by looking at

978-1-61284-937-9/11/$26.00 ©2011 IEEE 288

the ever-increasing number of active Facebook applications

that are available since the Facebook Platform was launched

in 2007 [3]. In fact, recent Facebook statistics [1] indicate

that, at the time of writing, more than 550,000 third-party

applications are available to Facebook's users.

To seamlessly embed an application into the social net­

work, the platforms provide libraries to third-party devel­

opers. Those libraries contain the bindings for different

programming languages to easily access the functionality and

data of the social network. If an application, for example,

needs to access the birthday of a user, the appropriate call

to the library will return this value. All communication that

happens between the application and the social network's

servers is encapsulated by this library.

With the tight integration between the social network and

third-party applications, privacy issues arise, especially when

it comes to the handling of sensitive profile data. Once an

application obtains access to profile data, it is impossible for

the social network to further enforce or asses how this data is

used by the application. Lacking technical means to enforce

profile data privacy, Facebook requires every application

developer to agree to their terms of service (TOS). These

terms state that an application must not store gathered profile

data nor propagate that data further. However, reported

incidents [4], [5], [6] where applications violated these terms

of service call for stronger means to protect the users'

profile data from rogue Facebook applications. For example,

in an incident involving the "Top Friends" application [5],

everybody could access the birthday, relationship status, and

gender of all Top Friends users, even in cases where this

information was set to be private by those users. Once the

issue was discovered, Facebook suspended this application

from their platform. A more recent incident [6] involved

some of the most popular Facebook applications transmit­

ting user information to advertising and Internet tracking

companies. Clearly, such incidents, which result in wide

media coverage, make users aware of the need for improved

access control for third-party applications. The latest incident

even caught the attention of US political leaders who wrote

a letter [7] to Facebook inquiring the company's privacy

practices. Furthermore, Facebook recently outraged civil

liberty campaigners by introducing new privacy settings that,

while seemingly improving the users' privacy, dramatically

increase the amount of personal information users share

publicly by default [8]. Additionally, in a recent interview

with Facebook CEO Mark Zuckerberg, he stated that privacy

is no longer a "social norm" [9]. As reaction to raised crit­

icism, Facebook implemented coarse grained access control

mechanisms for third party applications. However, we think

that this approach is not far-reaching enough. First, profile

information is grouped together too coarse grained. A user's

"Basic Information", for example, includes the name, profile

picture, all the user's networks, and friends. Thus, a user who

is willing to share her name but does not want to expose her

friend's information to an application could not use such

an application. Second, all applications that were installed

by the user before Facebook introduced their access-control

changes continue to have unrestricted access to the user's

profile data.

To limit and control the access of third-party applications

to user profile data, we propose a fine-grained access control

scheme for Facebook applications. That is, we suggest that

all requests for profile data are made explicit to the user. This

provides the user with precise control over which information

can be accessed by what application. For example, there is

no need for popular, fun quiz-style applications to access

any personal information. Of course, the basic idea of fine­

grained access control is not novel. However, any system

that wishes to introduce fine-grained access control for

Facebook applications has to take into account the fact that

there are hundreds of thousands of applications already out

there. Thus, the key requirement of a practical solution

is deployability without the help of Facebook. With this,

we mean that a solution should not require support from

the social network, should keep modifications of existing

applications to a minimum, and support a mixed mode in

which the system simultaneously handles clients that already

implement improved privacy measures along with legacy

clients.

One way to work around the restrictions imposed by

deploy ability would be a parallel system for third-party

applications that operates independently of Facebook. We

think that such solutions are not desirable, because they

introduce an additional party that has to be trusted by many

users to a significant extent. As a result, a second requirement

is that a solution does not introduce an additional, central

party that needs to be trusted like Facebook. The challenge,

now, is to design a practical solution that meets the two

requirements stated above.

In this paper, we advocate a solution to the access con­

trol problem that is in accordance with the above stated

requirements, using client-side proxies. In our solution, a

proxy executes entirely in the user's browser, and accepts

profile data requests from Facebook Platform applications.

The proxy scrutinizes each request and enforces access

control decisions by verifying that the application sending

the request is allowed to access the desired information.

Requests that pass this check are forwarded to the Facebook

servers by the client-side proxy, and the results are passed

back to the application. This approach has the advantage that

289

all relevant code is executed at the client side, where it can

be trivially reviewed by the interested user. Therefore, no

additional trusted entity is introduced to the system.

