
FlexFilt: Towards Flexible Instruction Filtering for Security
Leila Delshadtehrani

delshad@bu.edu
Boston University

Boston, Massachusetts, USA

Sadullah Canakci
scanakci@bu.edu
Boston University

Boston, Massachusetts, USA

William Blair
wdblair@bu.edu
Boston University

Boston, Massachusetts, USA

Manuel Egele
megele@bu.edu
Boston University

Boston, Massachusetts, USA

Ajay Joshi
joshi@bu.edu

Boston University
Boston, Massachusetts, USA

ABSTRACT
As the complexity of software applications increases, there has been
a growing demand for intra-process memory isolation. The com-
mercially available intra-process memory isolation mechanisms in
modern processors, e.g., Intel’s memory protection keys, trade-off
between efficiency and security guarantees. Recently, researchers
have tended to leverage the features with low security guarantees
for intra-process memory isolation. Subsequently, they have relied
on binary scanning and runtime binary rewriting to prevent the
execution of unsafe instructions, which improves the security guar-
antees. Such intra-process memory isolation mechanisms are not
the only security solutions that have to prevent the execution of un-
safe instructions in untrusted parts of the code. In fact, we identify
a similar requirement in a variety of other security solutions. Al-
though binary scanning and runtime binary rewriting approaches
can be leveraged to address this requirement, it is challenging to
efficiently implement these approaches.

In this paper, we propose an efficient and flexible hardware-
assisted feature for runtime filtering of user-specified instructions.
This flexible feature, called FlexFilt, assists with securing various
isolation-based mechanisms. FlexFilt enables the software devel-
oper to create up to 16 instruction domains, where each instruction
domain can be configured to filter the execution of user-specified
instructions. In addition to filtering unprivileged instructions, Flex-
Filt is capable of filtering privileged instructions. To illustrate the
effectiveness of FlexFilt compared to binary scanning approaches,
we measure the overhead caused by scanning the JIT compiled code
while browsing various webpages. We demonstrate the feasibility
of FlexFilt by implementing our design on the RISC-V Rocket core,
providing the Linux kernel support for it, and prototyping our full
design on an FPGA.

CCS CONCEPTS
• Security and privacy → Hardware security implementa-
tion.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3488019

KEYWORDS
Hardware security, OS security, memory protection domains

ACM Reference Format:
Leila Delshadtehrani, Sadullah Canakci,WilliamBlair, Manuel Egele, andAjay
Joshi. 2021. FlexFilt: Towards Flexible Instruction Filtering for Secu-
rity. In Annual Computer Security Applications Conference (ACSAC
’21), December 6–10, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3485832.3488019

1 INTRODUCTION
Today’s software is a complex mixture of trusted code written
in-house and untrusted code such as third-party libraries and ap-
plication plugins. The coexistence of trusted code with potentially
vulnerable or malicious untrusted code in the same process could
comprise the confidentiality and integrity of the trusted code. To
limit the effects of bugs and security vulnerabilities, a variety of
security solutions partition sensitive data and code into isolated
components. Researchers have leveraged various techniques includ-
ing Operating System (OS)-based [10, 44] and virtualization-based
techniques [7, 40, 46], hardware-based trusted execution environ-
ments [3, 23], and memory protection domains [32, 58, 61] to en-
force isolation.

To guarantee the integrity of the isolation, the above-mentioned
security solutions have to prevent an untrusted component from
accessing or modifying the isolated components. To this end, a
variety of prior work [3, 4, 14, 15, 24, 30, 32, 49, 58, 61, 65–67] faced
a common challenge, i.e., preventing the execution of various unsafe
instructions in untrusted parts of the code (either in user space or ker-
nel space). Such unsafe instructions could compromise the integrity
of the isolation mechanisms by modifying access permissions, dis-
abling protections, gaining higher privilege, etc. To prevent the ex-
ecution of such unsafe instructions, previous works have leveraged
various approaches such as Control-Flow Integrity (CFI) [14, 24, 49]
and binary scanning and binary rewriting [3, 4, 30, 32, 49, 61, 65, 67].
As the currently existing CFI solutions [21, 25, 31, 35, 45] have non-
trivial performance overhead (> 10%), leveraging CFI to prevent
the execution of unsafe instructions is expensive. Additionally, CFI
cannot simply be leveraged in self-modifying or dynamically gener-
ated code [58]. As shown by previous works, binary scanning and
binary rewriting approaches can filter unsafe instructions in static
code [32, 61]. However, an efficient implementation of binary scan-
ning and binary rewriting, especially for dynamically generated
code, is challenging.

https://doi.org/10.1145/3485832.3488019
https://doi.org/10.1145/3485832.3488019

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay Joshi

To clarify the challenges involved in binary scanning and binary
rewriting for preventing the execution of unsafe instructions, con-
sider the case of memory protection keys. In recent years, various
processors including ARM [51], IBM Power [54], and Intel [55] pro-
vided hardware-assisted memory protection keys, an extension to
page-basedmemory permissions. Accordingly, a software developer
can associate a group of memory pages with the same protection
key to create a memory protection domain. Subsequently, the soft-
ware developer can update the access permission of all the pages
in the same domain by updating the corresponding permission bits
of the protection key. While ARM and IBM Power only allow the
OS to modify the corresponding permission of a protection key,
Intel MPK allows a user-space process to make this modification.
Intel MPK stores the corresponding permission bits of all the pro-
tection keys in a new thread-local register, called protection key
right register (PKRU). Modifying the permission bits of a protection
domain requires writing into PKRU leveraging a new user-space
instruction, called WRPKRU. The execution of the WRPKRU instruction
is fast but an untrusted component can gain access permission
to any protection domain by simply writing into PKRU through
executing the WRPKRU instruction.

To ensure that all the occurrences of WRPKRU instructions are
safe, various approaches such as Hodor [32] and ERIM [61] rely on
binary inspection and runtime binary rewriting. One of the main
challenges in ensuring the safety of WRPKRU occurrences through
binary inspection is the implicit (unintended) occurrences of the
instruction. Such implicit occurrences could be the result of the
WRPKRU instruction forming across the boundary between two con-
secutive instructions or as a sub-sequence of a longer instruction.
An attacker can perform a control-flow hijacking attack to jump
into the point that an implicit WRPKRU instruction occurs. To address
this challenge, Hodor leverages debug registers to trigger a hard-
ware watchpoint once an explicit or implicit WRPKRU is about to be
executed. A vetting mechanism at kernel level allows the execution
to continue only for safe occurrences of the WRPKRU instruction.
ERIM intercepts each executable page and scans through the page
for unsafe instructions; then, it enables the execute permission iff
no unsafe occurrences exist. Otherwise, ERIM implements a run-
time binary rewriting approach to rewrite the implicit occurrences
of unsafe instructions.

The above-mentioned challenges for restricting the occurrence
of WRPKRU instructions to safe locations indicate the requirement
for an efficient approach to filter unsafe instructions at runtime.
This requirement is not limited to memory protection domains,
WRPKRU instructions, or x86 processors. We observed that a num-
ber of isolation-based security solutions, on different processor
architectures, have to prevent the execution of various unsafe in-
structions in untrusted parts of the code. In the rest of this paper,
we refer to the unsafe instructions as target instructions that should
be filtered. Depending on the isolation mechanism, the target in-
structions could be privileged or unprivileged instructions. In x86
processors, other security solutions [30, 65] limit the execution of
target instructions such as privileged MOV CR0, MOV CR3, and VMRUN.
Prior work on ARM processors [3, 4, 67] prevent the occurrence of
target instructions such as MSR, LDC, and MCR in untrusted parts of
the code. Recent works leveraging memory protection domains on

RISC-V architecture [14, 15, 58] have to limit the execution of the
WRPKRU equivalent instruction.

