
MPKAlloc: Efficient Heap Meta-data
Integrity Through Hardware Memory

Protection Keys

William Blair1(B), William Robertson2, and Manuel Egele1

1 Boston University, 111 Cummington Mall, Boston, MA 02215, USA
{wdblair,megele}@bu.edu

2 Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
wkr@ccs.neu.edu

Abstract. Memory corruption exploits continue to plague high pro-
file applications such as web browsers, high performance servers, and
mobile devices. Modern defenses for these targets have rendered clas-
sic attack vectors that execute shellcode directly on the stack impotent
and obsolete. Instead, modern exploits frequently corrupt the data struc-
tures found in a program’s memory allocator in order to take control of
running processes. These attacks against the heap are much harder to
defend against versus classic stack-based buffer overflows because they
often rely on an allocator acting on corrupted data in order to take
control of a process. In this work, we introduce MPKAlloc, a memory
allocator that utilizes memory protection keys (MPKs) found in recent
Intel CPUs to effectively isolate heap meta-data from adversaries. We
present our prototype implementation of MPKAlloc which hardens the
tcmalloc and PartitionAlloc memory allocators used by the popular
Chrome web browser. MPKAlloc protects each page containing heap
meta-data with a key that provides an allocator exclusive access to the
page. Effectively, MPKAlloc thwarts an adversary’s ability to access or
corrupt heap meta-data at the hardware level. We embed the MPKAlloc
defense in the open-source Chromium web browser, and demonstrate
MPKAlloc stopping realistic attack vectors. Furthermore, we evaluate
the performance overhead of Chromium configured with MPKAlloc on
the top 50 web sites contained in the Alexa site ranking. Our evaluation
shows that MPKAlloc introduces a geometric mean of 1.71% perfor-
mance overhead (2.44% on average) when browsing the most popular
web sites, in exchange for a significant increase in security against heap
meta-data exploitation.

Keywords: Memory protection keys · Hardened memory allocators ·
Hardware security

1 Introduction

The turn of the 21st century saw the explosive growth of the World Wide
Web and with it the rapid adoption of web browsers as a means to consum-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cavallaro et al. (Eds.): DIMVA 2022, LNCS 13358, pp. 136–155, 2022.
https://doi.org/10.1007/978-3-031-09484-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09484-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-09484-2_8


MPKAlloc: Heap Meta-data Integrity Through MPKs 137

ing entertainment, conducting business, and social networking. As the world
flocked to the Web and began rapidly creating and sharing content within web
browsers, the problem of securing individual computers from malicious content
quickly emerged. In 2001, the classic unlink exploit became known on the popu-
lar Netscape browser using a seemingly harmless JPEG image [33]. This exploit
only required a user to visit a web site hosting the hostile image in order to
allow an adversary to hijack the browser process. The exploit itself took advan-
tage of how Netscape’s memory allocator failed to sufficiently validate pointers
held in a memory chunk’s meta-data. If an adversary could corrupt this meta-
data, they could fool the allocator into writing into an arbitrary address once
the allocator freed the corrupted chunk. In this case, a malicious JPEG file could
trick the image processing module in the browser to corrupt a chunk of memory,
free it later on, and take control of the Netscape process. In the decades since
the disclosure of this exploit, heap exploitation has grown into a sophisticated
craft that continues to evade the defenses found within modern memory alloca-
tors [6]. Memory allocators protect the integrity of meta-data with cookies [31],
use advanced hardware features to check the integrity of pointers throughout
program execution [18], or explicitly track pointers to prevent the exploitation
of temporal memory errors [8]. Such defenses may come with non-trivial perfor-
mance overhead in both execution time and memory usage. For example, the
recent MarkUS allocator [8] can efficiently track dangling pointers throughout
program execution. However, it does so at the cost of a worst-case 2X perfor-
mance penalty and one-third memory overhead. Making a memory allocator
more secure by adding additional checks to detect tampering with internal data
structures creates tension with the allocator’s intended purpose: efficiently pro-
viding memory chunks of arbitrary size to a program whilst minimizing frag-
mentation. Furthermore, recent work has begun automating the discovery of
novel heap exploitation techniques [20,35,37] in the spirit of automated exploit
generation (AEG) [10]. This automation complicates the task of reliably ensur-
ing heap integrity. For these reasons, any proposed security improvement to a
production-quality allocator requires significant evidence that the change will
not negatively impact performance in the allocator’s intended use cases.

In light of this tension, we propose MPKAlloc, a technique for hardening
memory allocators that isolates heap meta-data by leveraging hardware memory
protection keys (MPKs) available on recent CPU architectures. Unlike software-
based integrity checks, MPKs immediately detect any attempt to read from or
tamper with heap meta-data. In addition, MPKs incur no significant perfor-
mance overhead and no memory footprint. Memory protection keys can also be
found in ARM processors in the upcoming memory tagging extensions (MTE) [5]
as well as IBM’s AIX operating system as “storage protect keys” [3] for Power
systems [21]. MPKs divide the pages that make up a process’ address space
into individual protection domains and allow each thread of execution to oper-
ate within one or more domains. MPKAlloc uses this functionality to confine
a memory allocator to operate within its own (privileged) domain when read-
ing from and writing to heap meta-data. MPKAlloc assigns regular (i.e., non



138 W. Blair et al.

meta-data) heap memory chunks a label with another (unprivileged) domain.
Later on, if an adversary exploits a bug in the running program, any attempt to
read or corrupt heap meta-data is prevented by the hardware and, by default,
the OS terminates the offending process. This simple defense effectively neu-
tralizes the entire class of heap meta-data corruption attacks that evolved from
the classic unlink attack. Isolating heap meta-data from program components
using memory protection keys can be accomplished with a compact implemen-
tation given sufficient domain knowledge of the memory allocators used by an
application. We present a prototype implementation of MPKAlloc based on the
popular tcmalloc and PartitionAlloc memory allocators and Intel MPK. We
evaluate MPKAlloc on the SPEC CPU2006 benchmarks and show that MPKs
introduce only marginal overheads. To evaluate MPKAlloc’s defensive capabil-
ities on real software, we embedded MPKAlloc within multiple allocators in
the Chromium web-browser. Browsers based off of Chromium enjoy 63.59% of
the worldwide browser market share as of 2021. We found that in a realistic
scenario, where an adversary achieves an arbitrary write primitive by corrupt-
ing meta-data, MPKAlloc intercepts the adversary before the corruption and
terminates the compromised Chromium process in response. We measure the
performance impact of MPKAlloc when visiting the top 50 most popular web
sites contained in the Alexa ranking. Our results show that MPKAlloc can pro-
tect widely used programs like the Chromium web browser from real attacks
while introducing little performance overhead on average. Prior systems have
focused on developing secure intra-process isolation schemes within specialized
high-performance servers [19,34] or making MPKs a virtualized resource [28]. In
contrast, MPKAlloc uses MPKs to ensure the security of sensitive data within
widespread consumer software. In the interest of open science, the source code
for MPKAlloc can be found online1.

