
A Large-scale Temporal Measurement of Android Malicious Apps:

Persistence, Migration, and Lessons Learned

Yun Shen

Norton Research Group

Pierre-Antoine Vervier

Norton Research Group

Gianluca Stringhini

Boston University

Abstract

We study the temporal dynamics of potentially harmful apps

(PHAs) on Android by leveraging 8.8M daily on-device de-

tections collected among 11.7M customers of a popular mo-

bile security product between 2019 and 2020. We show that

the current security model of Android, which limits secu-

rity products to run as regular apps and prevents them from

automatically removing malicious apps opens a significant

window of opportunity for attackers. Such apps warn users

about the newly discovered threats, but users do not promptly

act on this information, allowing PHAs to persist on their

device for an average of 24 days after they are detected. We

also find that while app markets remove PHAs after these

become known, there is a significant delay between when

PHAs are identified and when they are removed: PHAs per-

sist on Google Play for 77 days on average and 34 days on

third party marketplaces. Finally, we find evidence of PHAs

migrating to other marketplaces after being removed on the

original one. This paper provides an unprecedented view of

the Android PHA landscape, showing that current defenses

against PHAs on Android are not as effective as commonly

thought, and identifying multiple research directions that the

security community should pursue, from orchestrating more

effective PHA takedowns to devising better alerts for mobile

security products.

1 Introduction

Millions of malicious Android apps have been observed over

the years [1], performing a variety of malicious activity from

sending premium SMS messages [23], to displaying annoy-

ing advertisements [31], to enabling stalking [5]. Malicious

apps on Android often come in the form of repackaged

apps, where a useful Android app is modified to contain hid-

den malicious functionality to entice users into installing

it [20, 31, 39]. To cover the variety of malicious apps that tar-

get Android, Google has coined the term Potentially Harmful

Apps (PHAs).1

A large body of research has been published measuring

the threat of PHAs on Android. Previous studies have mostly

relied on crawling app markets to retrieve malicious appli-

cations [1, 23, 31, 34, 40]. Alternative approaches include

downloading firmware from public repositories to study pre-

installed Android apps [11] and setting up public analysis

infrastructures relying on third parties to submit apps that

they suspect are malicious [21]. These approaches then ana-

lyze the collected apps by either performing static or dynamic

analysis. While useful to shed light on the functionalities of

malicious Android apps, these approaches do not have visi-

bility on the population of infected devices and on how users

interact with PHAs. An alternative approach relied on users

installing an app able to monitor network traffic on devices,

looking for security and privacy sensitive information [26].

This solution solves the aforementioned problem, but it is

challenging to recruit a large and representative population of

users; in fact, previous studies relied on 11k users to perform

their measurements [26]. A third approach that researchers

followed is monitoring the network traffic of a mobile ISP

and identifying malicious connections based on blacklist in-

formation [18]. This approach provides a real-time view of

malicious activity from a large number of devices but is lim-

ited to monitoring connections to known malicious hosts.

Additionally, this method is limited by the pervasive use of

encryption, and does for example allow to observe when a de-

vice connects to an app store, but not to inspect what specific

PHA a user is installing.

In this paper, we present the first large-scale study to under-

stand the temporal dynamics of PHA installations on Android.

We collect anonymized information about PHA installations

from users who installed a popular mobile security product

and opted into data collection. Between 2019 and 2020 we ob-

served over 8.8M PHAs installed on over 11.7M devices from

1https://developers.google.com/android/play-protect/

potentially-harmful-applications

1

apps on the mobile endpoints. NortonLifeLock also builds

machine learning models from the static and dynamic analysis

results of known PHAs and applies these models to inspect

unknown or low-prevalence apps. Also, apps are periodically

re-inspected by the analysis infrastructure.

At runtime, the mobile security product periodically scans

newly installed apps on a device and can perform a full device

scan when requested by the end-user. When having network

access, the security engine queries a cloud backend to obtain

the verdicts of the apps installed on a device. The query con-

tains certain metadata including timestamp, app hash, pack-

age name, certificate information, etc. The response from the

backend includes the reputation scores of the on-device apps

together with other proprietary data to guide further actions.

When network access is not available, the security engine

leverages the locally stored signatures to scan and identify

suspicious apps on the mobile endpoints. The corresponding

scan metadata will then be sent back once network access is

restored.

From the backend telemetry data lake, we extract the fol-

lowing information: anonymized device identifier, device

country code, detection timestamp, app SHA2, app package

name, and installer package name. This way, we are able to

tell the time at which a PHA is detected, on which device it

is installed, and which package installed it. We collected 416

days of detection data between January 1, 2019 and February

20, 2020. On average, we collect 8M raw events daily (i.e.,

3.2B events in total). Note that to carry out the temporal mea-

surement, we only select apps (per SHA2) that we observe

at least twice on the same device. This way, we can reliably

calculate their lifespan both on-device and in-market (see Sec-

tion 3.2). In total, our dataset covers 2.3M unique package

names with 8.8M unique SHA2s from 11.7M devices. We

provide a detailed discussion of bias potentially incurred by

our dataset in Section 9.

VirusTotal ❷. Note that different security companies have

different policies when flagging PHAs (especially adware).

That is, a PHA flagged by NortonLifeLock that collaborated

on this study may not have the consensus from other security

companies. To minimize false positives and bias potentially

incurred by our dataset, we query the 8.8M SHA2s corre-

sponding to the PHAs in our dataset on VirusTotal. We con-

sider an app as a PHA if VirusTotal returns a minimum of

four detections in this paper. This is in line with the best

practices recently proposed in the malware research commu-

nity [16, 41]. We refer the audience to Kotzias et al. [16] and

Zhu et al. [41] for in-depth analysis of the impact of different

detection threshold values of VirusTotal reports. In total, we

identify 7M unique malicious SHA2s, and 3.5K PHA fami-

lies.