The previous works are limited to filtering the execution of cer-
tain target instructions. In this paper, we strive to provide a gener-
alized solution for filtering target instructions. Such a generalized
solution should satisfy the following requirements: 1) flexibility to
be applicable to a variety of instructions, 2) efficiency to be applica-
ble at runtime, and 3) fine-granularity to be able to filter various
parts of the code. To this end, we propose FlexFilt, an efficient and
flexible hardware-assisted capability for runtime filtering of target
instructions at page granularity. FlexFilt provides the generalized
instruction filtering capability via two mechanisms, i.e., instruc-
tion protection domains and flexible hardware-level filters. FlexFilt
enables the software developer to create instruction protection
domains by assigning the same protection key to a group of exe-
cutable pages. At the hardware level, FlexFilt provides configurable
filters to prevent the execution of various user-defined instructions.
The hardware-level filters can then be associated with instruction
protection domains and subsequently prevent the execution of tar-
get instructions in memory pages assigned to the corresponding
domain. FlexFilt is an efficient hardware-assisted feature and incurs
negligible performance overhead for filtering target instructions
at runtime. FlexFilt satisfies all the previously mentioned require-
ments of a generalized instruction filtering solution. In addition
to filtering user-space instructions, FlexFilt is capable of filtering
privileged instructions (i.e., supervisor mode and hypervisor mode).

To demonstrate the feasibility of FlexFilt’s design, we leverage
the RISC-V open Instruction Set Architecture (ISA) [64] and imple-
ment FlexFilt on the RISC-V Rocket core [2]. To evaluate FlexFilt in
a realistic environment, we provide the OS support for our hard-
ware design and prototype our full design (including hardware, OS,
and user-space software) on the Xilinx Zedboard FPGA [52]. In
summary, our contributions are as follows:

• We propose FlexFilt, a flexible hardware-assisted feature,
which enables a software developer to efficiently prevent the
execution of various instructions at a page granularity.

• To demonstrate the feasibility of our design, we implement
a practical prototype, consisting of the RISC-V Rocket core
enhanced with FlexFilt and the Linux kernel support for
FlexFilt, on an FPGA.

• To illustrate the effectiveness of FlexFilt compared to binary
scanning approaches, we measure the overhead of scanning
JIT compiled bytes generated by V8 JavaScript engine while
browsing various webpages.

In the spirit of open science and to facilitate the reproducibil-
ity of our experiments, we will open-source our full design:
https://github.com/bu-icsg/FlexFilt.

2 MOTIVATION AND RELATEDWORK
As mentioned before, a variety of previous works faced the chal-
lenge of preventing the execution of target instructions in untrusted
parts of the code. Table 1 lists these works, their target instructions,
and the approaches they used for filtering the instructions.

https://github.com/bu-icsg/FlexFilt

FlexFilt: Towards Flexible Instruction Filtering for Security ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 1: Comparison of previous works that prevent the execution of target instructions at runtime.

Architecture Mechanism Target Instructions Privilege Level Filtering Approach

x86

ERIM [61] WRPKRU, XRSTOR User Binary inspection and rewriting
Hodor [32] WRPKRU User Binary scanning and hardware watchpoints
libmpk [49] WRPKRU User CFI or relying on an approach like ERIM
Xu et al. [66] WRPKRU User Relying on an approach like Hodor or ERIM
Donky [58] WRPKRU User Hardware-assisted call-gates
IMIX [24] Extended instruction (SMOV) User CFI

Fidelius [65] MOV CR0, MOV CR4, WRMSR, VMRUN, MOV CR3 Supervisor Binary scanning
Underbridge [30] WRPKRU, MOV CR3 User & Supervisor Binary scanning and rewriting

ARM
Silhouette [67] MSR User Binary scanning
TZ-PKR [3] LDC, MCR Supervisor Binary scanning
SKEE [4] N/A Supervisor Binary scanning

RISC-V
Donky [58] N/A User Hardware-assisted call-gates
SealPK [14] Extended instruction (WRPKR) User Hardware-assisted instruction filtering
FlexFilt Various instructions User & Supervisor Hardware-assisted flexible filters

2.1 Instruction Filtering in Processors
2.1.1 x86 Processors. Recently, with the availability of Intel
MPK [55] on high-end commercial x86 processors, researchers
focused on deploying MPK in a secure way. To ensure the security
of Intel MPK for intra-process memory isolation, it is necessary to
prevent an untrusted component from executing WRPKRU or XRSTOR
instructions, which might lead to unauthorized access to protected
memory pages.1 As an example, consider a scenario where the
software developer aims to only allow the execution of WRPKRU
instruction in trusted parts of the code. In this example, we assume
that the software developer writes two trusted functions, namely
good_code1 and good_code2. She modifies the permission bits of
her memory protection domains through WRPKRU instructions only
in the two trusted functions and she wants to prevent the execu-
tion of WRPKRU in other parts of the code. As shown in Table 1,
various recent works leveraged different approaches to prevent the
unsafe execution of WRPKRU (and XRSTOR) instruction. Hodor [32]
leverages binary scanning and hardware watchpoints to prevent the
execution of unsafe WRPKRU instructions. ERIM [61] relies on binary
inspection and binary rewriting techniques to prevent an unsafe ex-
ecution of a WRPKRU or an XRSTOR instructions. libmpk [49] and the
work by Xu et al. [66] address the scalability issue of Intel MPK us-
ing software-based and hardware-based virtualization techniques,
respectively. These virtualization techniques [49, 66] rely on CFI
or previous approaches such as ERIM and Hodor to filter unsafe
WRPKRU instructions. Donky [58] uses a hardware-assisted call-gate
mechanism to secure the domain transitions of MPK, without the
need for binary scanning or CFI. IMIX [24] assumes the mitigation
approaches such as CFI and Code-Pointer Integrity (CPI) [41] to
prevent an attacker from reusing the trusted code containing SMOV,
an extended instruction for secure load and store.

The need to filter target instructions in x86 architecture is not
limited to user-space instructions protecting MPK. Fidelius [65]
proposes a software-based extension to protect the Virtual Ma-
chine (VM) against an untrusted hypervisor. Fidelius utilizes binary

1 XRSTOR restores the full or partial state of a processor’s state during a context switch.
The XRSTOR instruction can modify the contents of the PKRU register (which stores the
permission bits of all the domains) by setting a specific bit in the eax register before
executing the instruction [61].

scanning to restrict the execution of instructions that might hi-
jack the control flow (e.g., VMRUN) or switch the address space (e.g.,
MOV CR3). UnderBridge [30] retrofits Intel MPK for kernel space
isolation. To prevent the bypassing of the isolation enforced by
MPK, UnderBridge leverages binary scanning and rewriting. Subse-
quently, UnderBridge ensures that system servers do not contain
any explicit or implicit CR3 instructions that modify the page table
base register.

2.1.2 ARM Processors. Researchers have faced the instruction fil-
tering requirement on ARM processors too. Silhouette [67] provides
a protected implementation of the shadow stack on embedded ARM
processors. Silhouette scans the code to ensure that it does not con-
tain an instruction, such as MSR, that can be used to modify the
program state without the need for a store instruction. TZ-PKR [3]
provides a real-time protection of the OS kernel by leveraging ARM
TrustZone [50]. SKEE [4] implements a light-weight framework
for a secure kernel-level execution environment on ARM architec-
tures, without relying on a higher privileged layer. To prevent the
kernel from executing target privileged instructions, both TZ-PKR
and SKEE scan the kernel executables looking for certain control
instructions, such as MCR and LDC. These instructions are replaced
with hooks that jump to a switch gate.

2.1.3 RISC-V Processors. Multiple recent works [14, 15, 58] pro-
vided memory protection keys for RISC-V. In addition to the x86
implementation, Donky [58] provides the intra-process memory
isolation feature for RISC-V and leverages hardware-assisted call-
gates to secure its implementation. Similarly, SealPK [14, 15] im-
plements the memory protection keys for RISC-V. SealPK provides
a hardware-assisted feature allowing the software developer to re-
strict the execution of the WRPKRU instruction to a contiguous range
of memory addresses (e.g., one trusted function). Unlike the flexible
design of FlexFilt, SealPK’s implementation is limited to allowing
the execution of a fixed instruction in only one trusted function.

