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ABSTRACT

Recent works propose to use Hardware Performance Counter (HPC)
values with machine learning (ML) classification models for mal-
ware detection. However, measured HPC values and ML models
cannot reliably distinguish malware from benignware. This is be-
cause of the semantic gap between the high-level malicious be-
havior and the low-level micro-architectural events. We run 962
benignware and 962 malware on our experimental setup, and show
83.39%, 84.84%, 83.59%, 75.01%, 78.75%, and 14.32% F1-score for
Decision Tree, Random Forest, K Nearest Neighbors, Adaboost,
Neural Net, and Naive Bayes, respectively. We perform 10-fold
cross-validation on our models 1,000 times and show variations of
the cross-validation results. Our analysis cautions the community
about the shortcomings of using HPC and ML for detecting mal-
ware. In fact, after reading our original publication [1], many of
the researchers have avoided these shortcomings in their follow-up
research in using HPCs for malware detection. We believe that
our efforts have made a positive influence on the security research
community.
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1 INTRODUCTION

Distinguishing between malicious and benign software has re-
mained one of the biggest challenges facing computer security
over recent decades. As signature-based anti-virus scanners are
easily thwarted by polymorphic malware, most commercial and
academic anti-malware solutions rely on behavioral analysis. Be-
havioral analysis monitors programs as they execute, collects infor-
mation on the process, and, upon a violation of a behavioral profile,
classifies the program as malware. To this end, software-based
behavioral analysis can draw from a wealth of semantically rich
information sources, such as file names, registry keys, or network
endpoints, which characterize the program’s behavior. As software-
level behavioral analysis performs malware detection at the cost of
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performance overhead, recent research proposes to reduce this per-
formance overhead by leveraging Hardware Performance Counters
(HPCs) to classify programs as benignware or malware.

HPCs are hardware units that count the occurrences of micro-
architectural events such as instruction counts, hits/misses in vari-
ous cache levels and branch (mis)predictions during runtime. Mod-
ern processors can capture more than 100 micro-architectural events,
but a design-imposed strict limit of 4 (on Intel [2]) and 6 (on
AMD [3]) counter registers dictates that HPCs can only monitor a
small subset of these events at one time.

Under these constraints, previous works [4-7] leverage the mea-
sured HPC values to classify an unknown program as either benign
or malicious. Previous works record data of labeled programs in
time-series with a fixed frequency, use the HPC values in time-
series to train various supervised machine learning models, and
yield classifiers to distinguish unknown programs as either benign
or malicious.

The underlying assumption for previous HPC-based malware
detectors is that malicious behavior affects measured HPC values
differently than benign behavior. However, it is questionable, and in
fact counter-intuitive, why the semantically high-level distinction
between benign and malicious behavior would manifest itself in
the micro-architectural events that are measured by HPCs. For
example, both ransomeware and benignware use cryptographic
APIs, but the ransomeware maliciously encrypt user files, while the
benignware safeguards user information. One cannot distinguish
between benignware and ransomeware based on the measured HPC
values, because no HPC event can indicate the ownership of the
API keys.

Given the substantial semantic difference between the high-level
malicious behavior and the low-level micro-architectural events, it
is expected from previous works that assert the utility of HPCs for
malware detection to provide a rigorous analysis, interpretation,
and justification of why the extracted features from measured HPC
values identify the maliciousness of programs. Unfortunately, ex-
isting works elide any such discussions, and instead commit the
logical fallacy of “cum hoc ergo propter hoc” — or concluding cau-
sation from correlation. Moreover, the correlations and resulting
detection capabilities reported by previous works frequently re-
sult from small sample sets and experimental setups that put the
detection mechanism at an unrealistic advantage.

We survey the existing literature in this field, and identify com-
mon traits that exhibit impractical setups and mis-interpretation of
data analysis. Subsequently, we design, implement, and evaluate an
experimental setup that allows us to reproduce previous works in
this area, and compare these previous results with results obtained
under more realistic scenarios.