AVclass ❸. In our study, reliable PHA labeling is a necessary

condition to guarantee the quality of malware family attri-

bution. To this end, we use AVclass [29] to extract family

information from AV labels. This tool selects the top ranked

family corresponding to a majority vote from the VirusTotal

report of a given PHA, effectively removing noise in the labels.

In total, the observed PHAs belong to 3.2K families. Not all

PHAs are equally harmful. While some apps are clearly mali-

cious (i.e., mobile malware including ransomware, Trojans,

spyware, etc), others are merely an annoyance to users (e.g.,

adware). Google groups these apps into Mobile unwanted

software (MUwS) as “apps that are not strictly malware, but

are harmful to the software ecosystem” [12]. To investigate

differences in how malware and MUwS behave, we use the

feature provided by AVclass to classify a sample as Mobile

unwanted software (MUwS) or mobile malware (see Sec-

tion 5). Note that EUPHONY [13] also mines AV labels and

analyzes the associations between all labels given by different

vendors to unify common samples into family groups. Due to

their comparable labeling accuracy in terms of family attribu-

tion and the lower memory required by AVclass, we opt for

AVclass in this paper.

Data distillation and measurement data selection. To

study the provenance of PHAs, and in particular, which mar-

ketplaces they are installed from, we need to collect infor-

mation on the installer package names of the detected PHAs.

The mobile security product uses the Android API to record

a PHA’s installer package name when a detection event is

triggered. However, due to the well known fragmentation

from Android device manufacturers and limitations of our

measurement infrastructure (e.g., we cannot identify an in-

staller package’s certificate via Android API), it is hard to

accurately extract and attribute the installer packages of all

detected PHAs. For instance, if an app was already installed

on a device before the observation period started, our ap-

proach would not be able to attribute it to the app that in-

stalled it. Similarly, if an updated version of an existing

PHA was installed, this would be identified as being in-

stalled by an update component and not by a marketplace

(e.g., com.google.android.packageinstaller). To miti-

gate this issue, we first identify 3.7M out of 11.7M devices

that have at least one PHA installed. We then distill the afore-

mentioned datasets by selecting 2.46M devices in which we

can attribute their on-device PHAs to the respective installer

packages with high confidence. In total, we identify 197K

PHAs from 2.46M devices that we use in Section 6 and 7

to study the dynamics between PHA, devices, and markets.

These PHAs account for 22% of all installations recorded

by our dataset during the observation period. We provide

a detailed discussion on the limitations of this approach in

Section 9.

Ethics and Data Privacy. The data used in this paper is pri-

vacy sensitive. NortonLifeLock offers end users the possi-

bility to explicitly opt-in to its data sharing program to help

improve the security product’s detection capabilities. This

dialog is shown during the setup process when the app is run

3

Notation Description

p ∈ P a PHA

d ∈ D a device

m ∈ M a market

f ∈ F a PHA family

xiy
x on/in y,

e.g., pid denotes a PHA pi detected on device d.

(F)
first seen timestamp,

e.g., p
(F)

id
denotes first seen timestamp of a PHA pi on device d.

(L)
last seen timestamp,

e.g., p
(L)
im denotes last seen timestamp of a PHA pi in market m.

δxy
lifespan of x on/in y,

e.g., δp
id

denotes the lifespan of pi on a device d

Table 2: Summary of the notations used in this paper. We use

lowercase letters to denote an item and bold uppercase letters

to denote sets.

for the first time, and it informs the end-user about the pur-

pose of the telemetry collection, and how the global privacy

policy of NortonLifeLock safeguards the data. For instance,

the license agreement specifies that the telemetry “is pro-

cessed for the purposes of delivering the product by alerting

you to potentially malicious applications, malware, and links”

and “for the purpose of understanding product usage to fur-

ther develop and improve the product performance as well as

telemetry.” Since the analysis performed in this paper allows

the community to get a better understanding of the Android

PHA ecosystem and guide mitigation techniques, this falls

under the primary use of the data that users agreed to. The

telemetry data collection, storage, and process are guarded

by NortonLifeLock’s rigorous privacy policies. To preserve

the anonymity of users and their devices, client identifiers are

anonymized and it is not possible to link the collected data

back to the users and the mobile devices that originated it.

Also, NortonLifeLock does not track the devices or profile

user behavior nor has the capability to inspect network data.

For our measurement study, the anonymized device identifier

is only used to compute device-based prevalence rates. As

such, we are not using any PII and the risks to the users are

minimal.

3 Approach

In this section, we first introduce the overall relationships

among PHAs, installer packages, devices, and markets. We

then describe our overall measurement design philosophy and

methods together with examples.

3.1 Relationships

For the reader’s convenience, we summarize the notations

introduced here and in the following sections in Table 2. We

provide a detailed description of the relations observed in our

dataset to form the foundation of our measurements in the

rest of the paper. Figure 2 shows an example to illustrate the

complex dynamic relations among PHAs P, installer packages

Ψ, devices D, and markets M, coupled with a timeline. Each

Device

PHAs

D

time

f

Market M

Pi Pj Pj

d1 d2

installation

Pj

m1 m2

d3

Installer Ψ ψ
m1 ψ

m1
ψ

m2

d4

Pj

ψ
m2

lifespan

Pj
(F)

d1 Pj
(F)

d2

ψ
m1

Figure 2: Abstract model of the relations between PHAs,

installers, devices, and markets as observed in our dataset.

device d can have multiple PHAs installed (e.g., d1 has two

PHAs pi and p j in Figure 2). A PHA p j can be present in

multiple devices (e.g., p j is installed in all four devices).