2.2 Shortcomings of Existing Approaches for
Instruction Filtering

As discussed before, a large number of previous works [3, 4, 30,
32, 61, 65, 67] rely on binary scanning to prevent the execution

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay Joshi

of target instructions. In CISC architectures such as x86, one of
the challenges in filtering target instructions is the implicit (unin-
tended) occurrences of these instructions. The target instructions
can be formed implicitly across the boundary between instructions
or as a sub-sequence of a longer instruction. Filtering the target
instructions in RISC architectures, including ARM and RISC-V, is
simpler because these architectures use fixed-length instructions.
Although both ARM and RISC-V support compressed instructions
(16-bit instructions), instructions cannot be loaded at any offset in
the memory (unlike x86). As FlexFilt monitors and filters instruc-
tions at the execution stage, we are not concerned with the implicit
vs explicit occurrences of instructions.

Although binary scanning approaches are efficient for the static
code, binary scanning and subsequently binary rewriting can be
costly for dynamically generate code. In Section 6, we analyze the
overhead of scanning the Just-In-Time (JIT) compiled pages while
browsing various websites and discuss the challenges faced by
prior work to prevent the execution of target instructions in the
JIT code. FlexFilt provides flexible instruction filters that allow the
software developer to prevent the execution of target instructions
on any page, irrespective of whether the page contains static code
or dynamically generated code (e.g., JIT compiled), without relying
on binary scanning and binary rewriting.

2.3 Watchpoints and Hardware Monitors
Most modern architectures provide a number of hardware watch-
points or debug registers. A hardware watchpoint is a debugging
mechanism that allows the software developer to monitor a number
of programmer-specified memory locations. Whenever the mon-
itored locations are accessed, the hardware triggers an exception
and traps into the debugger. Unfortunately, due the limited num-
ber of hardware watchpoints in modern architectures (e.g., only 4
watchpoints in x86), it cannot effectively be used as a fine-grained
standalone solution to filter instructions at runtime.

In addition to commercially available hardware watchpoints,
researchers have proposed a variety of dedicated [29, 68] and flexi-
ble hardware monitors [16, 18–20]. iWatcher [68] provides a large
yet limited number of programmable hardware watchpoints while
Greathouse et al. [29] propose an approach that supports an un-
limited number of watchpoints. Even with an unlimited number of
watchpoints, the software developer still has to utilize binary scan-
ning to identify all the possible occurrences of target instructions
and monitor the execution of each occurrence using a watchpoint.
To leverage FlexFilt, the software developer only needs to spec-
ify the list of target instructions and the trusted parts of the code.
Flexible hardware monitors such as PUMP [20], FlexCore [18], Har-
moni [19], and PHMon [16] are capable of performing a variety of
monitoring tasks. FlexCore and Harmoni have similar capabilities
as PUMP; however, PUMP is more flexible and it has been more
extensively adopted [12, 36, 57]. Although it is feasible to leverage
PUMP to prevent the execution of target instructions, specifying
the tag checking and propagation rules for PUMP is a challenging
task. FlexFilt requires fewer and less invasive hardware modifica-
tions compared to PUMP’s invasive hardware modifications on all
stages of the CPU, caches, and main memory. PHMon can filter

the execution of target instructions in a specific range of mem-
ory addresses leveraging a number of match units. However, the
number of memory regions to filter target instructions is limited to
the number of match units. Hence, unlike FlexFilt, PHMon cannot
enforce a fine-grained instruction filtering at page granularity.

2.4 Hardware-Assisted Instruction Stream
Customization

A large number of modern processors provide the µops capabil-
ity to convert a complex ISA to simpler and easier to execute
stream of instructions. Additionally, several processors such as
IBM’s DAISY [22], Transmeta’s Crusoe and Efficieon [13], and
Nvidia’s Denver [8] implement a dynamic binary translator hard-
ware and a software layer for performance optimization. A number
of prior works provide the hardware support for runtime instruction
customization and leverage it for functionalities beyond dynamic
optimizations, e.g., safety/security checking and enforcement, pro-
filing, and dynamic code decomposition [11, 59, 60]. DISE [11] is a
programmable macro engine that translates user-defined instruc-
tion streams to customized streams at the decoder level. Importantly,
DISE does not support per-domain or address-based instruction
customization, which is a fundamental requirement in our instruc-
tion filtering use cases. Context-Sensitive Decoding (CSD) [59]
enables program instructions to be dynamically translated into
a customized set of µops. CSD can turn on and turn off the cus-
tom translations in different address ranges specified through a
set of Model-Specific Registers (MSRs). The limited number of reg-
isters available for specifying the address ranges for instruction
customization is in contrast with the requirements of some of our
use cases, e.g., filtering WRPKRU in various untrusted functions. As
modifying the contents of MSRs requires transitions to the kernel
level, frequent runtime modification of these MSRs for addressing
the limited number of available MSRs or handling the JIT compiled
code could lead to high performance overheads. Context-Sensitive
Fencing (CSF) [60] proposes a microcode level defense against Spec-
tre attacks [39] by leveraging CSD.

In principle, hardware-assisted dynamic instruction customiza-
tion approaches, such as DISE and CSD, can be complementary to
FlexFilt upon detecting a target instruction. For example, one might
be interested in replacing a target instruction with a sequence of
safe instructions, e.g., a NOP instruction. Assuming that the immi-
nent execution of a target instruction is an indication of an attack
that undermines the security of the system, we currently terminate
the program execution rather than replacing the target instruction
with safe instructions. However, in the absence of the dynamic
instruction customization support, we can provide additional flex-
ibility by performing other operations in the exception handler
instead of terminating the process, e.g., trap to a debugger.

3 BACKGROUND
We leverage the RISC-V open Instruction Set Architecture (ISA) to
design, implement, and evaluate FlexFilt. In this section, we provide
the background information on the RISC-V ISA [64]. In this paper,
our focus is on commonly used 64-bit RISC-V processors (RV64).

FlexFilt: Towards Flexible Instruction Filtering for Security ACSAC ’21, December 6–10, 2021, Virtual Event, USA

RISC-V ISA dedicates four opcodes for custom instruction-set ex-
tensions. Instructions with these opcodes, called custom instruc-
tions, are reserved for customization and will not be used by future
standard extensions. We leverage RISC-V custom instructions to
configure FlexFilt. The RISC-V ISA has unprivileged [62] and privi-
leged [63] ISA specifications. Currently, the RISC-V ISA provides
three privilege levels, i.e., user/application, supervisor, and machine
modes. The highest level of privilege belongs to the machine mode,
which is a mandatory privilege level for any RISC-V core.

For RV64, RISC-V specifies two page-based virtual memory sys-
tems, i.e., Sv39 and Sv48. Sv39 and Sv48 provide a 39-bit and a
48-bit virtual address space, respectively, where in both cases the
address space is divided into 4KB pages. The privileged spec of
the RISC-V ISA specifies the virtual address translation process
and the format of the Page Table Entry (PTE). Each PTE holds the
mapping between a virtual address of a page and its corresponding
address of a physical frame. Bits 3-1 of each PTE are the page per-
mission bits, indicating whether a page is readable, writable, and
executable, respectively. The top 10 bits of an Sv39 and Sv48 PTE
(bits 63-54) are reserved for future use, e.g., to facilitate research
experiments [63]. The previous works on memory protection keys
for RISC-V including Donky [58] and SealPK [14] leverage these 10
unused bits to store the memory protection key information.

In addition to access permissions stored in PTE, RISC-V ISA
specifies the Physical Memory Protection (PMP) capability. PMP
provides a per thread view (for each hart) that enables the pro-
grammable machine mode to limit the physical addresses that are
accessible by software. PMP divides the physical memory address
into up to 16 configurable regions, where each region can be con-
figured with specific access permissions. At hardware level, a PMP
unit utilizes machine-mode CSRs to specify the memory access
permission (read, write, and execute) of each region. At runtime,
PMP checks are applied to all the accesses in user and supervisor
modes. Various previous works [37, 38, 42, 43, 53] leverage PMPs
for providing an additional security layer. One could be tempted to
implement FlexFilt on top of PMP. However, each PMP region is
specified by a contiguous range of memory addresses and there are
only 16 PMPs available. For our design, we are interested in creating
instruction domains at page granularity, which is not feasible with
16 available PMPs. Hence, we do not build our instruction domains
on top of the existing PMP feature.