1“with this, therefore because of this”
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In this work, we build an experimental setup close to the user
environment, and evaluate the fidelity of machine learning models.
We run all experiments in a bare-metal environment instead of re-
lying on virtualization techniques, since the sampling of virtualized
HPC values is different from the sampling HPCs on a bare-metal
system of a regular user. Previous works [4, 6, 7] test their ma-
chine learning models using measured HPC values from the same
programs used during training (In §4, we refer to this approach
as TTA1). This scenario would reflect all programs (benign and
malicious) are known and labeled for training, which is absolutely
unlikely, as millions of new malware samples are reported to Anti-
Virus (AV) everyday. Thus, we test our models with measured HPC
values from programs that have not been observed during training,
which reflects a scenario that programs in the same category are
available for training, but not the same program sample.

We perform 1,000 iterations of 10-fold cross-validations on 6 clas-
sifiers and consistently observe False Discovery Rate? of larger than
20%. Such high False Discovery Rates would disqualify HPC-based
malware detectors from real-world deployments, as it would flag
264 programs in a default Windows 7 installation as malicious. Fi-
nally, we illustrate how fragile the resulting classifiers are by simply
composing a benign program (Notepad++) with malicious function-
ality (ransomware). This straight-forward composition evades all
our classifiers, even when they are trained with the benign and
malicious components individually.

In summary, this work makes the following contributions:

o We identify the prevalent unrealistic assumptions and the
insufficient analysis used in prior works that leverage HPCs
for malware detection (§2).

e We perform thorough experiments with a program count
that exceeds prior works [4, 6-9] by a factor of 2x ~ 3X,
and the number of experiments in cross-validations that is 3
orders of magnitude more than previous works.

e We train and test dataset similar to what prior works have
done, as well as, in a realistic setting where testing programs
are not in the training programs. We compare the effects of
this choice on the quality of the machine learning models
§5).

o Finally, to facilitate reproducibility, and enable future re-
searchers to easily compare their experiments with ours, we
make all code, data, and results of our project publicly avail-
able under an open-source license: https://bit.ly/2SwYwPN

Since our original publication [1], many of the researchers have
avoided the shortcomings that we have identified and made im-
provements in using HPCs for malware detection. We hope that
our work can guide future research in HPCs and machine learning
for malware detection in the right direction.

2 RELATED WORK AND MOTIVATION

Many previous works commonly utilize sub-semantic features in
malware detection [4, 6-12] . Ozsoy et al. defined the term sub-
semantic features as “micro-architectural information about an
executing program that does not require modeling or detecting
program semantics” [10]. All these previous works have several

2F, /(Fy + T}), where F, is number of benignware classified as malware and Ty is
number of malware classified as malware
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Table 1: Comparison between various previous works: Rows are var-
ious works in HPC-based malware detection and columns are de-
sign choices. The alternative shaded and white background repre-
sents different categories of tool/setup/model in malware detection
using HPCs. Red texts highlight drawbacks, and black texts express
the suggested tool/setup/model from this work. Solid dots (e) in-
dicate the use of that tool/setup/model (column) by the reference
(row), and hollow dimonds (¢) indicate the non-use of that tool/se-
tup/model by the reference. Star (x) is our work. Our work avoids
the drawbacks discussed in the table, and quantitatively analyzes
how these drawbacks lead to the conclusion that HPCs can reliably
detect hardware.

drawbacks to various extent. We categorize the drawbacks that we
observed into the following classes.

I Dynamic Binary Instrumentation (DBI)

II  Virtual Machines (VMs)

III Division of Data By Traces (TTA1in § 4)

IV No Cross-Validations or Insufficient Validations

V  Few Data Samples

Dynamic Binary Instrumentation (DBI) tools such as Intel’s
Pin [5, 13], QEMU [14], or Valgrind [15], can also extract sub-
semantic features. Khasawneh et al. use Pin to monitor the instruc-
tions executed on virtual machines in their experimental setup [10—
12]. Though DBI can extract sub-semantic features that are not
available from HPCs, DBI introduces a substantial amount of per-
formance overhead and is thus not suited to run in an always-on,
online protection setting, which is the default use-case for current
anti-malware suites. We denote the drawbacks of DBI as Drawback
Iin Table 1.
While DBI is infeasible in an online detection system, other

methods in sampling HPCs can also incur inaccurate measure-
ments. A plethora of previous works run the evaluated programs
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on VMs [4, 9-12]. We chose to use bare-metal machine based on
two observations. First, virtualizing HPCs is a challenge [16], as the
measured virtualized HPC values are different from measured bare-
metal HPC values [1]. Second, a regular user uses the bare-metal
machines instead of the virtualized machines. These observations
motivate our experimental setup (§3) to run all experiments on
bare-metal systems. We label the use of VM in the experimental
setups as Drawback II in Table 1.