In this work, we present PoX, a Proxy On the Client­

Side system that provides a Facebook user with fine-grained

access control capabilities over which parts of her private

profile information can be accessed by third-party applica­

tions. This paper makes the following contributions:

• We summarize the current, non-satisfactory privacy

situation regarding third-party Facebook applications.

• To remedy the shortcomings of the existing system, we

propose PoX, a system that allows users to exert fine­

grained access control over Facebook applications.

• We illustrate the design and prototype implementation

of PoX.

• Finally, we present the results of our extensive evalu­

ation of the prototype, showing that deploying PoX is

simple and light-weight.

II. BACKGROUND ON FACEBOOK APPLICATIONS

The first step to create a Facebook application requires

the developer to register the application with Facebook.

Each application is assigned an application-id and a private

application key. All communication between the application

and Facebook's servers has to be signed with this key.

A user can install an application by visiting the applica­

tion's landing page, and accepting the dialog specifying the

access rights of the application. However, the user can only

accept or cancel the dialog. It is not possible to selectively

grant or deny access to individual profile information.

CUent

Facebook server

1. Open application &
send session secret

4. Display
application page

Facebook application
(e.g., quiz)

Figure 1: Data-flow in Facebook

Figure 1 illustrates how information is transmitted if a user

authorized an application to access her profile. Note that even

giving an application access to "Basic Information" exposes

all of a user's friends to this application too.

For an application to request profile information from the

Facebook servers, it is necessary to transmit a valid session

secret (Step 1 in Figure 1). This secret is created when

the user visits the application landing page and transmitted

to the application host as a URL parameter. The access

library, in turn, automatically appends the session secret to

all profile data requests (Step 2). Once the Facebook servers

receive such a request, the session secret allows Facebook to

determine whether the application is authorized to receive the

requested infonnation. For requests that contain a valid ses­

sion secret, the Facebook server responds with the requested

profile infonnation (Step 3). The application then continues

processing this data, and answers the client request with the

corresponding HTML output (Step 4).

III. PoX DESIGN

As mentioned previously, current Facebook applications

communicate directly with the Facebook servers, and legacy

applications even have unrestricted access to their users'

data. Limiting and controlling this access would require

a reference monitor (e.g., a proxy) that sits between the

Facebook application and the server. Since such a proxy

would have to be trusted by the user, such an approach would

violate our second requirement that states that no additional

trusted component can be introduced.

Introducing client-side proxies. To remove the need for

a central, trusted party, PoX executes the proxy on the

client side. That is, each user is basically running her own

proxy locally. Thus, PoX still allows the user to exert fine­

grained access control, but does not require additional trust

relationships. Under the premise that we cannot change

the behavior of the Facebook servers, PoX has to prevent

the session secret from being transmitted to the third-party

application. The reason for this is that a valid session secret

would allow the application to retrieve profile data directly

from the Facebook servers, without the user's knowledge.

Therefore, a client-side component (i.e., browser plug-in)

removes the session secret from all outgoing requests. This

prevents the application from communicating directly with

the Facebook server. Thus, whenever the application needs

infonnation about the user from Facebook, it sends a data

request back to the proxy running in the client's browser.

Once the proxy receives such a request, it performs the

access control checks in accordance with the user-chosen

settings. If the request passes the checks, the proxy signs

the request with its own secret, forwards the request to the

Facebook server, and relays the results back to the calling

application. In this way, the application only has access to

the data to which the user explicitly granted access. Once

the application receives the data, it proceeds in creating the

output (i.e., the HTML source describing the application

page) as usual. The modified flow of data using the PoX

system is depicted in Figure 2.

The remainder of this section elaborates on some of the

implementation decisions we made during the development

of our PoX prototype.

A. Plug-ins

One of PoX' objectives is to make sure that the session

secret is not transmitted to the third-party application. This

is necessary to ensure that the application does not retrieve

profile data from the Facebook servers directly. Instead,

the application is forced to make all profile data requests

explicit to the user by relaying the request via the client-side

proxy. To prevent the session secret from being transmitted

to the third-party application, we developed plug-ins for the

290

Client-side

proxy

Client

Facebook server

6. Display
application page

Facebook application
(e.g., quiz)

Figure 2: Modified data-flow with PoX

Internet Explorer and Firefox browsers that filter the session

secret tokens from the HTTP stream.

Note that using an application that is not PoX aware while

the PoX browser plug-in is active, might lead to unexpected

behavior (i.e., the missing secret will prevent the application

from retrieving profile data). While this behavior is a safe

fall-back from a privacy point of view, a user might decide to

fully trust such a legacy application to not violate her privacy.