Additionally, multiple PHAs can belong to a PHA family. For

example, as we can see in Figure 2, P f includes pi in d1 and

p j in all four devices. In addition, the Android API allows

the mobile security product to retrieve the package name (i.e.,

ψ) of the application that installed a PHA. This enables us

to identify which market a PHA came from if the package

name of ψ matches the name of the market. For example, p j

on device d1 is installed by a package ψm1
from market m1

at timestamp p
(F)

jd1
(see Figure 2). Aggregating all installation

events of the same PHA pi in all devices D, we can estimate

the lifespan δpim
in market m as [p

(F)

jd1
, p

(F)

jd2
] (see Figure 2).

3.2 Design Philosophy

Measuring the in-market presence of PHAs (e.g., how fast

PHAs are removed) is a challenging task as we are not the app

market owners. One solution is to crawl known app markets

and track all apps on a daily basis [35]. However, crawling

results cannot be correlated with the device installation data

since not all markets offer precise device installation informa-

tion. In this study, we adopt an outside-in design philosophy to

perform our market presence measurements. That is, we treat

mobile devices as sensors and their PHA installation events

as the probing results of a PHA’s existence. We then use

the information on the installer packages of apps to identify

the origin markets of installed PHAs (see the above section

for relations). By correlating this information with on-device

detection timestamps we can calculate PHA in-market per-

sistence and prevalence in a non-intrusive, outside-in way.

Similarly, we can also calculate PHA on-device persistence

using the detection timestamps. In this study we use different

metrics to study the PHA ecosystem along three axes: on-

device persistence, in-market persistence, and PHA migration

across markets. In this section, we define the metrics that we

will later use to measure these three aspects.

4

3.2.1 Measurement of PHA On-device Persistence

The mobile security product runs periodically in the back-

ground and sends telemetry data to the backend if PHAs are

detected. If a PHA was not removed from the device after

the user was displayed an alert, the mobile security product

records this recurrent detection at different timestamps until

the PHA is removed from the device. Given this series of

detection events, we are able to tell the first seen and last

seen timestamps of a PHA pi on a device d, consequently

enabling us to estimate the lifespan of pi on a device d (i.e.,

δp
id

). Following this observation, we use Eq 1 to measure the

persistence period a PHA family f on a device d.

persistence(f ,d) = ∑
pi∈P f

(δp
id
)/|P f | (1)

That is, we calculate the mean lifespan of all PHAs belong-

ing to a family f on device d. For example, in Figure 2,

family f has two PHAs (pi and p j) on device d1, hence

persistence(f ,d1) = (δp
id1

+ δp
jd1

)/2. We then use Eq 2 to

measure the mean persistence period per PHA family f on all

devices D.

persistence(f ,D) = ∑
d∈D

persistence(f ,d)/|D| (2)

For example, family f has presence in all four devices in Fig-

ure 2. Following Eq 2, we can calculate persistence(f ,D) as

[persistence(f ,d1) + persistence(f ,d2) + persistence(f ,d3)
+ persistence(f ,d4)]/4.

3.2.2 Measurement of PHA In-market Persistence

Given a single device d, when the mobile security product de-

tects a PHA on the mobile device, it also records the installer

package name of this PHA. Correlating this with the official

package names of the markets, we can identify if a PHA was

installed from a certain market m at a certain timestamp. For

example, if we observe the installer package name of a PHA

is com.android.vending, we can tell that this PHA comes

from the Google Play store. Note that malicious apps can

impersonate the legitimate apps on Android devices (e.g.,

com.android.vending may not be the legitimate Google

Play app). To avoid false attributions, we check the detection

telemetry data of the same device and verify if any detection

records match the same package names of the known mar-

ketplaces. By doing so, we are able to verify the legitimacy

of the market apps in this measurement study. We provide

a detailed discussion of the limitations of this approach in

Section 9. Note that first seen timestamp of a PHA on device

d can reliably prove that a PHA exists in a market at the time

of installation. By aggregating the first detection events of

a PHA pi across all devices D, we can represent a PHA’s

in-market appearances using Eq 3.

Ωpim
= {p

(F)

i
d j
},∀d j ∈ D, p

i
d j ∈ Pim (3)

Essentially, Ωpim
represents a series of timestamps where pi

was first seen on all devices D. Take the relations in Figure 2

as an example, we have two detections of a PHA p j respec-

tively on d1 and d2 installed from market m1. In turn, we have

Ωp jm1
= {p

(F)

jd1
, p

(F)

jd2
}. Following the above observation, we

use Eq 4 to measure the persistence period of a PHA pi in a

market m.

persistence(pi,m) = max(Ωpim
)−min(Ωpim

) (4)

It is straightforward to observe persistence(p j,m1) = p
(F)

jd2
−

p
(F)

jd1
following Eq 3 and Eq 4. Note that we rely the on-device

detection to measure a PHA’s in-market persistence. It is

possible that a PHA still exists in a market but our dataset did

not reflect its existence. Consequently, we measure the lower

bound of the PHA in-market persistence. Finally, we use Eq 5

to measure the persistence period a PHA family f in a market

m.

persistence(f ,m) = ∑
pi∈P f

persistence(pi,m)/|P f | (5)