Due to inaccurate HPC measurements [17], previous works [4, 6—
8] choose to maximize the measuring granularity by using HPCs
without time-multiplexing. Previous works [4, 6, 10-12] have used
empirical study to select 4 (Intel) or 6 (AMD) events for monitor,
without providing a numerical analysis on how micro-architectural
events are selected. In our experiments, we perform a Principal Com-
ponent Analysis (PCA) based approach to select 6 micro-architectural
events. After the selection of events, we use HPCs to track these
6 events, and transform the measured HPC values to examples in
machine learning models, i.e. feature extraction. We then divide
examples into training and testing datasets for machine learning
models (training-and-testing split). Previous works [4, 6, 7, 9] have
training-and-testing split based on the examples (TTA1 in § 4) that
the testing dataset can have the same examples produced by pro-
grams in training dataset. In real-life, it is unlikely that the offline
training dataset can include all the malware that a user might en-
counter. We mark the use of data division based on examples as
Drawback III in Table 1.

In this work, we evaluate our model with 1,000 repetitions of 10-
fold cross-validations. The cross-validation examines the machine
learning models with different input training-and-testing examples,
which prevents machine learning models from overfitting. We
observe that there is no cross-validation in some of the previous
works [4, 7, 8], while other works [9-12] present insufficient cross-
validation, i.e. not every example in the dataset is validated, and
none of these works reported the variations of the cross-validation
results. We refer to no cross-validation or insufficient validations
as Drawback IV in Table 1.

The prevalence of the above-mentioned drawbacks motivates us
to perform rigorous, quantitative, and reproducible analytics for
HPC-based malware detection in Table 1. In order to perform a fair
comparison with works in Table 1, we use the following machine
learning models all used in previous works and compare against the
results from previous works: Decision Tree (DT), Random Forest
(RF), K Nearest Neighbors (KNN), Neural Nets (NN), Naive Bayes
and AdaBoost.

A double decimal precision result, reported previously [4], should
require at least 10,000 experiments, which is equivalent to more
than 1,000 programs in the 10-fold cross-validations. As a result,
we consider the works with fewer than 1,000 programs as over-
generalization (training and testing with insufficient cross-validation),
or over-interpretation of the results (comparisons beyond round-
ing errors) [4, 6-9]. This insufficient number of programs in the
experiments is Drawback V in Table 1.

In addition to the drawbacks of the previous works, we found
that there is no public access to their data or codes. To ease the

3The model corresponds closely or exactly to a particular data and fails to predict
other data reliably.

reproducibility and advance the community’s efforts to assess the
utility of HPC-based malware detection, we release all the code and
data produced for this work under open-source license.

We present all the tools/setups/models in various previous works
in Table 1. In the table, rows are various works on HPC-based mal-
ware detection and columns are design choices of the tools/setups/-
models. The alternative shaded and white background represents
different categories of tool/setup/model in malware detection using
HPCs. Red text highlights drawbacks, and black text expresses the
suggested tool/setup/model from this work. Solid dots (e) indicate
the use of that tool/setup/model (column) by the reference (row),
and hollow dimonds (¢) indicate the non-use of that tool/setup/-
model by the reference. Star (%) is our work. The last column counts
the drawbacks of the corresponding work. Table 1 shows that there
are at least 2 drawbacks in each work.

3 EXPERIMENTAL SETUP

In this section, we explain how we set up the experiments to gather
values of HPCs from benignware and malware. We ran our ex-
periments on a cluster with 15 machines as worker nodes, and a
master node to distribute jobs to measure and to collect data from
worker nodes. We dispatched our jobs to the worker nodes using
the Rabbitmq message system [18]. We collected the data back from
the worker nodes using a Samba [19] server on the master node.
We used Bindfs [20] to fuse the permission bits of Samba server
storage folder to be writable, not modifiable, not readable, and
not executable. Note that the Portable Operating System Interface
(POSIX) permission structure cannot provide the above-mentioned
permission bits. These permission bits allowed the worker nodes to
record the measured HPC values, while these permission settings
prevented malware from overwriting or deleting the measured
HPC values. On the worker nodes, we ran our experiments in Win-
dows 7 32-bit operating system to be compatible with malware
experiments in other works [10-12]. We applied fixed-frequency
time-based HPC sampling as the previous works [4].