4 THREAT MODEL
FlexFilt can be leveraged in a variety of security use cases intro-
duced by prior work (see Table 1). In our work, for each use case, we
follow the common threatmodel in the prior work. For intra-process
memory isolation approaches, we assume that the untrusted parts
of the code might contain vulnerabilities that an adversary can
exploit to inject or reuse arbitrary instructions including the target
instructions (e.g., WRPKRU). We do not assume any restrictions about
what an attacker would do after a successful attack. We assume
that the safe occurrences of target instructions in trusted parts of
the code are surrounded by call gates or trampolines similar to the
ones described in [32, 61], which protect these occurrences against
control-flow hijacking attacks.

As the OS is responsible for allocating the instruction domains
and maintaining FlexFilt’s information, we assume the OS kernel is
(partially) trusted. We assume all hardware components, including
our modifications, are trusted and bug free. Hence, rowhammer,
side-channel, and fault attacks are beyond the scope of this work.

5 DESIGN
In this section, we discuss FlexFilt’s design goals, the challenges
involved in implementing FlexFilt, and our solutions to address
those challenges. As discussed before, we identified a common
requirement for a flexible runtime instruction filtering capability
in a variety of previous works. Unlike prior works that provide
a solution capable of filtering a small number of specific target
instructions, we strive to provide a generalized solution for the
runtime filtering of target instructions. Such a generalized solution
should be flexible, efficient, and fine-grained. To be compatible with
existing OS-supported memory protections, we implement FlexFilt
at page granularity, i.e., each executable page can apply a combina-
tion of the configured instruction filters. This design choice allows
us to leverage the already existing OS-managed structures such as
PTE as well as hardware structures such as Translation Lookaside
Buffer (TLB) in our implementation. While, providing a finer gran-
ularity for instruction filtering requires substantial modifications
at both OS-level and hardware-level.

We need to provide the OS support as well as a software API
to enable a software developer to use FlexFilt. In the rest of this
section, we will first discuss our hardware design choices, followed
by the OS support for FlexFilt, and then the software support to
configure our flexible instruction filters.

5.1 Hardware Design
In this section, we discuss the hardware design of FlexFilt.

5.1.1 Instruction Protection Domains. To leverage the existing OS-
level and hardware-level structures for memory protection, we im-
plement FlexFilt at page granularity. Inspired by the design of mem-
ory protection keys, we devise instruction protection keys, which
enable us to simply divide the software code into trusted and un-
trusted executable partitions. The software developer can assign
the same instruction protection key to a group of executable pages,
which subsequently creates instruction protection domains. The
existing memory protection keys such as Intel MPK are only appli-
cable to data memory accesses, not instruction addresses. Here, our
focus is on associating fetched instructions to protection domains
according to the corresponding address of each instruction.

Prior works [14, 15, 58] leverage the 10 unused bits of the RISC-V
Sv39/Sv48 PTE to store the memory protection key. Similarly, we
can utilize these 10 unused bits to store the instruction protection
keys, which provides up to 1024 instruction protection domains.
Supporting a large number of data memory protection domains is a
necessity in various use cases, such as Persistent Memory Object
(PMO) [66] and OpenSSL [49]. However, supporting a large num-
ber of domains is not required for instruction protection domains.
According to our literature review, previous works with the instruc-
tion filtering requirements only needed two instruction domains,
i.e., a trusted and an untrusted domain. However, providing only
two instruction protection domains could be restrictive for some

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay Joshi

100rs1rs2imm[12|10:5] 1100011imm[4:1|11]BLT

101rs1rs2imm[12|10:5] 1100011imm[4:1|11]BGE

110rs1rs2imm[12|10:5] 1100011imm[4:1|11]BLTU

111rs1rs2imm[12|10:5] 1100011imm[4:1|11]BGEU

----------------1-------11000110000000000000000100000001100011

1111111111111111011111110000000

Match bits:

Mask bits:

Configuring the match/masks bits of a filter at software level

Filtering an instruction at hardware level

0000000001111100111001001100011

Runtime instruction: 0x03776263 (bltu a4,s7,112aa)

----------------1-------1100011

Mask

0000000000000000100000001100011Match

Flexible Filter

Comparator

Filter?

Figure 1: The Flexible Filter design, applied to a subset of
RISC-V branch instructions.

use cases (e.g., the combination of various protection mechanisms).
Intuitively, we would not need 1024 instruction domains, even if
we apply all the protection mechanisms proposed by a variety of
the previous works into a single system. As a trade-off for the
number of instruction domains, we utilize the 4 lower bits of the
10 unused bits in the PTE to store the instruction protection keys
(ipkey). Accordingly, FlexFilt supports up to 16 instruction protec-
tion domains, where each domain filters target instructions in the
domain’s corresponding pages.

5.1.2 Flexible Filters. One of the main design goals of FlexFilt is
providing flexible instruction filters, capable of filtering various
target instructions. To achieve this goal, we design each filter in
an inherently flexible way. We leverage a bit-granular match/mask
mechanism, similar to the matching mechanism used in the prior
work [16, 17]. This design choice enables us to filter one specific
instruction or a group of instructions with one Flexible Filter.
As an example, consider various branch instructions, including BEQ,
BNE, BLT, BGE, BLTU, and BGEU, in the RISC-V ISA. These branch
instructions share the same opcode value (1100011) and they are
distinguished based on the value of funct3 bits. In this scenario,
a flexible bit-granular instruction filter offers the user the option
of filtering a specific branch instruction, a subset of the branch
instructions, or all of the above-mentioned branch instructions.

Consider a scenario where the user is interested in filtering
four of the previously mentioned branch instructions, i.e., BLT, BGE,
BLTU, BGEU. Figure 1 shows the format of these instructions. The
common bits of these instructions, specified with a green box, can
be used for identifying them. In this example, the uncommon bits
are don’t cares. Accordingly, the software developer can simply
describe the four branch instructions using Match and Mask bits.
The Match bits specify the 32-bit value of an instruction identified
as one of the four branch instructions and the Mask bits specify the
don’t care bits. At the hardware level, our Flexible Filters
enforce such a matching/masking approach (the bottom part of
Figure 1). The control logic of the Mask acts like a filter that blocks
the masked parts of an instruction (specified by 1 bits in the Mask

and shown by dark gray color in Figure 1) and passes through
the rest of the instruction bits (shown by transparent gray color in
Figure 1). The output of this control logic, which contains the don’t
care bits, is passed into a comparator module to be compared with
the Match. If these two values match, then the Flexible Filter
activates an output signal, indicating that current instruction should
be filtered. For additional information on the filtering capabilities
of our Flexible Filters, refer to Appendix A.

Asmentioned before, an instruction protection domain is a group
of executable pages assigned with the same instruction protection
key. Each instruction protection domain prevents the execution of
various user-defined target instructions in its corresponding pages.
Ideally, we are interested in a flexible feature capable of filtering
any number of target instructions in each domain. In reality, pro-
viding such a capability is not practical due to resource limitations
and the substantial area and power overheads induced by such
excessive flexibility. With a limited number of instruction filters
for each domain, we consider two design options. First, each in-
struction domain has a fixed number of dedicated instruction filters.
Second, there is a fixed number of shared instruction filters, and
each instruction domain can apply a combination of these shared
filters to its corresponding pages. Although the first option provides
more flexibility in terms of filtering capabilities, it requires more
hardware resources. Additionally, the instruction filter information
for all the domains should be maintained by the OS during context
switches. Considering the overheads involved with the first design
option, we choose the second option in our design. We leave further
investigation into the overheads involved in implementing the first
design option as part of our future work.

By choosing the second design option, i.e., a fixed number of
shared configurable instruction filters, the next design question we
have to answer is the exact number of shared instruction filters. To
choose the number of instruction filters, we examine the number
of required filters in the previous works (listed in Table 1). Most of
the previous works required to filter only one target instruction. In
the worst case scenario, Fidelius [65] needed to filter the execution
of three unique instruction types (five instructions in total). Con-
sidering the possibility of enforcing a combination of protection
mechanisms, we choose to implement four shared instruction fil-
ters in our design.2 Subsequently, each instruction domain can be
configured to apply a combination of the shared instruction filters.