3.2.3 Measurement of PHA Inter-market Migration

Recall that the mobile security product records that a PHA

p was installed on a device d at a timestamp t by an in-

staller package ψ. By aggregating the telemetry data about

a specific PHA p and mapping its installer package names

to marketplaces across all devices D, we can track the ap-

pearance of a PHA pi across all marketplaces M. Take

PHA p j in Figure 2 for example, it was detected in four

devices (d1, d2, d3, and d4) from two marketplaces (m1 and

m2). Following Eq 3, the lifespan of p j in m1 and m2 are

respectively δp j
m1 = [min(Ωp jm1

),max(Ωp jm1
)] and δp j

m2 =

[min(Ωp jm2
),max(Ωp jm2

)]. As we observe in Figure 2 that

max(Ωp jm1
) is less than min(Ωp jm2

), we define that a PHA

p j exhibits inter-market migration from m1 to m2. Following

the observation, we use Eq 6 to represent the appearances of

a PHA pi across the marketplaces M.

appearance(pi,M) = {δpi
m},∀m ∈ M (6)

Note that each δpi
m is an interval (i.e.,

[min(Ωpim
),max(Ωpim

)]). In turn, we sort appearance(pi,M)
by min(δpi

m), then identify sequentially non-overlapping

intervals from appearance(pi,M) to measure PHA

inter-market migration across the marketplaces M.

3.3 Right Censored Data

Censoring occurs when incomplete information is available

about the survival time of some individuals. Recall that our ob-

servation period is between January 1, 2019 and February 20,

5

Google

Play

Huawei

Market

Xiaomi

Market

Samsung

Market

Bazaar

Market

Oppo

Market

Family
Avg.

Persistence
Family

Avg.

Persistence
Family

Avg.

Persistence
Family

Avg.

Persistence
Family

Avg.

Persistence
Family

Avg.

Persistence

airpush 153.3 D jiagu 32.3 D jiagu 30.6 D jiagu 39.9 D adpush 92.2 D jiagu 26.2 D

jiagu 153.5 D smsreg 46.9 D smsreg 32.1 D airpush 188.2 D hiddad 98.7 D hiddad 91.9 D

revmob 159.1 D tencentprotect 44.3 D umpay 100.1 D revmob 191.8 D toofan 83.5 D smsreg 65.4 D

leadbolt 159.9 D secneo 51.8 D datacollector 58.2 D leadbolt 173.37D privacyrisk 65.4 datacollector 46.3 D

inmobi 125.9 D datacollector 32.8 D tencentprotect 53.2 D smsreg 56.2 D ewind 129.0 D tencentprotect 52.4 D

anydown 191.6 D autoins 41.2 D secneo 31.9 D mobby 194.0 D dnotua 92.9 D utilcode 63.0 D

hiddad 165.9 D utilcode 26.0 D hiddad 82.2 D tencentprotect 56.44 D hiddenapp 80.4 D badiduprotect 39.3 D

plankton 136.1 D baiduprotect 83.5 D utilcode 52.5 D anydown 183.7 D hiddapp 99.7 D beitaad 45.9 D

datacollector 152.2 D autoinst 35.1 D baiduprotect 48.9 D wapron 8.4 D notifyer 75.2 D airpush 47.5 D

dnotua 115.2 D smspay 62.4 D wapron 13.5 D baiduprotect 84.9 D airpush 123.8 D revmob 106.6 D

Table 10: Summary of the top 10 families (ranked by the number of SHA2s) in-market persistence in the top 6 Android

marketplaces. A family name is in bold if its in-market persistence period is below average (see Table 9).

(81.01 days on average) and Oppo market (48.44 days on

average). This suggests that different markets apply different

policies when vetting for PHAs, and might prioritize certain

types of threats over others. To further validate our findings

on the in-market persistence difference between these two

types of PHAs, we again use the Kaplan-Meier Estimate. The

survival curves of mobile malware and MUwS in the six

markets are shown in Figure 5. We further carry out the Peto-

Prentice test to compare the survival distributions of malware

and MUwS within each market. A χ2 test shows that these dif-

ferences are statistically significant as the test statistic values

are significantly larger than 3.841 (from standard χ2 distribu-

tion table) and the p-values are all less than 0.005. The only

exception is Bazaar market, where the test statistic is not

significant. Hence, we cannot conclude if Bazaar market

applies different policies when vetting for PHAs.

In Section 5 we showed that the overall number of devices

infected is correlated with the number of SHA2s. Following

this finding, we further study if PHA families with a large

number of PHAs can persist longer in the marketplaces. Our

hypothesis is that these large families may persist in the mar-

kets longer since app vetting systems require both machine

and human inspection. Our findings on the top 10 largest fam-

ilies in the top six markets are shown in Table 10. We observe

that most of the large families in the top six marketplaces per-

sist longer than the mean persistence time (see Table 9). For

example, all top 10 families in Google Play have in-market

persistence of at least 115 days, which is 38 days longer than

the mean 77.64 days persistence time. These results show that

there is a need for more comprehensive app vetting measures.

6.4 PHA In-Market Evolution

In the previous sections, we showed that PHAs can persist in a

market for weeks. In this section we aim to further understand

how PHA families may evolve in the markets. For example,

PHA makers may proactively switch ad libraries in response

to market policy changes or gain better incentives from ads,

or they may modify their malicious code to evade market app

vetting systems, etc. Note that each app has a unique package

name in a given market, by correlating the SHA2s belonging

com.sinyee.babybus.season

2019-02-05 2019-07-02 2019-12-18

inmobi kyview domob

SHA2:6bed… SHA2: 771f… SHA2: a425…

time

Figure 6: Example of PHA in-market evolution

(com.sinyee.babybus.season).

Market #Apps #SHA2s

Approximate

SHA2s

per PHA

Avg.