In summary, we make the following contributions in this paper.

– We recognize that heap meta-data and regular data allocated in the heap can
be completely partitioned.

– We introduce MPKAlloc, a generic technique for hardening memory alloca-
tors that leverages memory protection keys to enforce these partitions. This
implements intra-process code partitioning and provides an allocator exclu-
sive access to its meta-data (see Sect. 3.2).

– We design and implement a prototype that applies the MPKAlloc technique
by hardening Google’s popular tcmalloc and PartitionAlloc allocators
using Intel’s memory protection keys.

– Our security evaluation shows that MPKAlloc prevents exploits that corrupt
heap meta-data in the Chromium web browser.

– Finally, our performance evaluation demonstrates that MPKAlloc introduces
little performance overhead as measured over the SPEC CPU2006 bench-
marks (0.8% on average) and on page load times in Chromium (2.44% on
average).

1 https://github.com/BUseclab/mpkalloc.

https://github.com/BUseclab/mpkalloc


MPKAlloc: Heap Meta-data Integrity Through MPKs 139

Fig. 1. Memory protection keys on intel CPUs.

2 Background and Threat Model

In this section, we provide a brief overview of memory protection keys, works
related to MPKAlloc, and the threat model we assume in this work.

2.1 Memory Protection Keys

Recent Intel CPUs feature memory protection keys (MPKs) for partitioning
memory pages into multiple intra-process domains. Figure 1 visualizes MPKs
protecting a page associated with a key k. The memory management unit (MMU)
within these CPUs maintains a page table which represents a mapping of virtual
pages held by userspace processes to the physical pages located in hardware.
Each page table entry (PTE) maps a single virtual page to a corresponding
physical page and holds additional information, such as whether or not the page
is dirty. On Intel, the PTE also includes an additional 4-bit value located at
bits 59–62 that denotes the page’s protection key. Intuitively, a page marked
with key k can only be accessed or written to by properly configured threads.
Since altering the page table requires executing privileged instructions on x86,
the operating system kernel must provide a system call for programs to assign
protection keys to individual pages. Note that, MPK currently only supports
associating an individual page with a single key from the 16 available keys. By
default, all pages are assigned the protection key k = 0.

During program execution, each CPU thread maintains its own protection
key rights register for user pages (PKRU) that restricts the thread’s access to indi-
vidual protection key domains. Upon every memory load or store instruction, the
MMU compares the protection key given in the accessed PTE to the permissions
given in the current thread’s PKRU register. If the PKRU register permits the oper-
ation, then the CPU carries out the instruction. Otherwise, the hardware will
raise an error by notifying the operating system that a segmentation violation
has occurred. An operation on a page with key k is permitted if the operation’s
bit is 0 at the relevant position in k’s entry within the PKRU register. For the
PKRU register given in Fig. 1, the access to the page with key k succeeds, while
the write fails. An operator may therefore disallow either writes or all access
to pages associated with k by setting the appropriate bit in the PKRU register.
The CPU provides instructions available to userspace programs to fetch and
alter an individual thread’s PKRU register. By default, the PKRU register begins
with a value of 0 which effectively disables MPKs. Note that, programs may not
restrict access to k = 0 on current hardware. More details on the system calls
and instructions required to use MPKs can be found in Sect. 4.



140 W. Blair et al.

2.2 Related Work

MPKAlloc relates to prior work in two categories: Hardened Memory Allocators
and Process Isolation Schemes.

Hardened Memory Allocators. Memory allocators often set aside a region
of memory called the heap to store chunks needed by a program. Allocators
must maintain data structures (heap meta-data) so that a program can effi-
ciently obtain memory (heap chunks) of arbitrary size on demand. Isolating
heap meta-data from adversaries is an important security goal since meta-data
corruption can violate the integrity or confidentiality of a program. Numerous
changes have been made over the last two decades to balance memory allocator
performance requirements with the need to secure their data structures from
corruption. As an example, the classic unlink [9,33] attack allows an adversary
to write arbitrary data into any location in memory by overwriting pointers
that refer to the next and previous chunks in the allocator’s doubly-linked list.
When the allocator attempts to free, or unlink, the corrupted chunk, the alloca-
tor instead writes an attacker-controlled value at an arbitrary address specified
by the attacker which can have serious security consequences [11,32]. While the
classic unlink attack has been mitigated for some time, this simple attack has
spawned numerous variants that exploit binary programs through corrupting
heap data structures [6]. For this reason, any defense that ensures the integrity
of heap data structures without adversely affecting the performance of an allo-
cator can provide significant security value, as it renders the entire class of heap
meta-data corruption attacks moot [31]. MPKAlloc uses MPKs to isolate meta-
data without requiring instrumentation or extensive changes to the allocator.
This improves the allocator’s security posture and enables easier adoption. That
is, applications are typically implemented against a generic allocator interface,
and so could easily be configured to use MPKAlloc instead of a default alloca-
tor. In some cases, MPKs can be easily added to an allocators like the big bag
of pages (BiBoP) allocators found in some BSD derived operating systems [27]
which store meta-data and allocated chunks on separate pages. Contrast this
approach to one that requires explicitly changing the layout of memory within
an allocator to accommodate MPKs [24]. Recent allocator fuzzing techniques
like the Uninitialized module found in the HardsHeap [36] framework permit
efficiently testing for the co-location of meta-data and allocated chunks without
requiring extensive manual analysis. Furthermore, more offensive analysis could
automatically discover novel exploits against allocators that fail to properly sep-
arate meta-data from allocated chunks [35]. In order to harden a given memory
allocator using MPKs, developers could combine these two approaches in order
to detect critical security flaws during development. This task may be difficult for
glibc’s ptmalloc [2], where meta-data immediately precedes allocated chunks in
memory, but simpler for Firefox’s jemalloc [1], where meta-data and allocated
chunks are stored separately but still share pages in memory.