3.1 Malware and Benignware

For forming the set of malware, we downloaded 1,000 malware from
Virustotal [21], and performed a test run of those 1,000 malware on
worker nodes. After the test run, we identified 962 malware which
could run for more than 1 minute and used them in our malware
experiments. According to AVClass tool [22], our dataset consisted
of 35 distinct malware families.

In order to collect benignware programs, we first installed all the
packages and software from Futuremark [23], python performance
module [24], ninite.com [25], and Npackd [26] on the worker nodes.
After installation, we traversed all the files in “Startup Menu” and
“C:\Program Files” folder to include all the unique executable pro-
grams in our benignware dataset. We avoided the complication of
re-installation by excluding all the executable program files with
“uninstall” in their names. We performed a test run of all these pro-
grams, and selected 1,382 benignware that could run for 1 minute.

To avoid the classification bias, we matched the number of mal-
ware and benignware used in our experiments. Classification bias
exists in classification problems if the number of items in each
class is different. For example, in a classification problem with two
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Figure 1: Our workflow of benignware/malware experiments: The
worker node receives the dispatched jobs of experiments from the
master node. The worker node spawns a sampling process, and then
the sampling process runs the target process (benignware/malware).
The dotted arrow (-->) means that the action does not always happen.
If the application has a window for interaction, we attach a mon-
key tester to the window. The solid arrow (—) shows that actions
always happen. We reset the environment after each experiment.
The worker node kills any other processes spawned by the target
process after each benignware experiment. At the end of each mal-
ware experiment, we reboot the machine into the Debian partition
to reload a clean Windows image.

classes, A and B, if class A makes up 80% of the data set and class B
makes up 20% of the dataset, the baseline of precision in classifying
A is 80%. Any designed machine learning models whose precision
is lower than 80% are worse than the precision estimated with prior
probability. In our work, we matched the number of benignware
and malware; at the same time, we reported precision, recall and
F1-score to eliminate any bias.

3.2 Method for Running Experiments

We ran our benignware and malware experiments on identical hard-
ware and operating system. However, there are a few differences
between malware and benignware experiments. We explain the
workflow of malware and benignware experiments using one dis-
patched job in Figure 1. The boxes are the steps that we follow,
and the solid arrow means that the next step always happens. The
dotted arrow means that the action happens under the conditions
of the labels.

3.2.1 Malware Experiment. We follow the steps in Figure 1 to
run the experiments. Before any malware experiments, we dropped
all the requests to any network outside the master node, to ensure
that malware does not affect other machines. At the beginning of
each experiment, the worker node runs a clean copy of Windows
and waits for a new job. Once the worker node receives the job
from the master node, the sampling process runs the malware and
records the measured HPC values. After running each malware
experiment, we provide an identical, malware-free environment for
the next malware experiment by reloading the Windows partition.
In order to reload Windows image, we installed Debian 8 in the
other partition of the hard drive on each worker node. Whenever a
worker node boots into the Debian partition, the worker node copies
a clean Windows image to the other partition. We modified the
GNU GRand Unified Bootloader (GRUB) to make the machine boot
into an alternate partition every time it reboots. After reloading
the image, the system reboots into Windows again and runs the
next job dispatched from the master node.

0x04000 | The number of accesses to the data cache for load and store references
0x03000 | The number of CLFLUSH instructions executed

0x02B00 | The number of System Management Interrupts (SMIs) received
0x02904 | The number of Load operations dispatched to the Load-Store unit
0x02902 | The number of Store operations dispatched to the Load-Store unit
0x02700 | The number of CPUID instructions retired