In-market

Persistence

Avg.

Evolution

Gap

Google

Play
1,349 7,883 ∼6 250.1 D 66.5 D

Huawei

Market
320 1779 ∼5 276.6 D 116.2 D

Xiaomi

Market
89 443 ∼5 247.8 D 98.8 D

Samsung

Market
70 383 ∼5 238.9 D 86.8 D

Bazaar

Market
40 129 ∼3 213.9 D 120.5 D

Oppo

Market
43 234 ∼5 227.0 D 98.4 D

Table 11: Characteristics of PHA in-market evolution.

to a certain package name and the AVClass results of their

VT reports, we can track and measure if an app evolves over

time (i.e., if the SHA2s of a certain PHA belong to at least

2 PHA families over the time). We show an example in Fig-

ure 6 where SHA2s from com.sinyee.babybus.season in

Google Play are associated with three different PHA fam-

ilies (i.e., inmobi, kyview [36], and domob) during our ob-

servation period.4 Their overall evolution distribution is illus-

trated in Figure 7. As we can see, the majority of the PHAs

exhibiting in-market evolution are observed in Google Play

and HuaWei Market (1,340 and 320 PHAs respectively in

these two markets). There are a limited number of PHAs in

4Note that inmobi is Google’s preferred ad SDK partner. However, this

library is flagged by multiple mobile security products as MUwS, and has

leaked sensitive user data in the past. In fact, inMobi was charged by the

FTC for COPPA violations in 2016. Therefore we flag inmobi as PHA in

this paper even though we acknowledge that the definition of MUwS varies

by platforms.

10

Market
Total PHA

Migration (in)
Malware # MUwS

Avg.

Persistence

Device Infected

(upstream)

Device Infected

(current)

Google

Play
651 447 204 57.9 D 964 3,003

Huawei

Market
859 747 112 63.5 D 1,039 1,543

Xiaomi

Market
346 292 54 10.44 D 4,065 471

Samsung

Market
255 218 37 23.66 D 1,599 394

Oppo

Market
234 186 58 10.3 D 3,364 296

Bazaar

Market
107 63 44 63.84 D 121 284

Table 12: Market response to PHA migration.

MUwS from the package names that migrated. Lindorfer et

al. [22] found initial evidence that malicious apps jump from

market to market, possibly for survival. For instance, the au-

thors identified 131 apps that migrated to alternative markets,

but didn’t carry out further analysis of how long these apps

would survive after the migration. To fill this gap, we then

measure specifically the PHAs that migrated into the mar-

kets to understand their in-market persistence. The results are

summarized in Table 12. More mobile malware migrates into

the markets compared to MUwS for all top 6 markets. Our

hypothesis is that the ecosystem of MUwS usually leverages

ad libraries and can be more adaptable to market takedowns,

while the miscreants behind mobile malware use more so-

phisticated methods (e.g., code obfuscation, environment

awareness, etc) hence reusing the same PHAs across different

markets to maximize the number victims is more desirable. To

verify our hypothesis, we measure the device prevalence ratios

of these PHAs migrating into the markets and compare this

prevalence ratios to those of the immediate upstream markets

they migrated from. Our results are summarized in Table 12.

As it can be seen, PHAs migrating into Google Play and

Huawei Market (which have large user bases) manage to

infect at least 50% more devices than those from the imme-

diate upstream markets. However, PHAs migrating into the

rest of the markets (which have smaller user bases) do not

reach more devices. Nevertheless, those PHAs, on average,

have short lifespans in these markets compared to the aver-

age persistence time (see Table 9, Section 6) except Huawei

Market. Our hypothesis is that this is partially due to the fact

that these PHAs have been detected in the upstream markets,

therefore signatures were made available for the downstream

markets to detect them. At the same time, the exception of

Huawei Market shows that markets must be responsible and

rigorously vet the apps submitted. Our study only measures

the lower bound of the PHA in-market persistence since it

is possible that a PHA still exists in a market but our dataset

did not reflect its existence. The issue could be addressed if

our dataset is augmented with the method proposed by Lin-

dorfer et al. [22]. We leave such task as part of our future

work.

Service #PHAs #Malware #MUwS
Dev

Infected

Avg.

Persistence

com.sec.android.easyMover

(Samsung)
14,038 10,960 3,078 35,557 93.38 D

com.samsung.android.scloud

(Samsung)
5,088 3,835 1,253 8589 56.41 D

com.hicloud.android.clone

(Huawei)
3,653 2,953 700 3,079 32.53 D

com.oneplus.backuprestore

(Oneplus)
1,072 794 278 1,361 22.69 D

com.coloros.backuprestore

(Oppo)
972 695 277 1,267 21.98 D

com.miui.cloudbackup

(Xiaomi)
1,243 928 315 1,235 33.23 D

Table 13: PHA migration from data backup/clone services.

Those services are ranked by the device prevalence ratios.

7.2 PHA Persistence After Migration via

Backup/Clone Services

Android phones typically offer backup functionality to their

users, allowing them to restore their apps and configuration

when they purchase a new device. This mechanism allows

users to quickly restore their data (e.g., contacts, settings,

apps) in the new devices without manual reinstallation efforts.