Therefore, the PoX plug-ins can be temporarily disabled

from the browser's user interface.

B. Client-side proxy

In PoX, the client-side proxy is automatically loaded if

a PoX-aware Facebook application is used. However, the

application itself is displayed to the end user exactly as

without the PoX system as the proxy code resides in a hidden

IFRAME and is not visible in the browser window.

Initially, the proxy retrieves the current access control

list (ACL) for the user. This list indicates what application

should be allowed to access what pieces of profile data. If an

application-data mapping is not present, it is conservatively

assumed that access is forbidden for the application in

question.

Once loaded, the proxy waits for requests from Facebook

applications that require access to profile data. The Facebook

libraries can create such requests in two different ways. The

most common way for application developers to request user

data is to call a library function that provides access to

the requested data fields. In this case, a comma-separated

list of the requested fields is generated by the library and

sent to the Facebook servers or a PoX-enabled client. This

list can easily be parsed by the PoX system, and thus,

access control can be enforced. Alternatively, the developer

can fonnulate his request as a Facebook Query Language

(FQL) statement. FQL is a query language that syntactically

resembles SQL, but contains additional restrictions such that

queries cannot exhaust too many resources on the Facebook

servers. Furthennore, all valid FQL queries need to explicitly

list the data fields they want to access. Thus, PoX can enforce

access control on FQL queries by performing simple string

pattern matching.

After sanitizing the request, the proxy forwards the modi­

fied request to the Facebook server, and the result is relayed

back to the application.

The proxy Facebook application. Our current prototype

implementation of the client-side proxy is realized as a

Facebook Platform application. This application does not

only host the JavaScript code for the client-side proxy, but it

also provides an application ID and private key to the proxy

that is needed in order to communicate with the Facebook

server. Furthermore, this application provides the means to

store and manipulate a user's access control list. To specify

access control for an application, the user has to select the

application for which she wants to create or modify the ACL.

In a subsequent step, the user can decide for each of the data

items stored in her profile whether or not the application is

allowed to access this information.

Note that the user is not required to trust this proxy

application more than any other Facebook application. More

precisely, even though the proxy is allowed to request data

using the users' session secret inside the client browser, this

application, just as any other, does not receive the session

secret from its users. Thus, it cannot communicate with the

Facebook servers directly.

C. Server to client communication

The PoX proxy executes entirely in the web browser of

the Facebook user. It is thus necessary that the application

server can initiate requests to the client (the proxy) whenever

it needs to access profile data (shown as Step 2 in Figure 2).

To keep the proxy simple and independent of proprietary

protocols (e.g., Flash), we use an approach known as "long

polling" for the notification of the client proxy. In this

approach, the client sends a standard HTTP request to the

web server and tries to fetch a certain dynamic web page

(e.g., a PHP script). As long as there is no request to process

for the client, the web server stalls execution of this script,

causing the client to wait for a response. To request profile

data from the PoX client, the server resumes the script and

outputs its request. The request is transferred to the client

where it is subsequently processed.

D. Server-side PoX library

To make an existing Facebook application use the PoX

system, an application developer only needs to replace the

original Facebook server-side library with the PoX server­

side library. To seamlessly integrate PoX-aware and non­

PoX-aware clients, this modified version of the Facebook li­

brary performs an automated check for PoX-aware clients. If

the connecting client is PoX-aware, the server automatically

funnels all profile data requests through the client-side proxy.

For non-PoX-aware clients, the library transparently falls

back to unmodified code paths where profile data requests

are sent to the Facebook servers directly.

IV. EVALUATION

In this section, we show that the PoX system can deliver

data from the Facebook database to the application server

291

fast enough to be considered a practical, privacy-improving

solution for real world Facebook applications. We will show

that even if the initial request of an application is usually

slower than a request sent by the original Facebook library,

the system proposed in this paper can actually outperform

the method currently used by Facebook for subsequent data

requests.

A. Performance of Pox

To show that the PoX system is capable of serving

data fast enough to be considered also for large Facebook

applications, we first analyzed how the PoX library performs

under heavy load.