MPKAlloc: Heap Meta-data Integrity Through MPKs 141

Process Isolation. Memory can also be partitioned using secure memory views
(SMV) which permit operating system threads and their children access to
memory associated with individual domains. Recent systems like ERIM [34]
and Hodor [19] employ MPKs to isolate both individual workloads [34] and
shared libraries [25] within the same process. More restrictive sandboxes can
also be defined by embedding instruction monitoring directly into the hard-
ware [16]. These works demonstrate MPKs preventing a compromised thread
running within one protection domain from executing code in another domain.
This builds upon widely used defenses such as data execution prevention (DEP)
and W ⊕ X. In contrast to these approaches, code domain partitioning uses
MPKs to ensure the security of a library’s sensitive memory pages, as opposed to
developing general purpose intra-process sandboxes. Therefore, our defense com-
plements prior work on intra-process sandboxes. The interface that allows pro-
grams to obtain and use MPKs can easily cause security problems and improve-
ments have been proposed to make MPKs a proper virtualized resource [28].
NOJITSU [29] uses MPKs to ensure a Just in Time (JIT) compiler in web
browsers has exclusive access to internal data structures and employs dynamic
and static analysis that limits the performance overhead introduced by MPKs. In
contrast, MPKAlloc establishes a memory allocator as a trusted component for
managing sensitive meta-data. In both NOJITSU and MPKAlloc, MPKs enforce
a security policy that provides a principal exclusive access to private resources.
Prior works have also demonstrated the benefit of using hardware protection
mechanisms to protect allocator meta-data [12,17,23]. However, these works pri-
marily demonstrate the performance benefits of using hardware features. They
do not investigate the security benefits of using MPKs beyond preventing simple
heap overflows. In this work, we introduce an indirect meta-data attack vector
(see Sect. 3.1) and show how MPKs prevent such attacks in a commodity web
browser.

2.3 Design Assumptions and Threat Model

In this work, we assume that the protected program utilizes a memory allocator
to dynamically allocate memory chunks. Meta-data documents the structure of
the heap and allows an allocator to quickly meet the running program’s memory
demands. A memory chunk is a contiguous span of memory held by an allocator.
In this work, we consider an allocator as a trusted component that stores heap
meta-data and chunks on separate memory pages. Requiring meta-data and
chunks to reside on separate pages is an inherent requirement when using existing
Intel MPK technologies. If the program were to access memory chunks lying
on the allocator’s pages, MPKAlloc would trigger a segmentation fault upon
every access. This implies that allocators that co-locate meta-data with allocated
chunks, such as ptmalloc and jemalloc, cannot protect meta-data using Intel
MPKs by default. The high performance allocators found within the Google
Chromium web browser store meta-data and allocated chunks on separate pages,
and therefore provide natural targets for prototyping MPKAlloc (see Sect. 4).

In this work, we assume the following threat model.



142 W. Blair et al.

– The adversary’s primary goal is to corrupt heap meta-data in order to achieve
a malicious goal. One such goal would be to obtain a write primitive in a
victim program. With the ability to write data anywhere in the process, an
adversary can achieve more powerful capabilities such as escalating privileges
or executing arbitrary code. We stress this represents just one example of
what an adversary may achieve by corrupting meta-data.

– To this end, the adversary can inspect the protected program and all of its
library dependencies.

– The adversary can further influence the input to the program (e.g., stan-
dard input, a remote socket, a file read by the program, or through specific
command line arguments).

– Finally, the adversary has access to a vulnerability in the program or any
of its libraries (with the exception of the memory allocator itself) that allow
him to access the heap’s meta-data and achieve his primary goal.

In this work, we assume an adversary does not begin with the ability to execute
arbitrary code either explicitly or through code reuse attacks. Such an adversary
has no motivation to corrupt heap meta-data since he can trivially take over a
process or disclose any information reachable from the process. For this reason,
we also assume the protected program does not utilize control flow integrity
(CFI) [7] since the adversary specified by our threat model has no ability to alter
the program’s flow of execution or alter threads’ protection domains. This is just
an assumption made for our threat model, and in a deployed setting CFI could
easily run alongside MPKAlloc to further protect a workload. The principal goal
of MPKAlloc is to prevent adversaries from breaking the security of a running
process by corrupting internal memory allocator data structures, not to design a
general purpose intra-process isolation scheme that is resilient to compromised
threads. At the time of writing, a secure intra-process isolation scheme using
MPKs is still an active research topic [15]. As a concrete step under this broad
objective, MPKAlloc uses memory protection keys to prevent adversaries from
corrupting internal memory allocator data structures. At the same time, we
acknowledge that MPKAlloc does not prevent issues caused directly by memory
allocators, such as double-free corruptions.

Fig. 2. Architectural overview of
MPKAlloc.

Fig. 3. MPKAlloc blocking a corruption
performed by writing to a meta-data
pointer obtained from an out-of-bounds
read from the stack.



MPKAlloc: Heap Meta-data Integrity Through MPKs 143

3 System Overview

In this section, we provide a high level overview of MPKAlloc. We show how
MPKAlloc successfully detects and thwarts an adversarial attempt to transform
a simple heap corruption into a powerful exploit. An adversary could easily use
corrupted meta-data to place a ROP chain somewhere in the process, cause the
program to jump to the chain, and connect to a remote command and control
(C&C) server and install malware. We describe code domain partitioning, a tech-
nique that isolates memory allocator meta-data from the rest of the program,
as a mechanism for isolating heap meta-data. Finally, we show that memory
protection keys available in recent Intel CPUs provide an efficient implementa-
tion of code domain partitioning. Figure 2 shows the architectural overview of
MPKAlloc and how it protects a memory allocator’s meta-data from a vulnera-
ble program. The key invariant MPKAlloc preserves is that any access made to
a meta-data page must come from a privileged domain. By default, all threads in
a running program run in an unprivileged domain. Upon invoking the memory
allocator, MPKAlloc switches the thread to the privileged domain so that the
allocator may access its internal meta-data. Note that this happens completely
transparently to the running program. This allows MPKAlloc to be deployed
by exclusively modifying the program’s memory allocator. Later on, when a
malicious or compromised thread attempts to access this internal data from an
unprivileged domain, the hardware observes that the thread’s protection key reg-
ister disallows access to the domain’s data. Upon receiving an exception from the
hardware, the OS responds by terminating the program before any information
is disclosed or corrupted. This prevents the malicious thread from successfully
exploiting the heap. This is the default response, and, depending on the use-case,
less drastic measures may be taken, such as alerting an administrator or raising
a visual warning within the browser to alert a user of a possible exploit.