However, such services may inadvertently migrate existing

PHAs to the new device too, and compromise the security and

privacy of the new phones, even though these PHAs may have

been removed by the markets and therefore the user might not

be able to manually install them anymore. Kotzias et al. [16]

showed that backup restoration is an unintended unwanted

app distribution vector responsible for 4.8% of unwanted in-

stalls. Following this direction, we further investigate how

long PHAs can persist after migrating via backup/clone ser-

vices. Recall that the mobile security product captures an

app’s installer package name (see Section 2). This enables

us to identify apps that were installed by backup/clone ser-

vices in our dataset. To this end, we first identify the top

six data backup/clone services in our dataset and understand

how many PHAs migrate from backup/clone services, and

consequently how long these PHAs may persist on the de-

vices. To accurately identify the data backup/clone services,

we first remove all known market installer packages and rank

the rest of the installers by the device prevalence ratio. We

then investigate these apps on Google Play and on the Web

to understand the functions of the installers.

Our findings are shown in Table 13. Overall, we observe

that a considerable number of PHAs are not removed by end

users and consequently are migrated from the old phones

and backups. For example, 14K PHAs migrated to 35.5K new

Samsung models in our dataset. At the same time, it is interest-

ing to see that there is three times more mobile malware than

MUwS migrating via backup/clone services. In addition, these

PHAs persist longer than the average 20.2 days persistence pe-

riod (see Table 4). For example, PHAs migrated via Samsung

smart switch mobile app (com.sec.android.easyMover)

persist in the new devices for an averaged 93 days.

12

(i.e., this PHA is not installed by the 11.7M devices after its

last observation timestamp). Consequently, we measure the

lower bound of the PHA in-market persistence in our study.

The Android API enables the mobile security product to

identify the installer package name of a PHA. Correlating

this with the official package names of the markets, we can

identify if a PHA comes from a certain market at a certain

timestamp. However, miscreants or end users can install apps

via ADB and impersonate the official package names of the

markets. In this case, the mobile security product can wrongly

attribute a PHA as originating from a certain market. To min-

imize this risk, our study only selects a PHA observed in at

least two devices. We believe that such false positives incurred

by such impersonated official market package names are sta-

tistically ignorable. In addition, if an app was installed before

our observation period started, we cannot obtain market in-

formation for it. If an already installer app is consequently

updated, our system sees the updating software as the installer

and not the original marketplace the app came from. We there-

fore exclude the PHAs that we cannot confidently attribute

to certain markets. Still, this allows us to cover 66% of the

devices in our dataset and 22% of all PHA installations.

Implications for mobile security research. Our study

shows that many PHAs can persist on devices and in app

markets for many days once installed or approved. We hope

that our study can inspire better notification systems to nudge

the end users to remove PHAs once detected, and, ideally, de-

vise a prevention system able to convince users not to install

PHAs in the first place.

Implications to Android markets. Our study shows that

PHAs can persist in a market for at least 24 days. At the

same time, while we recognize the efforts from the Android

markets, not all PHAs are removed by them (e.g., Google

Play removes 5.28K PHAs per month and, in total, removes

74K out of 81K PHAs). We hope that our findings will en-

able Android markets to ramp up their app vetting systems

and takedown PHAs in a timely manner to minimize their

in-market persistence. In addition, despite of the transparency

report from Google Play, we hope that the markets can be

more transparent and disclose the performance figures relating

to PHA removal (e.g., the number of PHA removed monthly,

the average time to remove a PHA, etc.). Our study shows

that PHAs may evolve over time to survive in the markets for

longer and be able to reach more victims. We hope that our

findings can encourage app markets to make end users aware

of the security and privacy issues incurred by the previous

versions of an app if any. For example, certain versions of

the popular app com.intsig.camscanner in Google Play

were affected by the Trojan dropper necro due to the inte-

gration of a 3rd party SDK from AdHub. As the app remains

in Google Play after the removal of the 3rd party library, a

historical briefing of the security and privacy incidents as-

sociated with such apps would offer end users an informed

decision when installing them on their devices in the future.

10 Related Work

There is an enormous amount of research on mobile security

and privacy. In this section, we specifically review previous

measurement studies on malware characterization and mobile

app ecosystem. We refer the readers to [6,8,19,24,32,37] for

overviews and surveys on securing Android devices.

Mobile PHA characterization. The security research com-

munity has been actively investigating the ever-changing char-

acteristics of mobile PHAs for years [6, 8, 19, 24, 32, 37].

Previous efforts mainly focused on analyzing apps and sys-

tematically characterizing them from various aspects. From a

high level, these research center on installation methods [40],

evasion mechanisms [7], repackaging mechanisms [22,31,39],

malicious payloads [40], behaviors [21, 38], monetization [9],

etc. In recent years, Faruki et al. [7] summarized Android

security issues, malware growth (during 2010-13), their pene-

tration, stealth techniques, and strength as well as weaknesses

of some of the popular mitigation solutions. Mirzaei et al. [23]

introduced Andrensemble, a system to characterize Android

malware families by leveraging API ensembles. These ef-

forts collectively shed lights on how Android malware op-

erates in the wild, the main incentives of mobile malware,

the weaknesses of some of the popular mitigation solutions,

etc. However, they did not discuss potential threats posed by

PHA persistence in both mobile devices and markets as these

efforts center on app analysis and offer a less comprehensive

view of the real device prevalence.

Measurement studies on Android permission system. The

Android permission system has been extensively covered in

the previous literature [2, 3, 8, 24]. We only review the work

relating to our study in this paper. Felt et al. [8] built the Stow-

away system to detect overprivileged apps which could result

in privacy violations. Felt et al. [10] later showed that current

Android permission warnings do not help most users make

correct security decisions. Sarma et al. [27] discussed the

risks incurred by the Android permission system and outlined

13 permissions that may critically invade users’ privacy. Qu et

al. [25] designed AutoCog to measure the description-to-

permission fidelity in Android apps and assist the end users to

understand the security and privacy implications when grant-

ing permissions.