For this experiment, we set up five virtual machines

running Ubuntu Linux 9.04. In each one of those virtual

machines, we simulated two Facebook clients, for a total

of ten users. To simulate clients, we implemented a Firefox

extension that is able to automatically request pages from a

Facebook application, including the steps to authenticate the

application for the user and log the user into Facebook. For

the server side of the experiments presented in this section,

we set up two identical Facebook applications hosted on

commodity desktop machines. One is equipped with an Intel

Core 2 processor running at 2.4 GHz and 4GB of RAM,

and it is located on the same local network as the client

virtual machines (on-site setup). We used this machine to test

the performance of the PoX system with very low network

latency. The second machine has an Intel Pentium 4 CPU

clocked at 3 GHz and has 2GB of memory installed. This

machine is located remotely and the round trip time between

the clients and the off-site machine is 24 ms on average (off­

site setup).

During the experiment, we had each of the ten clients

download 100 times the page that requests user information

from the Facebook server. This was done twice, once for the

on-site and once for the off-site application server. For each

request, we measured how long it took the application to

obtain user profile information by issuing a Facebook API

call. As all simulated clients had the PoX plug-in installed,

those requests were sent via the client proxy to Facebook

and, thus, the time measured includes the proxy processing

time, the time to transfer data between the proxy and the

Facebook application, and the time to obtain the data from

the Facebook server. The results for the two runs are shown

in Figure 3a as the graphs marked with "no load."

In the next step, we repeated the experiment, but this time,

the goal is to show that our proxy server approach can cope

with heavy load. To this end, we started 50 additional clients

in five virtual machines hosted on another server. These

clients repeatedly requested the same page as fast as possible.

Combined, this simulates a load of 60 concurrent users.

Conservatively assuming that each simulated user issues

one request per second, this load would add up to more

than 160 million requests per month. Thus, even if we take

into account effects such as peak application usage times,

we believe that a library that is able to serve 160 million

requests per month is suited to be used for large Facebook

2000

� 1500

..
E
F
�

� 1000
..

a:

r

-- on-site server. high load

off-site server. high load

- on-site server, no load
...... off-site server, no load

%�----�20�----�40�--�6�0----�8�0----�100
Request Number

(a) Request times for high / low load

2000

I 1500

..
E
F

- PoX, on-site server
...... PoX, off-site server

Original API. on-site server

- - Original API, off-site server

°0�----�20�----�40�--�6�0----�8�0----�100
Request Number

(b) Request times for PoX and the original FB API

Figure 3: PoX Performance_

applications. Furthermore, results will show that the PoX

library can handle the load of 60 concurrent users with ease_

Figure 3a shows that, for both the on-site and the off­

site application server, handling 60 concurrent clients does

not increase the request time by much (graphs marked with

"high load"). The overall average request time only increased

from 526 ms to 531 ms for the on-site server, and from 593

ms to 601 ms for the off-site server. This clearly shows that

the PoX system is suited for usage in real-world Facebook

applications.

Note that it is immediately evident that the initial request

using PoX takes significantly longer to process. This is due

to the fact that it takes some time for the client browser

to load the proxy. Furthermore, the client side proxy in­

cludes two additional scripts that have to be downloaded:

The Facebook JavaScript client API to query the Facebook

servers for profile information, and a JSON processing script

to parse Facebook profile data. Downloading those scripts

and initializing the Facebook session takes around 500 ms

on average. The access control lists have to be downloaded

only for the first request, which takes another 100 ms in our

setup. Additionally, the first request to the application server

takes a bit more time because of the necessary connection

setup. During this proxy load time, the Facebook application

is often already waiting for the requested data, which results

in an overhead of up to one second. However, this overhead

occurs only once and remains well within reasonable limits.

B. Comparing PoX to the original Facebook library

Figure 3b depicts the time needed to get information from

the Facebook servers using the original Facebook library

and compares it to the time required by the PoX library

(as measured in the experiment in Section IV-A). In this

experiment, we started a total of ten Facebook clients in

five virtual machines. Those clients download 100 times a

page from our Facebook application. Again, we measured

the time it took the application to acquire the requested

data. For this experiment, the PoX plug-in of the clients

were disabled. Therefore, we measured the required time

to directly connect to the Facebook server using the original

292

Facebook library. To make the experiment more realistic, we

again started another 50 clients in virtual machines hosted

on another server that repeatedly requested the same page as

fast as possible.

We then compared the data from this run to the data we

gathered in the experiment conducted in Section IV-A. Note

that the experiment setup was exactly the same as described

in the previous section except for the disabled plug-in. Thus,

the times are comparable. The graph in Figure 3b shows the

request time for each of the 100 requests, averaged over all

clients. For reasons described in the previous section, the

initial requests are slower with the PoX system than with

the original library. After the initial request, however, we

see that the PoX library actually outperforms the original

Facebook library. This speedup can be accounted to the fact

that the client proxy just has to establish one persistent HTTP

connection that is reused for all subsequent requests. For the

Facebook library this is not possible, because the PHP script

is terminated at the end of every request. Therefore, using

the method presented in this paper does not only improve

the privacy of a user, but can also improve the performance

of Facebook applications.