3.1 Indirect Meta-data Corruption

In allocators like tcmalloc and PartitionAlloc, chunk meta-data resides on
separate pages which makes it difficult to successfully achieve the classic unlink
attack given in Sect. 2. Fortunately, browsers like Chromium also place guard
pages beneath meta-data pages which makes it impossible to corrupt pages via
a direct overflow. Figure 3 shows an alternative attack vector where an adversary
indirectly corrupts meta-data by writing to a pointer stored on the stack. At the
beginning of the function foo, the adversary can influence the value of x and the
index i used to read an element from buffer. In this attack, an adversary uses
this capability in order to read past the boundary of buffer and obtain a pointer
p that refers to meta-data. When the program writes to p, an adversary can then
influence the contents of meta-data. In this case, if the target meta-data page
contains a free list entry, then an adversary can replace a prev pointer with an
address of their choice. Later, when the allocator frees the corrupted chunk, the
allocator will inadvertently write to an attacker controlled address (0xdeadbeef).
Targeting allocator meta-data on the stack has the advantage of corrupting a



144 W. Blair et al.

heavily used data-structure without requiring intricate knowledge of a victim
application. That is, if an adversary is familiar with the memory allocator used
by a victim application, and the application heavily relies on heap memory, then
the adversary could attempt to spray attacker controlled values using meta-
data pointers located on the stack. MPKAlloc prevents such an attack from
achieving an arbitrary write primitive by detecting any successful meta-data
corruption. Note that this is a two-stage attack, an adversary must first obtain a
buffer over read to obtain a meta-data pointer, and then successfully dereference
the obtained pointer. We also assume that no attacker controlled values are
reachable on the stack, since an adversary could trivially obtain a write primitive
by obtaining those values as opposed to meta-data. In the past, remote attackers
have been able to achieve the first stage of our attack by exploiting an out-of-
bounds read on the stack within libevent, a library used by the Chromium
web browser [4]. In Sect. 5, we demonstrate our hypothetical attack vector in
Chromium.

3.2 Code Domain Partitioning

Code domain partitioning allows a developer to grant regions of a program’s code
segment exclusive access to memory pages associated with a specific domain.
MPKAlloc utilizes two domains and divides the heap into the allocator domain
A and the program domain P . Pages in A belong exclusively to the memory
allocator and pages in P belong to the program. To ensure the memory alloca-
tor has exclusive access to A, we alter the memory allocator to assign PKRU the
appropriate domain A before entering every allocator routine. When the alloca-
tor obtains new pages for meta-data from the operating system, the allocator
associates each page with the domain A using a variant of the mprotect system
call that assigns pages to protection key domains. We do not need to explicitly
assign other pages to the domain P since by default every page is assigned the
MPK domain 0 by the hardware. In this case, any thread in the process is allowed
to access pages in domain P subject to the “classic” read, write, and execute per-
mission bits. Upon exiting any allocator routine, we remove the domain A from
the PKRU register so that any attempt to alter a page in A yields a segmentation
violation.

3.3 Detecting Domain Violations

Code domain partitioning delegates the task of detecting accesses made across
domain boundaries to the CPU. Once an allocator’s internal source has been
altered to switch domains at the appropriate points, the hardware will detect
any unprivileged accesses or writes made outside the allocator. For example, an
adversary may attempt to corrupt a meta-data page by indirectly writing to
a meta-data pointer as shown in Fig. 3. At this point, an adversary can take
advantage of an indirect write to corrupt heap meta-data (e.g., overwrite point-
ers contained therein) in an attempt to exploit the program. The code causing
the corruption is outside the memory allocator itself and the protection domain



MPKAlloc: Heap Meta-data Integrity Through MPKs 145

of the current thread belongs to P which differs from the domain A assigned
to the victim meta-data page. As soon as the adversary in domain P issues a
store instruction into a meta-data page associated with domain A, the hard-
ware observes that the thread P cannot access the meta-data in domain A. This
causes the hardware to notify the OS of the violation, and the OS terminates the
process in response. This is the default response after detecting an MPK viola-
tion, and therefore we utilize it in MPKAlloc. This simple example shows how
assigning meta-data pages their own protection domain A can prevent adver-
saries from corrupting heap meta-data. Section 4 provides an overview of the
various data structures that tcmalloc and PartitionAlloc use as meta-data
in order to implement a performant heap. Furthermore, the trend of automated
heap exploitation suggests that anticipating all possible attack patterns facing
a given memory allocator may become impractical. Storing meta-data within
its own protection domain A successfully stops any attempt to access or alter
meta-data. MPKAlloc thus defangs all attacks that rely on corrupting heap
meta-data.

4 Implementation

In this section we describe our prototype implementation of MPKAlloc on the
Intel x86-64 architecture. This allows us to apply code domain partitioning using
the memory protection keys (MPKs) available on recent Intel CPUs. We choose
to embed the MPKAlloc technique within the tcmalloc and PartitionAlloc
allocators in our prototype. This implementation consists of 160 SLOC. This
includes the implementation embedded within both tcmalloc contained in
gperftools-v2.7 and PartitionAlloc included in Chrome version 84.0.4108.0.
While the amount of code needed to implement MPKAlloc is small, understand-
ing the structure and layout of two different high performance memory allocators
and carefully adjusting their design to protect meta-data requires both significant
domain knowledge and careful experimentation. The latest Intel CPUs provide a
thread-specific register, PKRU, that defines each thread of execution’s permissions
for each memory protection domain. MPKAlloc uses the new instructions that
alter this register to implement a security policy for an allocator’s meta-data;
accesses made by the program are forbidden, but those made by the alloca-
tor are allowed. We use functionality provided by the GNU/Linux kernel and
glibc to label every page allocated for meta-data the domain A. Every time
control transitions the boundary between the allocator and the rest of the pro-
gram, MPKAlloc must switch between the two domains. The boundary between
the domain of the program P and the domain of the allocator A consists of
the Standard C Library functions that allocate and deallocate memory (e.g.,
malloc, realloc, free, etc.), and the C++ operators that allow programs to
create and destroy objects (e.g., new and delete). In our implementation of
MPKAlloc, we initialize the PKRU register with a specific domain assigned to the
program P . As the pages backing the allocator’s meta-data belong to domain
A, any access made by P to these pages will generate a segmentation violation



146 W. Blair et al.

Fig. 4. Memory allocators protected by MPKAlloc.

before any meta-data can be disclosed or corrupted. Since both tcmalloc and
PartitionAlloc store meta-data and allocated chunks on separate pages, our
defense allows a program to read, write, or even execute allocated memory in P
without requiring any modifications or instrumentation to the program itself.