Measurement studies on mobile PHA. From a device per-

spective, Shen et al. [30] carried out a detailed quantitative

analysis on 6.14 million Android devices comparing rooted

and non-rooted Android devices across a broad range of char-

acteristics including PHA installations and network behavior.

Suarez-Tangil et al. [31] carried out a systematic study of

1.28M repackaged apps spanning between 2010 and 2017

to understand how Android malware has evolved over time.

14

More recently, Gamba et al. [11] collected 82K pre-installed

apps (424K files in total) on Android devices from more than

200 vendors and carried out a measurement study to under-

stand how the stakeholders primarily build their relationship

around advertising and data-driven services. From an app mar-

ket perspective, Lindorfer et al. [22] proposed the AndRadar

system to discover multiple instances of a malicious Android

application in a set of alternative application markets using a

set of package names as seeds. Wang et al. [35] leveraged 6M

Android apps downloaded from 16 Chinese app markets and

Google Play and provided a large-scale comparative study

to understand various aspects and dynamics relating to apps

(including PHAs), their behavior and the developers. These

efforts collectively shed lights on the overall picture of how

PHA evolves over the time. Different from these previous

efforts, our study focuses on the potential threats posed by

PHA persistence in both mobile devices and markets as these

efforts center on app analysis and offer a comprehensive view

of the real device prevalence.

Desktop PUP PPI ecosystem study. Another loosely con-

nected research line is related to measuring the PUP PPI

ecosystem in the PC environment. Caballero et al. [4] pro-

vided the first large scale measurement of blackmarket pay-

per-install services in the wild. Kotzias et al. [15] leveraged

file dropping graphs to build a publisher graph and identify

specific roles in the ecosystem, in turn revealing the relation-

ship between PUP prevalence and PUP distributors. Thomas

et al. [33] performed a similar study on unwanted software

on desktop computers.

Comparison with Close Work. The closest work is a re-

cent mobile unwanted app distribution study by Kotzias et

al. [16]. Their study focuses on understanding who-installs-

who relationships between installers and child apps, and un-

covering the main unwanted app distribution vectors. Similar

to the findings by Kotzias et al. [16], our study also shows

that Google Play remains the main app distribution vector of

PHAs, but also has the best defenses against PHAs (e.g., re-

moving most of the PHAs). Kotzias et al. [16] also identifies

many other distribution vectors such as bloatware, browsers,

instant messaging, etc. Our study does not cover these dis-

tribution vectors as we focus on the temporal behavior of

PHAs. Concretely, leveraging a longer observation period of

PHA installation events across 11M devices, our study of-

fers a large-scale temporal measurement study of Android

PHAs to comprehend the characteristics their on-device and

in-market persistence, and consequent inter-market migration

after taken down. In summary, Kotzias et al. [16] cover where

the PHAs come from while our study addresses the temporal

dynamics of PHA installations on Android.

11 Conclusion

We presented the largest on-device study to date of Android

PHAs installed in the wild. Our results show that PHAs on

Android are a pervasive problem, and that malicious apps

can persist for long periods of time both on devices and on

markets. Our results suggests that current measures against

malicious apps on Android are not as effective as commonly

thought, and that more research from the security community

is needed in this space.

Acknowledgements

We would like to thank our Shepherd Yousra Aafer and the

anonymous reviewers for their helpful guidance through the

revision process. This work was supported by the National

Science Foundation under Grant CNS-2127232.

References

[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,

and Yves Le Traon. Androzoo: Collecting millions of

android apps for the research community. In MSR, 2016.

[2] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and

David Lie. Pscout: analyzing the android permission

specification. In ACM CCS, 2012.

[3] David Barrera, H Güneş Kayacik, Paul C Van Oorschot,

and Anil Somayaji. A methodology for empirical analy-

sis of permission-based security models and its applica-

tion to android. In ACM CCS, 2010.

[4] Juan Caballero, Chris Grier, Christian Kreibich, and

Vern Paxson. Measuring pay-per-install: The commodi-

tization of malware distribution. In USENIX Security,

2011.

[5] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad,

Sam Havron, Jackeline Palmer, Diana Freed, Karen

Levy, Nicola Dell, Damon McCoy, and Thomas Ris-

tenpart. The spyware used in intimate partner violence.

In IEEE S&P, 2018.

[6] Zheran Fang, Weili Han, and Yingjiu Li. Permission

based android security: Issues and countermeasures.

computers & security, 43, 2014.

[7] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay

Ganmoor, Manoj Singh Gaur, Mauro Conti, and Mut-

tukrishnan Rajarajan. Android security: a survey of

issues, malware penetration, and defenses. IEEE com-

munications surveys & tutorials, 17(2), 2014.

[8] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn

Song, and David Wagner. Android permissions demys-

tified. In ACM CCS, 2011.

[9] Adrienne Porter Felt, Matthew Finifter, Erika Chin,

Steve Hanna, and David Wagner. A survey of mobile

malware in the wild. In SPSM, 2011.

15

[10] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman,

Ariel Haney, Erika Chin, and David Wagner. Android

permissions: User attention, comprehension, and behav-

ior. In SOUPS, 2012.

[11] Julien Gamba, Mohammed Rashed, Abbas Razagh-

panah, Juan Tapiador, and Narseo Vallina-Rodriguez.

An analysis of pre-installed android software. In IEEE

S&P, 2020.

[12] Google. Android Security & Privacy 2018 Year In Re-

view. 2019.

[13] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Ku-

mar Dash, Tegawendé F Bissyandé, Yves Le Traon,

Jacques Klein, and Lorenzo Cavallaro. Euphony: Har-

monious unification of cacophonous anti-virus vendor

labels for android malware. In MSR, 2017.