The results are very comparable for the two application

servers we used. For the direct connection to Facebook, the

overall average request time for the two servers only differs

by 32_22 ms. For the run using the client proxy, the average

request time is 70.02 ms higher for the off-site server_ This

shows that the proxy server has a constant low run time

and only the round trip time is added twice for the off-site

server (once for getting the request to the client and once

for sending the results back to the application).

V. RELATED WORK

Users and their profile information stored on social net­

works are at risk. For example, Bilge et al. [10] performed

identity fraud experiments in social networks. To this end,

they initiated friendship requests to a set of victims. Once

accepted, they cloned their victims' profiles in other social

networks. By contacting a victims' friends in the new net­

work, they were able to impersonate the victim in the new

social network. As authorized applications already have ac­

cess to the profile data of their users, developers of malicious

applications could easily use the gathered information for

similar attacks.

The study performed by Jagatic et al. [11] suggests that

phishing campaigns that leverage data accessible from social

networks have a four times higher probability to lure vic­

tims to disclose private information than common phishing

campaigns. One has to assume that campaigns leveraging

otherwise private profile data have an even higher success

rate. Currently, one approach to access such data are rogue

social network applications.

Privacy concerns with regard to online social networks ap­

plications attracted the attention of the research community.

In [12], Felt et al. evaluated the requirements of personal

data for 150 popular Facebook applications. They conclude

that only 9% of the evaluated applications need to access

personal profile data to work correctly.

The application framework introduced in [13] is designed

to keep all personal profile data confined. To this end, the

xBook framework provides a restricted JavaScript environ­

ment based on ADSafe [14], extended with data storage

capabilities. The authors envision that the user completely

trusts their platform and require that all third-party appli­

cations are executed inside so-called xBook components.

xBook enforces that applications can only transfer data to

external entities that the user has explicitly agreed to. xBook

solely supports JavaScript on both the client and server­

side. That is, existing third-party applications written in

other languages than server-side JavaScript would have to

be ported to support xBook. For an application to support

PoX, however, it is sufficient to substitute the existing client

library with a PoX aware version. No further changes to

the application code itself are necessary. Moreover, xBook

introduces a trusted hosting platform and requires that ap­

plication developers release their source codes over to this

platform. This violates our second requirement which states

that no additional trusted parties should be introduced to the

existing system.

Shehab et al. [15] introduce an three step approach for

Facebook application access control. First, upon registration,

each application has to submit a so-called application sheet,

specifying the data needs for this applications. The second

step consists of a so-called user sheet, reflecting the access

control decisions the user made for each element of the

application sheet. Finally, the third step covers the necessary

modifications the application has to undergo to cope with

data that it cannot read because access is denied by the

user sheet. The deployment of this approach would require

extensive support from any social network that decides to

implement it (e.g., filtering requests with regard to the user

sheet). Furthermore, application developers would need to

produce application sheets for existing applications. In our

system, application developers do not need to modify their

applications, but only need to replace the Facebook library

with our PoX-aware version.

293

Lucas et al. [16] propose flyByNight, a cryptographic

system that encrypts all communication between users on

the Facebook Platform. Therefore, they implemented a proof

of concept Facebook application that relies on asymmetric

key cryptographic methods to encrypt messages with their

respective receiver's public keys. The purpose of flyByNight

is to make communication in the social network unaccessible

to the social network operator. The system does not, however,

protect the data stored in a user's profile. Indeed, it is not

clear whether the flyByNight approach could be adapted to

support encrypted profile data and third-party applications

simultaneously. In contrast, PoX assumes that the social

network operator behaves in accordance with high privacy

standards, and additional privacy protection is required only

for third-party applications.

Another method to protect the data of Facebook users was

presented by Lou et al. [17]. In their approach, they store

fake information on the Facebook site, but keep the real

data encrypted on a separate server. In this way, only trusted

users who possess the appropriate decryption keys can view

the stored information. This is done by installing a browser

extension that looks up and decrypts the matching data set

on the fly. This approach could be applied to very simple

third-party applications that only retrieve data to display it

unmodified on the application web site. However, even very

simple applications that show different output depending on

the data (for example, a horoscope application) would fail.