4.1 Meta-data in tcmalloc and PartitionAlloc

The tcmalloc and PartitionAlloc allocators are high performance memory
allocators found within the Chromium web browser. In tcmalloc, every allo-
cated chunk is backed by one or more span objects that may extend across
multiple pages in virtual memory. A single span is simply a collection of one or
more pages in virtual memory. Figure 4a shows the layout of the various data
structures that define tcmalloc’s meta-data. Within tcmalloc’s implementa-
tion, a special MetaDataAllocator class is responsible for allocating the pages
that hold these internal data structures such as thread caches, free lists, a cen-
tral page heap, and individual spans. Thread caches provide an efficient way for
threads to allocate memory using free lists without having to consult the larger
page heap that is shared across all threads. The page heap is a trie data structure
that allows tcmalloc to quickly obtain the span object associated with a given
pointer. In PartitionAlloc, the unit of allocation is a super page that records
the set of memory chunks that reside across a series of allocated pages. Figure 4b
visualizes the data structures that make up each super page. Each allocated page
is referred to by an individual slot span located in the super page. At the top of
the super page lies a meta-data page surrounded by guard pages that prevent
linear overflows from corrupting the data structures that document the super
page’s contents. Upon allocation of every super page, MPKAlloc assigns the
meta-data page with the domain A to ensure that the allocator retains exclusive
access to its meta-data during run-time. In this design, we assign all the instruc-
tions found within the tcmalloc and PartitionAlloc allocators the domain A,
and the rest of the process’ code to the domain P .



MPKAlloc: Heap Meta-data Integrity Through MPKs 147

4.2 Code Domain Partitioning

Both tcmalloc and PartitionAlloc rely on the mmap system call to obtain
pages from the operating system upon which they build a heap. In tcmalloc we
implement code domain partitioning by altering the MetaDataAllocator class to
tag every page allocated by mmap with the appropriate protection key and permis-
sions. Before the program allocates any memory, we must allocate a protection
key for the domain A within tcmalloc’s initialization routine. This involves
simply calling the pkey alloc function with our desired permissions (e.g., to
disable access and write operations). Whenever a MetaDataAllocator obtains
new pages, MPKAlloc calls pkey mprotect on a pointer to the new pages with
the allocated protection key. This assigns the pages to the protection domain
A and prevents threads outside of A from accessing the pages. Likewise, every
time PartitionAlloc allocates a super page, MPKAlloc associates the corre-
sponding meta-data page with the domain A. This implements a form of code
domain partitioning that divides the pages in the virtual address space into two
domains, the domain A reserved for memory allocators, and the domain P for
memory allocated in the heap. Furthermore, this approach allows us to initial-
ize MPKAlloc’s context without modifying the running program. Later on, if a
thread does not hold the proper permission in the PKRU register while reading
from or writing to one of the key’s pages, the hardware will raise an exception and
prevent the memory access from succeeding. The OS will then send a SIGSEGV
signal to the offending process and, by default, terminate it. Since both alloca-
tors reside in Chromium’s source tree, they can easily share A’s protection key.
Once we obtain a protection key from the operating system, we store the key in
a static variable which makes the key available throughout both tcmalloc and
PartitionAlloc. Under our threat model, disclosing the protection key does
not help an adversary corrupt meta-data, but in a production deployment it
would be wise to obscure the protection key’s location by storing it outside the
allocator’s structures.

In order for an allocator to access internal meta-data pages, MPKAlloc must
perform a domain switch whenever the program manipulates the heap using
one of the allocator’s public APIs. This is accomplished by simply writing the
appropriate value to the PKRU register as specified by the Intel Architecture
Software Developer Manual [22]. That is, MPKAlloc zeros the bits reserved for
the allocated key in the PKRU register which permits full access to A’s pages. The
wrpkru instruction allows MPKAlloc to alter the contents of the PKRU register
in order to perform this privilege escalation. When the memory allocator runs
in domain A, the hardware will see A’s entry in PKRU is zero, which permits full
access to all pages associated with A. Once an allocation or deallocation routine
returns, the allocator no longer needs to alter heap meta-data. At this point,
MPKAlloc switches the thread’s domain by setting the write and access bits at
A’s offset in the PKRU register, which causes any future attempt to read from
or write to A’s pages to fail. After the context switch completes, the function
returns to the code that invoked the allocator. The high performance memory
allocators given in our evaluation often do not have a clear boundary between



148 W. Blair et al.

entering and leaving the memory allocator. This can lead to redundant writes to
the PKRU register when performing a context switch. Writing to the PKRU register
incurs more clock cycles than reading its contents. For this reason, we follow
the example set by prior work [29] by checking the contents of the PKRU register
before altering it whenever we enable or disable our defense. In our evaluation, we
saw this straightforward optimization reduce the average performance overhead
from 5.4% to 2.4% when loading the top 50 websites in the Alexa ranking (see
Sect. 5.6).

4.3 Detecting Corruptions

Protecting meta-data from adversaries can be accomplished by switching a
thread’s protection domain to A whenever a program enters an allocator’s public
function. This ensures that whenever an allocator alters its internal data struc-
tures, the calling thread has the proper protection domain to pass the protection
key check performed by the CPU on all pages holding heap meta-data. Further-
more, once a thread leaves an allocator’s functions, MPKAlloc transitions to the
protection domain reserved for the program P . Any attempt made by an adver-
sary to access or alter the allocator’s meta-data while the program is in this
unprivileged domain will fail. Note that each thread has its own value for the
PKRU register which obviates any synchronization between different threads and
similarly forestalls race conditions that could occur while switching domains.

5 Evaluation

In this section, we evaluate both the performance overhead and security benefits
provided by MPKAlloc. First, we embed MPKAlloc within the stock tcmalloc
allocator, and measure the performance overhead induced by MPKAlloc over
the SPEC CPU2006 benchmarks. We compare this overhead to the runtime we
observe when using a stock tcmalloc allocator in the benchmarks (see Sect. 5.2).
Next, we evaluate the feasibility of embedding MPKAlloc into two memory allo-
cators found within the Chromium web browser (see Sect. 5.3). Once we con-
firmed that Chromium can benefit from MPKAlloc, we evaluate the feasibil-
ity of our PoC attack that indirectly corrupts meta-data. This involves writing
directly through pointers that refer to meta-data. In Sect. 5.4 we confirm that
meta-data pointers occur frequently in Chromium’s process address space. We
use this information to construct a PoC that corrupts meta-data by writing
through such a pointer, and show how MPKAlloc prevents the corruption from
occurring (see Sect. 5.5). Finally, we measure the performance impact a user may
experience when using Chromium hardened with MPKAlloc (see Sect. 5.6).