5.1.3 Microarchitecture Support. In our design, FlexFilt supports
up to 16 instruction domains and provides four Flexible Filters,
where a combination of these filters is applicable to each instruc-
tion domain. For each page, we specify the instruction domain by
storing the ipkey in the 4 previously unused bits of PTE. For each
instruction execution, in addition to checking the PTE permission
bits (e.g., the X bit, which indicates that the page is executable), we
need to determine if the instruction should be filtered. To this end,
we first have to identify the corresponding domain of the instruc-
tion. At hardware level, the Instruction TLB (I-TLB) maintains the
virtual to physical address translation of the instructions as well as
their corresponding permission bits. We augment the I-TLB with
a new field to store the associated ipkey of each virtual address.

2Note that with four instruction filters we can filter all the target instructions in
Fidelius [65] based on their instruction type.

FlexFilt: Towards Flexible Instruction Filtering for Security ACSAC ’21, December 6–10, 2021, Virtual Event, USA

PPage# ipkeyVPage#

00001150 4500

184 1220

280 560 00001

1 1110

...

I-TLB

X

Expanded instruction
(ex_reg_instr)

Flexible
Filter0

Fetch
Decode

Execute

exception
(illegal instruction)

DATA
Array

====

TAG
Array

I-Cache

paddr, ipkey

Instruction
Queue

valid dout(instr, pc,ipkey)

pte

Decode, Arbitration,
Stall Detection Logic

IPR
01415

V0V1V2V3

...

V0V1V2V3V0V1V2V3

ipkey
V0
V1
V2

V3

IP
R

Co
nt

ro
l

Lo
gi

c

PTW

Flexible
Filter1

Flexible
Filter2

Flexible
Filter3

Figure 2: Simplified overview of the modifications to the RISC-V Rocket core to support FlexFilt. The blue, yellow, and gray
colors show the new, minimally modified, and unmodified components, respectively.

Whenever there is an I-TLB miss, the hardware Page Table Walker
(PTW) walks the page table and fills the I-TLB with the missing in-
formation including the ipkey. As each instruction domain applies
a combination of the Flexible Filters, we need to maintain the
configured combination of each domain. To this end, for each do-
main, we associate a valid bit to each of the Flexible Filters. We
store all the valid bits in a separate 64-bit register, called Instruction
Protection Register (IPR).

Figure 2 demonstrates our modifications to the RISC-V Rocket
core [2] to implement FlexFilt. The modified I-TLB stores the ip-
key information (received from PTW) for each entry. On an I-TLB
hit, the ipkey value gets transferred to the I-Cache (alongside the
physical address) and subsequently on an I-Cache hit, the instruc-
tion and its associated ipkey gets stored in the Instruction Queue.
Subsequently, the ipkey value gets transferred to the decode and
then execute stage without any modifications. At the execute stage,
FlexFilt uses the ipkey value to read the corresponding valid bits
(4-bits) of the instruction domain from IPR. In the same cycle, each
of the 4 Flexible Filters receives the 32-bit instruction in the
execute stage, and performs the filtering operation based on its
Match and Mask bits configuration (Figure 1). If the resulting filter
signal of any of the Flexible Filters is high and at the same
time its corresponding valid bit is active, then FlexFilt prevents
the execution of the instruction by causing an illegal instruction
exception.

5.1.4 Unprivileged vs Privileged Target Instructions. While Figure 2
shows the main components of FlexFilt to filter unprivileged in-
structions, this implementation does not take the privilege level of
the instructions into account. As discussed in Section 2, some of
the previous works focused on preventing the execution of target
instructions in the kernel space while others focused on preventing
the execution in user space. To filter instructions in user space, we
simply access the priv field provided in the MStatus CSR of the
Rocket core and only apply the Flexible Filters on user-level
instructions. To filter the target instructions at kernel level, we
use a similar approach as PMPs. We add two pairs of new CSRs to
store the physical address range for filtering kernel-level instruc-
tions. To specify the kernel-level target instructions, we implement
four dedicated Flexible Filters. These dedicated filters are only
applicable to kernel-level instructions executing in the physical
address range specified with our newly added CSRs. The above-
mentioned CSRs and dedicated filters can only be configured from
the machine mode.

5.2 OS support
FlexFilt is capable of filtering target instructions in OS-managed
processes as well as the kernel itself. In our design, we consider
scenarios where each user-space process can filter different target
instructions. To enable a per-process instruction filtering capability,

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay Joshi

we need to provide the OS support for FlexFilt. In this section, we
discuss the Linux kernel modifications to support FlexFilt.

5.2.1 Instruction Protection Keys. We implement our instruction
protection keys on top of the existing support for memory pro-
tection keys. The Linux kernel provides three new system calls,
i.e., pkey_mprotect, pkey_alloc, and pkey_free, to support In-
tel MPK. pkey_mprotect is an extension to mprotect system call.
In addition to updating the permission bits of the PTEs of spec-
ified pages, pkey_mprotect assigns a protection key to the PTE.
pkey_alloc and pkey_free system calls enable a software devel-
oper to allocate and free a protection key, respectively. The kernel
implements an allocation bitmap (16-bit for Intel MPK) to keep track
of the allocated pkeys. The recent works on memory protection
keys for RISC-V [14, 58] extend the Linux kernel support of memory
protection keys to the RISC-V ISA. We modify the existing support
for pkey_alloc and pkey_mprotect in the kernel to allocate an
instruction protection key and associate the specified executable
pages with an ipkey, respectively. We add a new flag to pkey_alloc
and pkey_mprotect system calls to identify an instruction protec-
tion operation. Unlike the existing memory protection proposals
on RISC-V, we only use 4 bits of the unused PTE bits to store our
protection keys. Hence, we add an instruction allocation bitmap to
keep track of 16 instruction protection domains.

5.2.2 Per Process OS Support. To enable a per process view for in-
struction protection domains, we maintain the domain information
during context switches. We modify the task_struct in the Linux
kernel to keep the configuration of each Flexible Filter, which
includes the Match and Mask bits. Additionally, we maintain the
bitmap of allocated ipkeys as well as IPR contents. In Section 7, we
discuss the overhead of maintaining FlexFilt information during
context switches.

5.2.3 Kernel-Level Instruction Filtering Support. The kernel-level
Flexible Filters and their corresponding physical address range
CSRs can only be configured from the machine mode. In the RISC-V
environment, the Berkeley Boot Loader (BBL) [56] enables us to
configure our kernel-level filters and their CSRs from the machine
mode, prior to booting up the Linux kernel. As our kernel-level
filters are applicable to all processes, we do not need to maintain
their configuration during context switches.

5.3 Software Support
For configuring FlexFilt, we leverage the standard RISC-V custom
instruction extension to define new instructions. Table 2 shows our
software API and the unprivileged custom instructions that each
API invokes to configure FlexFilt. We provide the config_filter
function to configure each Flexible Filter by specifying its corre-
sponding Match, Mask, and privilege bits. The software developer
can leverage the config_instr_domain function to set the valid
bit of a Flexible Filter for a specific instruction domain. We also
provide five privileged custom instructions, which are accessible
only at the supervisor level. We leverage these five instructions to
maintain FlexFilt’s information during context switches.

We leverage the pkey_mprotect system call to associate a group
of executable pages, specified by addr and len, with an ipkey. Mul-
tiple functions with non-contiguous address ranges can be assigned

Table 2: FlexFilt’s Application Programming Interface (API).

Function Invoked
Custom Instruction

config_filter(uint32_t match,
uint32_t mask, uint8_t priv, uint8_t index)

SETMATCH, SETMASK,
and SETPRIV

config_instr_domain(uint64_t d_index,
uint64_t v_index) WRIPR

with the same ipkey and subsequently create one instruction do-
main. To invoke the pkey_mprotect system call, we should obtain
the address range of each instruction domain. In a deployed system,
the software developer can annotate the source code to specify the
sections of the program belonging to an instruction domain. Then,
we can modify the loader to invoke pkey_mprotect based on the
extracted information from annotations. Rather than modifying
the compiler and the loader, as a proof of concept, we leveraged
LD_PRELOAD. We leave the required modifications to the loader as
part of our future work.