3.2.2 Benignware Experiment. Similar to the malware experi-
ments, benignware experiments also follow the workflow in Fig-
ure 1. We connected the worker nodes to the outside network to
ensure the benignware receives network responses. Programs, such
as browsers, require network responses to perform similarly as in
a user environment. When the worker node receives a job from
the master node, the sampling process starts the target process
(benignware program), and a Monkey Tester is attached to the tar-
get process if the target process has an interactive window. The
Monkey Tester works similar to Android’s Monkey Tester [27], as
it interacts with the target process by periodically sending random
keystroke, mouse clicks, and scrolling operations to the window of
the target process. The behavior of the Monkey Tester simulates the
interaction between a user and the programs. After the sampling
process finishes recording the measured HPC values, the system
resets by killing any processes spawned during the experiments.
Given that the benignware does not try to infect the Windows
partition and perform malicious operations, we do not reload the
Windows partition. After killing the spawned processes, the worker
node receives the next job from the master node and starts the next
experiment.

4 MACHINE LEARNING MODELS

In this section, we present how we apply machine learning models
on measured HPC values. To avoid Curse of Dimensionality [28],
we applied Principal Components Analysis (PCA) to reduce the
feature vector in our system. We ran each of the 7 programs from
Futuremark Benchmarks on 130 micro-architectural events 32 times
(130x32x7). From the results of these 7 programs, we selected 6
events with 2 eigenvectors that represent the binned results as our
selected features (events listed in the Table 2), and generated the
eigenvector matrix, denoted as v192x12, from the PCA. Four of the
selected events in our experiments align with other works that do
not provide any analysis of their selection of events [4, 6, 10-12].
We monitored the 6 events from Table 2 for our 962 benignware
and 962 malware program samples. Due to page limit here, we do
not provide our quantitative analysis to extract features from the
measured HPC values of our selected micro-architectural events.
One can find the detailed analysis in the our extended conference
paper [1].

To have the same number of measurements on the same program
samples, we run each benignware program and each malware pro-
gram 32 times, and collect 61,568 (2x962x32)* measured HPC values
(1,026 CPU hours). We sum the measured HPC values into 32 his-
togram bins for each of 6 events. Each example of histogram binned
HPC values has 192 (6 events x 32 bins) features. By multiplying

430,784 for benignware and 30,784 for malware



each example with the v eigenvector matrix, we reduce the dimen-
sions from 192 (6 events X 32 bins) to 12 (6 events X 2 components).
To this end, we convert the measured HPC values into histogram
bins, and then transform them into traces.

Using the reduction of dimensions, the input matrix Asg 784x192
(30,784 examples and 192 features) of benignware or malware is
transformed to lower-dimensional space as A§0,78 112 (30,784 ex-
amples and 12 features). For training and testing of the machine
learning models, we are going to separate the examples in matrix
A’ into training and testing datasets (training-and-testing split). In
our experiments, we consider 2 Training-and-Testing Approaches
(TTA) to divide our dataset into training set and testing set. The
two approaches for both benignware and malware experiments are
as follows:

TTA1 Divide 30,784 traces with a split of 90:10 ratio, resulting in
27,704 traces (90% of 30,784 traces) as training dataset and
3,078 traces (10% of 30,784 traces) as testing dataset.

TTA2 Divide 962 programs with a split of 90:10 ratio, resulting
in traces of 866 programs (90% of programs) as training
dataset and traces of 96 programs (10% of programs) as test-
ing dataset.

In TTAL, the traces resulting from the same program sample
can appear in both training and testing datasets. As a result, such
an approach corresponds to a highly optimistic and unrealistic
scenario where the testing programs (benignware or malware) are
available during training. Given that thousands of new malware
appearing everyday, it is impossible to include all the malware that
user may encounter. Hence, TTA1 should not be applied in training
machine learning models for malware detection.

The TTAZ2 corresponds to a realistic case where during training
model, we do not have access to the exact programs, benign or
malicious, that users run in the real life. To validate across our
models, we perform 10-fold cross-validations 1,000 times. For each
10-fold cross-validation, we randomly shuffle the dataset to ensure
difference across 1,000 rounds. In each 10-fold cross-validation,
each example in the dataset is used in training 9 times and testing
once. This ensures the identical times of training and testing for
every single example, compared to randomly shuffling the data
and validating the machine learning models. With 1,000 10-fold
cross-validations, we can ensure that the standard deviations of
detection rates increase no more with more rounds of validations.