5.1 Experimental Set Up

We evaluated MPKAlloc on an Ubuntu 20.04 LTS server with 96 Intel Xeon
Platinum 8000 CPUs and 192 GB of RAM. The initial experiments for evaluat-
ing MPKAlloc over the SPEC CPU2006 benchmarks used tcmalloc available in



MPKAlloc: Heap Meta-data Integrity Through MPKs 149

Fig. 5. Measuring MPKAlloc’s performance overhead (+0.8% on average) using an
unmodified tcmalloc as a baseline.

gperftools version 2.7. The browser experiments were conducted using tcmalloc
and PartitionAlloc found in version 84.0.4108.0 of Chromium. We built and
evaluated Chromium within a container running the Ubuntu 16.04 LTS distri-
bution as recommended by the browser’s documentation for developers.

5.2 SPEC CPU2006 Benchmarks

Figure 5 summarizes the performance overhead of running the SPEC CPU2006
benchmarks with MPKAlloc compared to using an unmodified tcmalloc alloca-
tor as a baseline. In this evaluation, each benchmark is ran three times with each
allocator. The main source of performance overhead introduced by MPKAlloc
comes from issuing the relatively expensive wrpkru instruction when switching
between protection domains. On average, we observed low performance overhead
across all the SPEC CPU2006 benchmarks (+0.8%). Based on this result, we
argue that MPKAlloc could be applied to production programs without sub-
stantially affecting their performance.

Fig. 6. Measuring each memory allocator’s activity inside Chromium while loading
youtube.com. Each allocation fits within a bin given on the x-axis.

5.3 Hardening Chromium with MPKAlloc

The positive result obtained from the SPEC CPU2006 benchmarks makes
MPKAlloc a natural candidate to protect the Chromium web browser.
Chromium is an open source browser upon which the Google Chrome browser



150 W. Blair et al.

is based and heavily relies on the tcmalloc and PartitionAlloc allocators.
The PartitionAlloc-Everywhere initiative tracks the eventual transition to using
PartitionAlloc across the entire Chromium codebase [14]. Two garbage collec-
tors, OilPan and V8, allocate memory for the Blink CSS renderer and Javascript
interpreter, respectively. In this work, we restrict MPKAlloc to protect meta-
data within tcmalloc and PartitionAlloc. We leave protecting garbage collec-
tors’ meta-data in Chromium to future work. Figure 6 summarizes the pressure
placed on each memory allocator while Chromium renders youtube.com, a widely
viewed media heavy web site. For every chunk allocated by a heap, we place the
chunk in the smallest bin that will hold it. For example, the largest bin of size
1 GB holds all chunks that cannot fit in the bin of size 1 MB. Even though all
allocators are utilized while rendering youtube.com, we observed that Chromium
utilized tcmalloc and PartitionAlloc the most, measured by the total num-
ber of chunks allocated. To ensure that different web sites stress MPKAlloc,
we counted the number of protection domain context switches performed by
MPKAlloc while rendering the top 50 web sites contained in the Alexa ranking.
Figure 7 visualizes the number of protection domain context switches observed
and shows popular web sites utilize MPKAlloc by placing significant pressure
on the protected allocators.

Fig. 7. Protection domain switches performed by MPKAlloc while loading Alexa web-
sites.

5.4 Detecting Heap Meta-data in Chromium

Recall that the attack vector discussed in Sect. 3 achieves an arbitrary write
primitive by writing to a meta-data pointer stored on the stack. While MPKAlloc
is oblivious to an adversary’s goals beyond compromising heap meta-data, an
adversary can easily use a write primitive to corrupt arbitrary data and escalate
privileges, disclose sensitive information, or execute arbitrary code. In order
to understand the practicality of this attack vector within the Chromium web
browser, we altered tcmalloc and PartitionAlloc to record every memory
region allocated for heap meta-data while loading Google’s home page. As the
most popular website on Alexa’s ranking, Google’s home page can provide a
good reference as to whether an adversary can reach heap meta-data from the
stack through a buffer over read.



MPKAlloc: Heap Meta-data Integrity Through MPKs 151

Detecting Meta-data Pointers. In order to determine whether such a scenario is
possible, we implemented a meta-data memory scanner that attaches itself to
each process in Chromium’s process tree using the ptrace API. The scanner
starts with the set of memory pages allocated as meta-data by Chromium. The
scanner then examines every readable memory region mapped into the process.
The scanner enumerates each region 8 bytes at a time in order to detect any
pointers that refer to a meta-data page. This initial scan revealed that heap
meta-data pointers frequently appear on the stack. In order to be useful to
an adversary, the pointers themselves must be located at a memory address
higher than a given function’s stack frame so an adversary may reach the pointer
through a buffer over read. The current stack can be obtained through the RSP
register which represents the top of the stack in the x86-64 architecture. To
measure how often heap meta-data appears at memory addresses higher than a
given stack frame, we implemented a PINtool using the Intel PIN framework [26]
that scans a fixed amount of memory located higher than RSP (256 bytes) upon
every function return. This allows the PINtool to scan memory on the stack for
pointers to meta-data pages throughout Chromium’s execution. We limited our
scan to 256 bytes in order to quickly see whether meta-data was located close to
the stack pointer. In addition to trapping on every function return, the PINtool
traps on every call to functions that allocate heap meta-data which identifies the
location of meta-data pages in virtual memory. The previous scanner provided
evidence that heap meta-data occurs at the high addresses reserved for the stack.
This second scanner confirms all the opportunities an adversary may have to
reach meta-data during execution. We observed that the browser appears to start
with a fixed set of meta-data pages which are referred to throughout browsing.
This suggests the meta-data pointers we observed remain valid throughout our
scan. Our second scan which tracks meta-data in real-time revealed that simply
loading google.com causes heap meta-data to be within reach in over 52,000
distinct methods in the Chromium source tree. This implies that if an adversary
can write to a pointer stored somewhere on the stack in any one of these methods,
they can successfully corrupt a heap meta-data pointer, and achieve an arbitrary
write primitive. For example, functions in the blink module may be of interest
since the Blink renderer parses cascading style sheet (CSS) files downloaded
from the Internet. In this setting, adversaries may craft CSS files that exploit
a bug in the renderer’s implementation. This more detailed scan also revealed
meta-data is reachable in modules that parse URLs, handle network traffic, and
interact with the domain object model (DOM). All of these modules are viable
targets for an attacker looking to exploit a web browser. One explanation for
meta-data pointers’ frequent appearance on the stack is Chromium methods
reusing stack frames belonging to internal allocator routines that store meta-
data pointers on the stack while accessing data structures. For example, suppose
a routine that parses CSS files calls a routine to allocate a chunk of memory.
After these functions return, a CSS rendering routine is called, and a meta-
data pointer may remain on the stack in place of an uninitialized variable at an
address higher than the stack frame of a method vulnerable to the hypothetical



152 W. Blair et al.

attack described in Sect. 3.1. An adversary could take advantage of this layout
by obtaining the meta-data pointer, corrupting meta-data, and achieving an
arbitrary write primitive.