As an example, consider the scenario we described in Section 2.
In this scenario, a software developer wants to allow the execution
of WRPKRU instruction in two trusted functions (good_code1 and
good_code2) while preventing the execution of WRPKRU in other
parts of the code. To specify the trusted instruction domain, we first
allocate a new ipkey (via pkey_alloc system call). By assigning
the same ipkey to both good_code1 and good_code2 functions,
we associate them with the same trusted instruction domain, i.e.,
domain1. Then, we configure Flexible Filters to prevent the
execution of the WRPKRU instruction in the default domain, i.e.,
domain0. To assign the allocated ipkey to the two trusted functions,
we need to invoke the pkey_mprotect system call, which requires
the address and length of the trusted functions as input arguments.
To this end, as a proof of concept, wemark the two trusted functions
with an attribute in the source code and use a linker script to
page align these functions. To obtain the address range of these
two functions and invoke pkey_mprotect, rather than modifying
the loader, we use LD_PRELOAD. To simplify using LD_PRELOAD on
good_code1 and good_code2 functions, we define them as extern
function pointers. Subsequently, when the executable containing
good_code1 or good_code2 is about to get executed, first the shared
library (.so) that pre-loads these two functions gets loaded and the
loader fills in the corresponding addresses of these functions. In our
shared library, we use dlsym to obtain the address of good_code1
and good_code2 functions. Then, we use the obtained address as
an argument for invoking pkey_mprotect. Subsequently, we call
the original implementation of our trusted functions.

6 CASE STUDY
For prior works that rely on binary rewriting, filtering target in-
structions in dynamically generated code is more challenging than
the static code. A popular use-case of dynamically generated code
that adversaries are likely to take advantage of is in Just-In-Time
(JIT) compilers. JIT compilers are not limited to dynamically gener-
ating user-space code; JIT compilation also occurs in the kernel, e.g.,
extended Berkeley Packet Filters (eBPF) VM has a JIT compiler. In
this section, we provide an experimental study to demonstrate the

FlexFilt: Towards Flexible Instruction Filtering for Security ACSAC ’21, December 6–10, 2021, Virtual Event, USA

advantages of leveraging FlexFilt for run-time instruction filtering
of dynamically generated code through JIT compilation.

6.1 JIT compilation
JIT compilation dynamically compiles interpreted programming
languages such as JavaScript into bytecode (an intermediate repre-
sentation) or native machine code. A JavaScript engine (e.g., Chakra-
Core [47], SpiderMonkey [48], and V8 [27]) is responsible for com-
piling and executing the JavaScript code, memorymanagement, and
optimization. For illustration purposes, we use V8, which is Google’s
open-source JavaScript engine used in Chrome, Chromium, and
Node.js. Note that other JIT compilers work in a similar manner.
V8 first compiles the JavaScript code into a bytecode. Then, V8’s
optimizing compiler generates an optimized machine code from
the bytecode.

6.2 V8 JIT Compilation Experiment
As discussed by prior works including ERIM [61] and Donky [58],
isolation of the dynamically generated code through memory pro-
tection domains is of great importance. As a case study, we consider
the scenario of leveraging Intel MPK for intra-process memory iso-
lation of the Chromium browser. While browsing webpages, the V8
engine dynamically compiles the JavaScript code and translates it
to optimized native machine code. To prevent reuse of JIT compiled
code for unauthorized modification of a protection domain’s per-
mission bits, we need to ensure that the code does not contain any
occurrences of WRPKRU instruction. A modified JIT compiler can
prevent the emission of explicit unsafe instructions (e.g., V8 never
emits WRPKRU explicitly); however, preventing misaligned/overlap-
ping implicit instructions is challenging. For example, a JIT compiler
might use constant data in the JavaScript code for generating an in-
struction, which inadvertently can lead to the creation of an implicit
unsafe instruction. In the absence of ubiquitous compiler adjust-
ments, our hardware-assisted approach can transparently prevent
the execution of unsafe instructions at runtime.

An attacker can exploit an implicit occurrence of WRPKRU instruc-
tion using control-flow hijacking attacks and in turn gain access
permission to a protection domain. To prevent such an exploitation,
the previous works continuously scan the newly generated code at
runtime and rewrite the code if necessary. In this section, we ana-
lyze the overhead of scanning the dynamically generated code by
measuring the number of generated bytes in native machine code
while browsing various webpages. For this measurement, we built
and ran the Chromium browser [26] on an Intel® Core™ i7-4700MQ
processor @ 3.4GHz machine running Ubuntu 18.04.5 LTS. We used
v8_enable_disassembler=true flag for building Chromium to en-
able disassembler support in V8. To measure the total number of
generated bytes during JIT compilation, we ran Chromium with
--js-flags="--print-bytecode" flag and browsed the Alexa top-
10 websites [1].

Table 3 shows the total size of executable bytes generated by
V8 engine while browsing the Alexa top-10 websites. For each
website, we report two numbers: 1) the total size of executable
bytes generated when loading the frontpage of the website, and
2) the number of bytes generated per second while browsing each
website for 5 minutes. Note that for a website such as Google.com

Table 3: Themeasured size of executable bytes generated for
browsing the Alexa top-10 websites, on average.

Website
Executable bytes
generated when

loading the frontpage

Executable bytes
generated per second

while browsing the page
Google.com 0 3,458
Youtube.com 266,798 2,620
Tmall.com 366,003 15,323
Baidu.com 0 1,532
Qq.com 159,565 2,043
Sohu.com 34,096 2,014

Facebook.com 20,938 9,712
Taobao.com 220,299 15,454
Amazon.com 92,442 3,098

360.cn 0 400
Geometric mean 3,432 3,258

and Baidu.com, we do the browsing by searching various keywords
without opening any of the search results. For each website, we
repeated both the experiments, i.e., loading of the frontpage of
the website and 5 minutes browsing, three times and reported the
geometric mean. On average,3 a binary scanning approach has to
scan around 3,432 bytes and 3,258 bytes per second, respectively,
for loading the Alexa top-10 pages and browsing them. In the worst
case, 366,003 bytes (for Tmall.com) and 15,454 bytes per second
(for Taobao.com) should be scanned. Considering 4KB pages, a
binary scanning approach has to scan about 90 pages for loading
Tmall.com, while for continuous browsing of Taobao.com around
4 pages should be scanned almost every second.

6.2.1 Comparison with Prior Works. Once the binary scanning
finds an implicit occurrence of a target instruction, the prior works
rely on a binary rewriting approach or hardware watchpoints to
guarantee the safety of the target instruction execution. Binary scan-
ning is a trivial task. The challenge is the efficient implementation
of the binary rewriting. ERIM reports that the binary inspection
takes between 3.5 and 6.2 microseconds per page for SPEC2006
benchmarks [34]. Unfortunately, ERIM does not report the perfor-
mance overhead of their binary rewriting approach at runtime. For a
continuous process such as web browsing, the binary scanning and
binary rewriting should be implemented very efficiently, which is a
challenging task. Typically, a binary rewriting approach incurs con-
siderable performance overhead. For example, MULTIVERSE [6], a
state-of-the-art x86 static binary rewriter reports 60.42% runtime
overhead on SPECint2006 benchmarks while MAMBO [28], a dy-
namic binary rewriter for ARM reports an average overhead of 34%
for SPEC2006 benchmarks on a Cortex-A15. Instead of dynamic
binary rewriting, Hodor relies on a trusted loader to identify all the
occurrences of the WRPKRU instruction and uses hardware watch-
points to examine the safety of these occurrences. If there are more
occurrences of the WRPKRU instruction in a page than the number of
watchpoints, Hodor relies on single-step execution, which incurs

3As shown in Table 3, some websites had zero executable bytes generated. When
loading the frontpage of these website, they did not result in any native bytes. As a
workaround for calculating the geometric mean in the presence of samples with zero
values, we converted each zero value to one.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay Joshi

considerable performance overhead. Additionally, the current im-
plementation of Hodor does not support JIT. Although Hodor can
be extended to support JIT compiled code, it has to cause a page
fault before the execution of each added page to inspect the page
and configure the watchpoints. In contrast to ERIM and Hodor,
FlexFilt examines each executed instruction at hardware level with
negligible performance overhead (refer to Section 7.3) and prevents
the execution of target instructions without the need for binary
scanning, binary rewriting, or hardware watchpoints. Overall, scan-
ning the dynamically generated code for target instructions is un-
necessary if a protection mechanism can prevent the execution of
target instructions reliably, which FlexFilt does through instruction
protection domains and hardware-level Flexible Filters.