In our experiments, we perform training and testing with both
TTA1 and TTA2. We compare the detection results in terms of
precision, recall, F1-score, and Area Under Curve (AUC) in both
approaches. We use the implementations of machine learning mod-
els: DT, RF, NN, KNN, AdaBoost, and Naive Bayes. The seed for
randomness in machine learning initialization and division of data
comes from the random number generator “/dev/urandom”. Dur-
ing training, we set the parameters of the machine learning models
as described below to prevent the machine learning models from
underfitting due to default limitations in computational resources
set by scikit-learn. The details related to the model configurations
can be found in our extended conference paper [1].

5 EXPERIMENTAL RESULTS

In this section, we show the results of our experiments to detect
malware using HPCs and contrast them with the ones obtained
in previous works. We report malware detection rates in terms of
precision, recall, F1-score, and Area Under Curve (AUC) in Receiver
Operating Characteristic (ROC) plots. We use the positive label to
denote malware and the negative label to denote benignware.

5.1 Malware Detection

In this section, we report the detection rates (precision, recall, and
F1-score) with 2 different data divisions, TTA1 and TTA2. TTA1
is the division of data according to the traces; while TTA2 is the
division of data according to the programs, as defined in §4. We
train and test various machine learning models and determine
the detection rates (precision, recall, and F1-score) with TTA1 and
TTA2. Then we plot the ROC curves and compute the AUCs. Table 3
shows the precision, recall, F1-score, and the AUCs of ROC curves.
Any results with a value larger than 90% and smaller than 50% are
set in bold and red, respectively. Figure 2 shows the ROC curves
and the AUCs of ROC for different machine learning models.

The F1-scores of DT, RF, KNN, Naive Bayes, AdaBoost, and NN
models are 80.22%, 81.29%, 80.22%, 9.903%, 70.32%, and 35.66% using
TTA2, compared to 83.39%, 84.84%, 83.59%, 14.32%, 75.01%, and
78.75% using TTA1 in Table 3. The detection rates are lower when
using TTA1 as compared to the scenario using TTA1.

Figure 2(b) shows the ROC curves and the AUCs of ROC for dif-
ferent machine learning models. The AUCs of ROC of DT, RF, KNN,
Naive Bayes, AdaBoost, and NN models are 87.36%, 89.94%, 86.98%,
58.38% 77.96%, and 66.43% using TTAZ2 in Figure 2(b), compared
to 89.65%, 91.84%, 89.26%, 58.11%, 80.57%, and 84.41% using TTA1
in Figure 2(a).

Demme et al. showed precision varying from 25% ~ 100% [4]
among different families of malware, without any recall values
reported using TTA1. The median precision among all the families
of malware is around 80%, with TTA1. Precision value of 80%
corresponds to the False Discovery Rate® of 20%. Consider that a
default Windows 7 installation has 1,323 executable files, an AV
system with a 20% False Discovery Rate would flag 264 of these files
incorrectly as malware — clearly such a detection system would
not be practical. In real-life cases, the malware detection rates of
HPC-based malware detection would be those in columns of TTA2
of Table 3 and Figure 2(b). These results show that high detection
rates and robustness in detection are over-estimated by some prior
works due to division of data during training. In the next subsection,
we show that the results presented in this subsection are not an
exception.

5.2 Cross-Validation

Cross-validation is a common practice in machine learning for
avoiding the overfitting of machine learning models. Cross-validation
is used to validate whether the detection rates are consistent with
repeated, different training and testing splits [28]. If the detection
rates fluctuate during cross-validation, we can infer that the ma-
chine learning models are not trained properly. We observe that
previous works either have no cross-validation or report no results

SFalse Discovery Rate (F /(Fs + Ty)



Table 3: Detection Rates with TTA1 and TTA2: Red means the value is less than 50% and bold means that the value is more than 90%