5.5 Corrupting Meta-data in Chromium

In order to demonstrate the security benefit of MPKAlloc we follow the app-
roach taken by recent work that protects components in Mozilla’s SpiderMonkey
Javascript JIT compiler [29] using MPKs. Instead of developing a full exploit to
test the defense, the authors introduced a bug into the code base and showed
how their defense stopped the bug’s exploitation. In this work, we select one of
the Chromium functions that can reach heap meta-data located on the stack.
We then show how MPKAlloc prevents an adversary from corrupting meta-
data by exploiting this bug. Note that, while our presented attack is artifi-
cial, it shows the security consequences of an out-of-bounds stack read which
has been seen in the past in Chromium’s library dependencies [4] when an
additional dereference is present. Within the Blink renderer a function called
ConsumeShorthandGreedilyViaLonghands populates a shorthand representa-
tion of multiple CSS properties using longhand declarations. This Blink func-
tion holds an array of pointers within its stack frame in order to update CSS
data structures. This function is interesting for two reasons. First, our PIN-
tool observed heap meta-data pointers lying at addresses located higher than a
function’s stack pointer. Second, the function writes to pointers stored on the
stack. This implies that if an adversary could trick the function into fetching
an element beyond the boundary of the array located on the stack, the function
would fetch and write to a heap meta-data pointer. This could give an adversary
the opportunity to corrupt meta-data by authoring malicious CSS snippets. To
demonstrate MPKAlloc stopping this attack, we altered the vulnerable method
to search upwards in memory starting from the stack buffer containing pointers
until it detected a meta-data pointer. After writing to the meta-data pointer, we
observed MPKAlloc terminate the browser with a segmentation violation.

5.6 Impact on Page Load Times

In order to evaluate the performance impact MPKAlloc has on web browsing, we
compared the page load times, defined as the amount of time needed to render a
web page and all its dependencies, with an unmodified Chromium browser and
with one protected by MPKAlloc. We evaluate MPKAlloc in this way for the
top 50 websites given in the Alexa ranking. In order to prevent network latency
from skewing our measurements, we utilize the Web Page Replay tool provided
by prior work [30] in the Catapult framework [13]. The Web Page Replay tool
records the traffic generated when visiting a website, and allows us to replay
this traffic while recording measurements in our evaluation. For every website
included in our evaluation, we load the website one hundred times and record
the amount of time required to load the website and all its external depen-
dencies, such as CSS, Javascript, and image data. We repeat this both with



MPKAlloc: Heap Meta-data Integrity Through MPKs 153

Fig. 8. Average performance overhead incurred by MPKAlloc with standard error
while loading Alexa websites.

MPKAlloc enabled in Chromium and with an unmodified Chromium browser
with identical versions. After running this experiment, we have one hundred
load times from an unmodified Chromium instance and one hundred produced
by Chromium protected with MPKAlloc. Overall, the overhead for all websites
in our evaluation stayed below 5.58%. While this is the worst case overhead
we observed for a single website, MPKAlloc caused 2.44% overhead on average
with a geometric mean of 1.71%. Figure 8 summarizes the average performance
impact MPKAlloc has on page load times for the top 50 websites given in the
Alexa ranking. The main source of overhead introduced by MPKAlloc comes
from switching between protection domains which requires issuing the wrpkru
instruction. It has been observed that the worst case execution time for this
instruction is 260 cycles [34]. In our evaluation, we observed that loading a web-
site can incur at most 1.5 million domain switches, which puts a theoretical
maximum overhead of a naive implementation of our defense at 130 ms when
running on a 3 GHz processor. Many of the web pages in our evaluation take
multiple seconds to complete loading, and so this theoretical worst case may not
hinder MPKAlloc’s use. In addition to page load times, we evaluated MPKAlloc
on several Javascript benchmarks in order to understand the impact of MPKs
on interpreting Javascript programs, which utilize the browser’s general purpose
allocators in addition to the V8 garbage collector. We observed MPKAlloc intro-
duce a small amount of overhead on three Javascript benchmarks, Speedometer
(0.95%), Octane (0.57%), and Sunspider (0.73%).

6 Conclusion

In this paper, we presented MPKAlloc, a defense that isolates heap meta-data via
in-process memory protection domains made possible by recent Intel CPUs. Our
prototype implementation of MPKAlloc protects heap meta-data used by the
tcmalloc and PartitionAlloc memory allocators. We evaluated MPKAlloc on
the SPEC CPU2006 benchmarks and showed that it induces merely 0.8% perfor-
mance overhead on average. Furthermore, when used in Chromium, MPKAlloc
detects and prevents potential exploits. Finally, MPKAlloc protects Chromium
while introducing a geometric mean of 1.71% performance overhead (2.44% on
average) on page load times.