7 EVALUATION
In this section, we discuss our implementation and evaluation frame-
work, and demonstrate the feasibility of FlexFilt’s design with our
prototype. To this end, we have to demonstrate FlexFilt’s correct
functionality and enforcement of the developer’s chosen security
policy as well as acceptable performance, power, and area overheads.
To verify the correct functionality of FlexFilt, we demonstrate Flex-
Filt’s capability in preventing the execution of the WRPKR instruction
in untrusted domains. To evaluate FlexFilt’s performance overhead,
we devise experiments to measure the overhead of configuring Flex-
Filt, the context switch overhead, and the overall execution time
overhead. To estimate the area overhead of FlexFilt, we leverage the
resource utilization of our FPGA prototype and reason about our
power overhead according to our area overhead estimation. Finally,
we provide a head-to-head comparison of the filtering capability
and overheads of FlexFilt with PHMon, a hardware monitor.

7.1 Implementation and Evaluation
Framework

We implemented FlexFilt on a RISC-V Rocket core [2] using the
Chisel Hardware Description Language (HDL) [5]. The RISC-V
Rocket core is a single-issue in-order processor with a 6-stage
pipeline. We prototyped our hardware design on a Xilinx Zedboard
FPGA [52]. We modified the Linux kernel (v4.15) to add the support
for FlexFilt. We implemented our support for instruction protection
domains on top of the existing implementation of memory protec-
tion keys for the RISC-V ISA using the open-source Linux kernel
patches from Donky [58] and SealPK [14].

7.2 Functional Verification
To verify the correct functionality of FlexFilt, we implemented tests
that created scenarios similar to the one described in Section 5.3.
As an example, we leveraged the WRPKR extended instruction [14]
to implement memory protection domains. Then, we prevented the
execution of the WRPKR instruction except in the trusted functions
specified by the user. To this end, we leveraged FlexFilt’s API and
the LD_PRELOAD approach. We cross-compiled the code using RISC-
V GNU toolchain and ran the program on our FPGA prototype. As
expected, FlexFilt allows the execution of WRPKR in trusted functions
and prevents its execution anywhere else in the code by causing
an illegal instruction exception.

To demonstrate FlexFilt’s capability in preventing a security
attack, we leveraged a buffer overflow vulnerability in a simple pro-
gram to inject a WRPKR instruction, which modifies the permission
bits of a memory protection domain in an untrusted function. As
expected, FlexFilt was able to successfully prevent the execution of
the injected WRPKR instruction in the untrusted domain at runtime.

To verify the correct functionality of the FlexFilt’s kernel-level
filtering capability, we configured FlexFilt in BBL [56] to limit the
execution of our custom instructions used to maintain FlexFilt’s
information during context switches. As expected, FlexFilt allows
the execution of these custom instructions in the context switch
function and prevents their execution outside this function.

7.3 Performance Evaluation
In this section, we evaluate FlexFilt’s performance overhead using
microbenchmarks. Additionally, we report the context switch over-
head to maintain FlexFilt’s information and the overall execution
time overhead of FlexFilt using standard benchmarks.

7.3.1 Microbenchmarks. FlexFilt provides four Flexible Filters.
During the program execution, each Flexible Filter receives the
current instruction at the execution stage and applies its configured
filter on the instruction. As the filtering operation does not need
any extra cycles, we expect FlexFilt to incur negligible performance
overhead. At hardware level, all the Flexible Filters perform
the filtering operation in parallel. Hence, regardless of the number
of activated configured filters, we expect FlexFilt’s performance
overhead to remain the same. To examine the effect of the number
of activated configured Flexible Filters on the performance
overhead, we ran the mcf benchmark from SPEC2000 benchmark
suite [33] for active filter count ranging from 0 to 4. We repeated
each experiment 3 times and considered the geometric mean of
execution times as the performance metric. As expected, this exper-
iment showed that the execution time overhead of FlexFilt did not
change with the number of activated filters. We expect a similar
behavior in other benchmarks too. With various number of filters,
the total execution time stayed the same (the geometric mean of the
execution time overhead across various configurations was 0.17%
with a standard deviation of less than 1%).

We devised a microbenchmark to measure the overhead of con-
figuring Flexible Filters as well as the overhead for apply-
ing a combination of filters to an instruction domain. Appendix B
presents these measured overheads.

7.3.2 Context Switch Overhead. During the context switches, we
maintain FlexFilt’s information including the configuration of
each Flexible Filter and the contents of IPR. As the amount
of FlexFilt’s information to maintain stays the same during con-
text switches, we expect FlexFilt’s context switch overhead to be
the same across all applications. We measured the performance
overhead of FlexFilt during context switches for 9 (out of 12)
SPECint2000 [33] and 9 (out of 12) SPECint2006 [34] benchmarks
with test inputs. We were not able to run the remaining bench-
marks, i.e., eon, perlbmk, and vortex from SPECint2000 and mcf,
perlbench, and sjeng from SPECint2006, on our baseline system
due to runtime errors (e.g., out of memory error because our eval-
uation board only provides 256MB of DDR memory). In addition

FlexFilt: Towards Flexible Instruction Filtering for Security ACSAC ’21, December 6–10, 2021, Virtual Event, USA

to the context switch overhead, we measured the total execution
time overhead of each benchmark. We ran each benchmark three
times and determined the geometric mean of the execution times.
Table 4 shows the performance overhead of maintaining FlexFilt’s
information during each context switch. On average, FlexFilt in-
creases the execution time of each context switch by 2.23% and
2.34% for SPECint2000 and SPECint2006 benchmarks, respectively.
However, the time spent in context switches for most workloads is
negligible (e.g., 0.50% on average for the SPECint2000 benchmarks).
As expected, the context switch overhead is in a similar range for
various benchmarks. As the number of context switches varies
across different benchmarks, the total performance overhead of
FlexFilt is different for each benchmark. However, FlexFilt’s overall
performance overhead is negligible (Table 4). In this experiment,
we used 9 applications from SPECint2000 and 9 applications from
SPECint2006 benchmark suites; however, as the amount of FlexFilt’s
information maintained during context switches is independent of
the benchmark, we expect similar context switch overheads in any
application.

7.4 FPGA Resource Utilization
In our FPGA prototype, the maximum frequency for the unmodified
RISC-V Rocket core is 25MHz. The RISC-V Rocket core enhanced
with FlexFilt operated with the same maximum frequency. Hence,
our microarchitectural modifications did not negatively affect the
critical path. Table 5 shows the FPGA resource utilization of an
enhanced Rocket core with FlexFilt compared to the baseline Rocket
core. Accordingly, as FlexFilt has less than 1% area overhead, we
estimate the power overhead of FlexFilt to be negligible.

7.5 Comparison with a Hardware Monitor
In Section 2.3, we discussed prior hardware monitors and their
potential capabilities in preventing the execution of target instruc-
tions at runtime. To the best of our knowledge, among the prior
hardware monitors, i.e., PUMP [20], FlexCore [18], Harmoni [19],
and PHMon [16], only PHMon is open-source [9]. In this section,

Table 4: Performance overhead of FlexFilt due to maintain-
ing FlexFilt’s information during context switches.