TTA1 TTA2
Models Precision[%] Recall[%] F1-Score[%] AUC[%] | Precision[%] Recall[%] F1-Score[%] AUC[%]
Decision Tree 83.04 83.75 83.39 89.65 83.21 77.44 80.22 87.36
Naive Bayes 70.36 7.97 14.32 58.11 56.72 5.425 9.903 58.38
Neural Net 82.41 75.4 78.75 84.41 91.34 22.16 35.66 66.43
AdaBoost 78.61 71.73 75.01 80.57 75.78 65.6 70.32 77.96
Random Forest 86.4 83.34 84.84 91.84 84.36 78.44 81.29 89.94
Nearest Neighbors 84.84 82.37 83.59 89.26 82.7 77.88 80.22 86.98
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Figure 2: Receiver Operating Characteristic (ROC) curve of 5 models. (a) The AUC of DT, NN, AdaBoost, RF, and KNN using (TTA1) is 89.65%,
84.41%, 80.57%, 91.84%, and 89.26%, respectively. (b) The AUC of DT, NN, AdaBoost, RF, and KNN using (TTA2) is 87.36%, 66.43%, 77.96%, 89.94%,

and 86.98%, respectively.
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Figure 3: Box plots of distributions of 10-fold cross-validation experiments using (a) TTA1 and (b) TTA2. Red diamonds are means, and blue
box corresponds to cross-validation experiment results that lie between 25 and 75 percentiles. The whiskers (the short, horizontal lines outside
the blue box) represent confidence interval equivalent to y + 30 of a Gaussian Distribution. The blue dots are outliers that are outside the
p =30 regime. On the X-axis, Prec is precision, Rec is recall, and F1is F1 score. AUC is area under curve in ROC. These 10-fold cross-validation
experiments show that we cannot achieve 100% malware detection accuracy.

from cross-validations. The lack of proper cross-validation moti-
vates us to further evaluate the machine learning models using
cross-validation.

In DT, RF, KNN, NN, AdaBoost, Naive Bayes models, the mean
of distributions of F1-scores using TTA2 are 82.13%, 83.61%, 82.2%,
73.69%, 73.43%, 12.21%, compared to 82.17%, 83.75%, 82.28%, 74%,

72.27%, 12.15% using TTA1, respectively. In DT, RF, KNN, NN, Ad-
aBoost, Naive Bayes models, the mean of distributions of F1-scores
using TTA2 are 2.145%, 2.336%, 2.248%, 14.88%, 3.29%, 2.611%, com-
pared to 1.416%, 1.326%, 1.388%, 13.2%, 2.365%, 2.392% using TTA1,
respectively. Comparing the results using TTA1 and TTAZ2, the
standard deviations of DT, RF, KNN, NN, AdaBoost, Naive Bayes
models increased by 1.515%, 1.762X%, 1.62X, 1.127X%, 1.391X, 1.092X,



respectively. The overall detection rates using TTA2 have much
higher variations compared to ones using TTA1.

As previous works did not report standard deviations of their
cross-validations, we cannot compare these results. The difference
between standard deviations in Figure 3(a) and Figure 3(b) is due
to the unrealistic assumption that the programs in the training
set appear in the testing dataset. Figure 3(b) presents the results
where the malicious program is not included in the training dataset.
In conclusion, the mean of the distribution using TTAZ2 is lower
than that using TTA1, while the standard deviation of distribution
using TTA2 is higher than that using TTA1. In order to have a
full evaluation on the machine learning models, it is imperative to
use TTA2 and exhibit a distribution of precision, recall, F1-score,
and AUC of ROC curves. The HPC measurements can be helpful
for other security applications, such as the detection of low-level
hardware attack, but the results from TTA2 clearly show that using
the results from TTA1 can be misleading and prematurely draw
the conclusion using HPC measurements and machine learning to
differentiate between benignware and malware.

5.3 Ransomware

In previous sections, the machine learning models are trained over
the traces of HPCs to discriminate malware from benignware. Here
we discuss an example where we build a malware embedded in
benignware and then show that this malware can evade HPC-based
malware detection.

Ransomware is a malware that maliciously encrypts files and
extorts users in exchange for the decryption keys [29]. We craft the
malware by simply infusing Notepad++ with a ransomware. We
modify the constructor of Notepad++ to iterate over a hardcoded
directory, encrypt each file with a hardcoded password and a session
key, and dump the content to another file in the same directory,
with 5 seconds delay between each encryption. We measure the
values of HPCs for modified Notepad++ in our experimental setup
(§ 3). We randomly select 90% of the benignware and malware
samples as the training set, and we test on Notepad++ and modified
Notepad++. The precision of DT, Naive Bayes, NN, AdaBoost, RF
and KNN is 0%, 0%, 0%, 50.85%, 0%, and 0%, respectively.