VI. CONCLUSIONS

The amount of personal and sensitive data stored on social

networks attracts the attention of people with questionable

intentions. This information allows an attacker, for example,

to create highly customized spear phishing emails. Further­

more, identity thieves can leverage the additional knowledge

they can retrieve from such online sources.

Unfortunately, current access controls for Facebook ap­

plications are too coarse grained and even non existent

for legacy applications. To remedy this privacy problem,

this paper introduced PoX. By forcing applications to make

profile data requests explicit to the user and funnel such

requests through client-side proxies, PoX can exert fine­

grained access control on profile data before it is transmitted

to the application. PoX is fully backwards-compatible and

simultaneously supports a mix of PoX-aware and traditional

clients. Moreover, deploying PoX for existing applications is

trivially accomplished by substituting the Facebook access

library. By installing the PoX plug-in in their browser, users

can protect their profile data from malicious applications,

and can take full advantage of PoX compliant third-party

Facebook applications. Thus, our system can be deployed

today. In addition, the system uses distributed proxies that

do not require a user to trust any other third-party. Our

evaluation of PoX demonstrates that it is possible and

feasible to have fine-grained access control over profile data

for Facebook applications.

REFERENCES

[1] "Facebook statistics," http://www.facebook.comlpresS/info.
php?statistics.

[2] "Opensocial - the web is better when it's social," http://code.
google.comlapis/opensociaV.

[3] "Facebook platform launches with 65 developer partners and
over 85 applications for facebook," http://www.facebook.coml
press/releases.php?p=1319, 2007.

[4] S. Kelly, "Identity 'at risk' on facebook," http://news.bbc.co.
uk/2/hi/programmes/click_online!7375772.stm, 2008.

[5] E. Mills, "Facebook suspends app that permitted peephole,"
http://news.cnet.coml8301-10784_3-9977762-7.html, 2008.

[6] E. Steel and G. A. Fowler, "Facebook in
online privacy breach; applications transmitting
identifying information;' http://online.wsj.comlarticle!
SBloo01424052702304772804575558484075236968.html,
2010.

[7] E. J. Markey and J. Barton, "Letter to rnr. zuckerberg,"
http://markey.house.gov/docs/lettec-jacebook_ -_pose wsL
-_1O-18-1O.pdf, 2010.

[8] "Facebook privacy change angers campaigners," http://www.
guardian.co.uk/technologyl2oo9/decll O/facebook -privacy.

[9] "Facebook's zuckerberg: Privacy no longer a

[10]

"social norm";' http://www.pamorama.netl2010/011l1l
facebooks-zuckerberg-privacy-no-longer-a-social-norml,
2010.

L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, "All your
contacts are belong to us: automated identity theft attacks
on social networks," in WWW '09: Proceedings of the 18th
international conference on World wide web. New York, NY,
USA: ACM, 2009, pp. 551-560.

294

[11] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer,
"Social phishing," Commun. ACM, vol. 50, no. 10, pp. 94-
100, 2007.

[12] A. Felt and D. Evans, "Privacy protection for social network­
ing platforms;' in Web 2.0 Security and Privacy, (W2SP 2008),
2008.

[13] K. Singh, S. Bhola, and W. Lee, "xbook: Redesigning
privacy control in social networking platforms," in
Proceedings of the 18th Usenix Security Symposium, August
2009. [Online]. Available: http://www.cc.gatech.edu/grads/k/
ksingh/publicationlsec09-xbook. pdf

[14] "Adsafe - making javascript safe for advertising." http://www.
adsafe.org/.

[15]

[16]

[17]

M. Shehab, A. C. Squicciarini, and G. J. Ahn, "Beyond
user-to-user access control for online social networks,"
in ICICS '08: Proceedings of the 10th International Confer­
ence on Information and Communications Security. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 174-189. [Online].
Available: http://dx.doLorg/l0.loo7/978-3-540-88625-9_12

M. M. Lucas and N. Borisov, "F1ybynight: mitigating the
privacy risks of social networking;' in WPES 'DB: Proceedings
of the 7th ACM workshop on Privacy in the electronic society.
New York, NY, USA: ACM, 2008, pp. 1-8.

W. Luo, Q. Xie, and U. Hengartner, "Facecloak: An archi­
tecture for user privacy on social networking sites," in Pro­
ceedings of 2009 IEEE International Conference on Privacy,
Security, Risk and Trust (PASSAT-09), August 2009.