154 W. Blair et al.

References

1. jemalloc. http://jemalloc.net/. Accessed 31 Mar 2021
2. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html. Accessed 31

Mar 2021
3. Storage protect keys. https://www.ibm.com/docs/en/aix/7.2?topic=concepts-

storage-protect-keys. Accessed 16 Aug 2021
4. CVE-2016-10195 (2016). https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2016-10195. Accessed 04 May 2022
5. Memory tagging extension: Enhancing memory safety through architecture

(2019). https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/enhancing-memory-safety. Accessed 27 Feb 2022

6. Educational heap exploitation (2021). https://github.com/shellphish/how2heap.
Accessed 31 Mar 2021

7. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity princi-
ples, implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 1–40
(2009)

8. Ainsworth, S., Jones, T.M.: MarkUs: drop-in use-after-free prevention for low-level
languages. In: IEEE Symposium on Security and Privacy (2020)

9. Anonymous: Once upon a free(). http://phrack.org/issues/57/9.html. Accessed 14
Mar 2021

10. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Auto-
matic exploit generation. Commun. ACM 57(2), 74–84 (2014)

11. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: ACM ASIA Conference on Computer and Commu-
nications Security (2011)

12. Cha, M.H., Lee, S.M., An, B.S., Kim, H.Y., Kim, K.H.: Fast and secure global-
heap for memory-centric computing. J. Supercomputing 77, 13262–13291 (2021).
https://doi.org/10.1007/s11227-021-03806-4

13. Chromium authors: Catapult. https://chromium.googlesource.com/catapult.
Accessed 12 Oct 2021

14. Chromium Authors: Deploy PartitionAlloc-Everywhere. https://bugs.chromium.
org/p/chromium/issues/detail?id=1121427. Accessed 12 Oct 2021

15. Connor, R.J., McDaniel, T., Smith, J.M., Schuchard, M.: PKU pitfalls: attacks on
PKU-based memory isolation systems. In: USENIX Security Symposium (2020)

16. Delshadtehrani, L., Canakci, S., Blair, W., Egele, M., Joshi, A.: FlexFilt: towards
flexible instruction filtering for security. In: Annual Computer Security Applica-
tions Conference (2021)

17. Demeri, A., Kim, W.H., Krishnan, R.M., Kim, J., Ismail, M., Min, C.: POSEIDON:
safe, fast and scalable persistent memory allocator. In: International Middleware
Conference (2020)

18. Farkhani, R.M., Ahmadi, M., Lu, L.: PTAuth: temporal memory safety via robust
points-to authentication. In: USENIX Security Symposium (2021)

19. Hedayati, M., et al.: Hodor: intra-process isolation for high-throughput data plane
libraries. In: USENIX Security Symposium (2019)

20. Heelan, S., Melham, T., Kroening, D.: Automatic heap layout manipulation for
exploitation. In: USENIX Security Symposium (2018)

21. IBM Corporation: Power ISA version 3.0b (2017)
22. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual:

Volume 3 (2016)

http://jemalloc.net/
http://gee.cs.oswego.edu/dl/html/malloc.html
https://www.ibm.com/docs/en/aix/7.2?topic=concepts-storage-protect-keys
https://www.ibm.com/docs/en/aix/7.2?topic=concepts-storage-protect-keys
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10195
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://github.com/shellphish/how2heap
http://phrack.org/issues/57/9.html
https://doi.org/10.1007/s11227-021-03806-4
https://chromium.googlesource.com/catapult
https://bugs.chromium.org/p/chromium/issues/detail?id=1121427
https://bugs.chromium.org/p/chromium/issues/detail?id=1121427


MPKAlloc: Heap Meta-data Integrity Through MPKs 155

23. Kim, Y., Lee, J., Kim, H.: Hardware-based always-on heap memory safety. In:
IEEE/ACM International Symposium on Microarchitecture (2020)

24. Kirth, P., et al.: PKRU-safe: automatically locking down the heap between safe
and unsafe languages. In: European Conference on Computer Systems (2022)

25. Koning, K., Chen, X., Bos, H., Giuffrida, C., Athanasopoulos, E.: No need to
hide: protecting safe regions on commodity hardware. In: European Conference on
Computer systems (2017)

26. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. ACM SIGPLAN Not. 40(6), 190–200 (2005)

27. Otto Moerbeek: A new malloc(3) for openBSD. http://www.openbsd.nl/papers/
eurobsdcon2009/otto-malloc.pdf. Accessed 23 Mar 2021

28. Park, S., Lee, S., Xu, W., Moon, H., Kim, T.: libmpk: Software abstraction for intel
memory protection keys (intel MPK). In: USENIX Annual Technical Conference
(2019)

29. Park, T., Dhondt, K., Gens, D., Na, Y., Volckaert, S., Franz, M.: NOJITSU: locking
down javascript engines. In: Network and Distributed System Security Symposium
(2020)

30. Reis, C., Moshchuk, A., Oskov, N.: Site isolation: process separation for web sites
within the browser. In: USENIX Security Symposium (2019)

31. Robertson, W.K., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-
based overflows. In: Conference on Systems Administration (2003)

32. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the ×86). In: ACM Conference on Computer and Communica-
tions Security (2007)

33. Solar Designer: JPEG COM Marker Processing Vulnerability. https://www.
openwall.com/articles/JPEG-COM-Marker-Vulnerability. Accessed 23 Mar 2021

34. Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N.O., Sammler, M., Druschel, P.,
Garg, D.: ERIM: secure, efficient in-process isolation with protection keys (MPK).
In: USENIX Security Symposium (2019)

35. Yun, I., Kapil, D., Kim, T.: Automatic techniques to systematically discover new
heap exploitation primitives. In: USENIX Security Symposium (2020)

36. Yun, I., Song, W., Min, S., Kim, T.: HardsHeap: a universal and extensible frame-
work for evaluating secure allocators. In: ACM Conference on Computer and Com-
munications Security (2021)

37. Zhao, Z., Wang, Y., Gong, X.: HAEPG: an automatic multi-hop exploitation gener-
ation framework. In: Maurice, C., Bilge, L., Stringhini, G., Neves, N. (eds.) DIMVA
2020. LNCS, vol. 12223, pp. 89–109. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-52683-2 5

http://www.openbsd.nl/papers/eurobsdcon2009/otto-malloc.pdf
http://www.openbsd.nl/papers/eurobsdcon2009/otto-malloc.pdf
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://doi.org/10.1007/978-3-030-52683-2_5
https://doi.org/10.1007/978-3-030-52683-2_5

	MPKAlloc: Efficient Heap Meta-data Integrity Through Hardware Memory Protection Keys
	1 Introduction
	2 Background and Threat Model
	2.1 Memory Protection Keys
	2.2 Related Work
	2.3 Design Assumptions and Threat Model

	3 System Overview
	3.1 Indirect Meta-data Corruption
	3.2 Code Domain Partitioning
	3.3 Detecting Domain Violations

	4 Implementation
	4.1 Meta-data in tcmalloc and PartitionAlloc
	4.2 Code Domain Partitioning
	4.3 Detecting Corruptions

	5 Evaluation
	5.1 Experimental Set Up
	5.2 SPEC CPU2006 Benchmarks
	5.3 Hardening Chromium with MPKAlloc
	5.4 Detecting Heap Meta-data in Chromium
	5.5 Corrupting Meta-data in Chromium
	5.6 Impact on Page Load Times

	6 Conclusion
	References