These results are not surprising, as machine learning models
tolerate the noise and jitters during training on sampled HPCs, in
order to extract the malicious behavior in the programs. In our mal-
ware example, the changes of HPC values caused by ransomware
are overshadowed in the sampled values of HPCs when running
Notepad++. The variation tolerance results in classifying the modi-
fied Notepad++ as benignware.

6 DISCUSSION

For our experiments, we run Windows 7 32-bit operating system
on AMD 15h family Bulldozer micro-architecture machine. Weaver
et al. performed extensive studies investigating the determinism
of the measured HPC values in various micro-architectures [30].
By comparing the HPC values across different micro-architectures,
Weaver et al. showed that the HPCs in various architectures have
similar levels of variations during sampling. Hence, our conclusions
from Bulldozer micro-architecture are applicable to other micro-
architectures. In our benignware and malware experiments, we

chose to allow the access to the network for benignware and prevent
malware from accessing network. This design choice does not affect
the results of HPC measurements, because both benignware and
malware function properly during experiments. For the reduction
of dimensions, many other approaches can serve the same purpose
as PCA. We used PCA in our designs as PCA is one of the most
popular methods for reduction of dimensions.

The research regarding the use of HPC measurements for mal-
ware detection as well as debugging and profiling tools has grown
rapidly since our original publication [1]. Similar to our research,
multiple researchers studied the limits of HPC measurements [31-
34] in line with the spirit of our research. Among these published
works, Das et. al. [31] evaluated the ways how 41 prior works
used HPC values and showed how various challenges can under-
mine the effectiveness of security applications. Basu et. al. [32]
developed a framework to determine the probability of malware de-
tection systems while monitoring HPC values at a pre-determined
interval. Brasser et. al. [33] discussed multiple hardware-assisted
security solutions and their respective limitations used by third
party developers. Dinakarrao [34] introduced adversarial attacks
on HPC-based malware detection systems. All these research works
essentially re-iterate our cautionary tales of using HPC for malware
detection. We also observed that researchers have acknowledged
these shortcomings and have chosen to improve their respective
analysis by adapting their systems to tackle the limits of HPC mea-
surements. Researchers overcame the drawbacks we discussed in
section 2, by utilizing bare-metal environments [35-38], implement-
ing customized hardware [39-41] instead of HPCs, proper cross-
validation [38], using ensemble models [42], and using other than
HPC values to detect malicious behavior [43]. Wang et al. [35, 36]
proposed a customized tool to overcome the problem of contaminat-
ing the HPC values from other processes. Basu et al. [43] developed
embedded trace buffer (ETB) based malware detector to identify
malicious behaviors. Ramos et al. [44] proposed a post-processing
method to mitigate the effect of HPC drawbacks for modeling par-
allel applications. All these efforts in the security community make
us believe that our work has had positive and profound influence
on the security research in the last couple of years. We hoped that
our work will guide future work in the area of using HPCs and
machine learning for malware detection in the right direction of
research.

7 CONCLUSION

HPCs are hardware units that are designed to count low-level,
micro-architectural events. Many works have investigated malware
detection using HPC profiles. However, we believe that there is no
causation between low-level micro-architectural events and high-
level software behavior. The strong positive results in the previous
works are due to a series of optimistic assumptions and unrealistic
experimental setups. In this work, we rigorously evaluate the idea
of malware detection using HPCs through realistic assumptions
and experimental setups. We observe the low fidelity in HPC-based
malware detection when we increase number of programs by a
factor of 2 ~ 3 and the experiment numbers in cross-validation to
3 orders of magnitude higher than previous works. Our best result
shows an F1-score of 80.78%. The corresponding False Discovery



Rate (F4 /(Fy+ + T4) is 15%. This means that among 1,323 executable
files in the Windows operating system files, 198 files will be flagged
as malware. We also demonstrate the infeasibility in HPC-based
malware detection with Notepad++ infused with a ransomware,
which cannot be detected in our HPC-based malware detection
system. By identifying the shortcomings in the prior approaches
of using HPCs and machine learning for malware detection, we
have guided the community in the right direction. Publications on
malware detection using HPCs and ML after our original paper
have shown that our paper has had positive and profound influence
on security research. We hope that our efforts will continue to help
the research community in the coming years.
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