[14] David G Kleinbaum and Mitchel Klein. Survival analy-

sis. Springer, 2010.

[15] Platon Kotzias, Leyla Bilge, and Juan Caballero. Mea-

suring PUP Prevalence and PUP Distribution through

Pay-Per-Install Services. In USENIX Security, 2016.

[16] Platon Kotzias, Juan Caballero, and Leyla Bilge. How

did that get in my phone? unwanted app distribution on

android devices. In IEEE S&P, 2021.

[17] Su Mon Kywe, Yingjiu Li, Robert H Deng, and Jason

Hong. Detecting camouflaged applications on mobile

application markets. In ICISC, 2014.

[18] Charles Lever, Manos Antonakakis, Bradley Reaves,

Patrick Traynor, and Wenke Lee. The core of the matter:

Analyzing malicious traffic in cellular carriers. In NDSS,

2013.

[19] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Re-

booting research on detecting repackaged android apps:

Literature review and benchmark. IEEE Transactions

on Software Engineering, 2019.

[20] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques

Klein, Yves Le Traon, David Lo, and Lorenzo Cavallaro.

Understanding android app piggybacking: A systematic

study of malicious code grafting. IEEE Transactions on

Information Forensics and Security (TIFS), 2017.

[21] Martina Lindorfer, Matthias Neugschwandtner, Lukas

Weichselbaum, Yanick Fratantonio, Victor Van

Der Veen, and Christian Platzer. Andrubis–1,000,000

apps later: A view on current android malware

behaviors. In BADGERS, 2014.

[22] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto,

Matthias Neugschwandtner, Elias Athanasopoulos, Fed-

erico Maggi, Christian Platzer, Stefano Zanero, and

Sotiris Ioannidis. Andradar: fast discovery of android

applications in alternative markets. In DIMVA, 2014.

[23] Omid Mirzaei, Guillermo Suarez-Tangil, Jose M

de Fuentes, Juan Tapiador, and Gianluca Stringhini. An-

drensemble: Leveraging api ensembles to characterize

android malware families. In ASIACCS, 2019.

[24] Mohammad Nauman, Sohail Khan, and Xinwen Zhang.

Apex: extending android permission model and enforce-

ment with user-defined runtime constraints. In ASI-

ACCS, 2010.

[25] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan

Chen, Tiantian Zhu, and Zhong Chen. Autocog: Mea-

suring the description-to-permission fidelity in android

applications. In ACM CCS, 2014.

[26] Abbas Razaghpanah, Rishab Nithyanand, Narseo

Vallina-Rodriguez, Srikanth Sundaresan, Mark Allman,

Christian Kreibich, and Phillipa Gill. Apps, trackers,

privacy, and regulators: A global study of the mobile

tracking ecosystem. In NDSS, 2018.

[27] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul

Potharaju, Cristina Nita-Rotaru, and Ian Molloy. An-

droid permissions: a perspective combining risks and

benefits. In SACMAT, 2012.

[28] Angela Sasse. Scaring and bullying people into security

won’t work. IEEE Security & Privacy, 13(3):80–83,

2015.

[29] Marcos Sebastián, Richard Rivera, Platon Kotzias, and

Juan Caballero. Avclass: A tool for massive malware

labeling. In RAID, 2016.

[30] Yun Shen, Nathan Evans, and Azzedine Benameur. In-

sights into rooted and non-rooted android mobile de-

vices with behavior analytics. In SAC, 2016.

[31] Guillermo Suarez-Tangil and Gianluca Stringhini. Eight

years of rider measurement in the android malware

ecosystem. IEEE Transactions on Dependable and Se-

cure Computing, 2020.

[32] Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al.

Securing android: a survey, taxonomy, and challenges.

ACM Computing Surveys (CSUR), 47(4), 2015.

[33] Kurt Thomas, Juan A Elices Crespo, Ryan Rasti, Jean-

Michel Picod, Cait Phillips, Marc-André Decoste, Chris

Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine Courteau,

et al. Investigating commercial pay-per-install and the

distribution of unwanted software. In USENIX Security

Symposium, 2016.

16

[34] Haoyu Wang, Hao Li, Li Li, Yao Guo, and Guoai Xu.

Why are android apps removed from google play? a

large-scale empirical study. In MSR, 2018.

[35] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-

Rodriguez, Yao Guo, Li Li, Juan Tapiador, Jingcun Cao,

and Guoai Xu. Beyond google play: A large-scale com-

parative study of chinese android app markets. In Pro-

ceedings of the Internet Measurement Conference 2018,

2018.

[36] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou,

and Wu Zhou. Deep ground truth analysis of current

android malware. In DIMVA, 2017.

[37] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih,

Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang,

Byoungyoung Lee, Chenxiong Qian, et al. Toward engi-

neering a secure android ecosystem: A survey of existing

techniques. ACM Computing Surveys (CSUR), 49(2),

2016.

[38] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yeg-

neswaran, and Phillip Porras. Droidminer: Automated

mining and characterization of fine-grained malicious

behaviors in android applications. In ESORICS, 2014.

[39] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning.

Detecting repackaged smartphone applications in third-

party android marketplaces. In CODASPY, 2012.

[40] Yajin Zhou and Xuxian Jiang. Dissecting android mal-

ware: Characterization and evolution. In IEEE S&P,

2012.

[41] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi

Zhang, Linhai Song, and Gang Wang. Measuring and

modeling the label dynamics of online anti-malware

engines. In USENIX Security Symposium, 2020.

17