Benchmark Suite Applications Average Increase in Context
Switch Execution Time

Overall Execution
Time Overhead

SPECint2000

bzip2 2.97% 0.03%
crafty 2.16% 0.04%
gap 2.49% 0.15%
gcc 1.70% 0.07%
gzip 2.44% 0.05%
mcf 2.26% 0.17%

parser 2.14% 0.06%
twolf 2.27% 0.00%
vpr 1.88% 0.09%

Geometric Mean 2.23% 0.09%

SPECint2006

astar 2.21% 0.09%
bzip2 3.06% 0.04%
gcc 3.63% 0.08%

gobmk 2.04% 0.09%
h264ref 0.82% 0.05%
hmmer 3.23% 0.05%

libquantum 2.95% 0.10%
omnetpp 2.07% 0.01%
xalancbmk 2.66% 0.09%

Geometric Mean 2.34% 0.06%

Table 5: The FPGA utilization of the Rocket core enhanced
with FlexFilt compared to the baseline Rocket core.

Baseline Rocket Core + FlexFilt
#Used % Utilization #Used % Utilization

Total Slice Luts 32030 60.21 32584 61.25
Luts as logic 30907 58.1 31409 59.04
Luts as Memory 1123 6.45 1175 6.75
Slice Registers as Flip Flop 16506 15.51 17056 16.03

we provide a quantitative comparison between FlexFilt and PHMon
for filtering target instructions.

PHMon requires a Match Unit (MU) to prevent the execution
of target instructions in each Contiguous Memory Range (CMR).
As a head-to-head comparison, we consider a scenario where we
need to prevent the execution of a target instructions, e.g., a custom
instruction, in an untrusted domain spanning through four separate
CMRs. To filter the target instruction using FlexFilt, we define an
instruction domain by assigning the same instruction protection key
to the corresponding pages of the four CMRs. Then, we configure
one of our Flexible Filters with the target instruction and
enable this filter for our defined instruction domain. To filter the
target instruction using PHMon, we use 4 MUs and program each
MU to monitor the execution of the target instruction in the address
range of one of the CMRs. Both FlexFilt and PHMon can prevent
the execution of the target instruction with negligible performance
overhead. However, FlexFilt has considerably lower area overhead
compared to PHMon. According to the resource utilization on our
Zedboard FPGA, FlexFilt and PHMon (configured with 4 MUs)
increase the number of Slice LUTs by ∼1% and 27%, respectively,
over the baseline Rocket core. PHMon’s area overhead increases
(almost) linearly with the number of MUs. To support 16 domains
of CMRs, PHMon requires 16 MUs, which is expected to result
in ∼93% increase in the number of Slice LUTs over the baseline
Rocket core.4 In contrast to PHMon, FlexFilt is applicable at page
granularity and FlexFilt’s overheads are regardless of the number
of CMRs. Each of FlexFilt’s 16 instruction domains can be applied
to any number of contiguous or noncontiguous pages.

8 DISCUSSION AND FUTUREWORK
We configure FlexFilt once a process gets loaded (or during
LD_PRELOAD). To prevent further modifications to FlexFilt’s config-
uration, the software developer can leverage one of the Flexible
Filters to prevent the execution of the configuration custom in-
structions. This Flexible Filter can be sealed at hardware level
from further modifications. As a result, once the process is loaded
and FlexFilt is configured, any further execution of the configuring
custom instructions causes an exception.

In previous sections, we discussed FlexFilt’s capability in filtering
the execution of target instructions in untrusted parts of the code.
FlexFilt allows the execution of target instructions in trusted parts of
the code. However, an adversary might leverage the vulnerabilities
in untrusted parts of the code (e.g., buffer overflow) to launch a
control-flow hijacking attack and execute the target instructions.

4We estimate this number based on interpolation as we were able to fit PHMon with
the maximum of 5 MUs into our Zedboard FPGA.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay Joshi

To prevent such attacks, we can protect the entrance and exit points
of trusted functions using trampolines or call gates.

In addition to preventing the execution of known unsafe in-
structions in untrusted code, FlexFilt enables us to prevent the
execution of previously safe instructions as they turn into unsafe
instructions (e.g., CFLUSH) due to evolving security attacks. For ex-
ample, cache-based side channel attacks such as FLUSH+RELOAD
and FLUSH+FLUSH frequently use the CFLUSH instruction as part
of their attacks. FlexFilt can prevent the execution of CFLUSH in
untrusted parts of code to defend against such side channel attacks.

Although FlexFilt requires hardware modifications to an existing
processor, our FPGA resource utilization results indicate that these
changes are small compared to the in-order Rocket processor (∼ 1%
area overhead). In this paper, we provide a proof-of-concept imple-
mentation of our design in an open-source RISC-V environment.
Implementing FlexFilt in other architectures requires hardware
modifications, which could potentially be challenging (e.g., depend-
ing on the microarchitecture complexity) as these architectures
are not openly available. The memory protection key support al-
ready exists in modern x86 and ARM architectures, which can be
extended to implement instruction protection keys. Additionally,
FlexFilt requires four flexible filters, which have to be integrated
into a processor’s pipeline.

In Appendix A, we discuss the filtering capabilities of our
Flexible Filters in detail. Although our Flexible Filters
enable a software developer to filter instructions at bit granularity,
our current design cannot prevent the execution of target instruc-
tions based on the contents of a target instruction’s operands or the
contents of a memory address accessed by the target instruction.
We can enhance the filtering capability of our design by expanding
our bit-granular matching/masking mechanism to be applied to the
contents of rs1, rs2, rd, and the corresponding memory address
according to the the type of the target instruction. However, such a
design will increase the width of our filters from 32 bits to 288 bits
and requires FlexFilt to be applied at the write-back stage of the
processor’s pipeline. As part of our future work, we will investigate
the area overhead/flexibility trade-off by considering design knobs
such as four additional filters for contents of rs1, rs2, rd, and mem-
ory address versus one additional configurable filter applicable to
either.

9 CONCLUSION
In this paper, we presented an efficient and flexible hardware-
assisted feature, called FlexFilt, for runtime filtering of user-
specified instructions at page granularity. Our flexible hardware-
assisted feature can be used in a variety of security use cases that
need to prevent the execution of certain unsafe instructions in
untrusted parts of the code. We demonstrated the advantage of
FlexFilt over binary scanning/binary rewriting approaches by mea-
suring the number of JIT bytes generated while browsing various
webpages with Chromium. We implemented a practical FPGA pro-
totype of our design and provided the Linux kernel support for
it.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1916393.

REFERENCES
[1] Amazon. 2020. The top 500 sites on the web. [online] https://www.alexa.com/

topsites.
[2] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The Rocket Chip generator. EECS Department, UCB, Tech. Rep.
UCB/EECS-2016-17 (2016).

[3] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS). 90–102.

[4] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen
Wang, and Peng Ning. 2016. SKEE: A lightweight Secure Kernel-level Execution
Environment for ARM. In Proceedings of Network & Distributed System Security
Symposium (NDSS). 21–24.

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In Proceedings of ACMDesign Automation
Conference (DAC). 1212–1221.

[6] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al. 2018. Superset Disassembly:
Statically Rewriting x86 Binaries Without Heuristics. In Proceedings of Network
& Distributed System Security Symposium (NDSS).

[7] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. 2012. Dune: Safe user-level access to privileged CPU fea-
tures. In Proceedings of USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 335–348.

[8] Darrell Boggs, Gary Brown, Nathan Tuck, and KS Venkatraman. 2015. Denver:
Nvidia’s first 64-bit ARM processor. IEEE Micro 35, 2 (2015), 46–55.

[9] BU-ICSG. 2020. PHMon. [online] https://github.com/bu-icsg/PHMon.
[10] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.

Shreds: Fine-grained execution units with private memory. In Proceedings of IEEE
Symposium on Security and Privacy (S&P). 56–71.

[11] Marc L Corliss, E Christopher Lewis, and Amir Roth. 2003. DISE: A programmable
macro engine for customizing applications. In Proceedings of Annual International
Symposium on Computer Architecture (ISCA). 362–373.

[12] Arthur Azevedo De Amorim, Maxime Dénès, Nick Giannarakis, Catalin Hritcu,
Benjamin C Pierce, Antal Spector-Zabusky, and Andrew Tolmach. 2015. Micro-
policies: Formally verified, tag-based security monitors. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P). 813–830.

[13] James C Dehnert, Brian K Grant, John P Banning, Richard Johnson, Thomas
Kistler, Alexander Klaiber, and Jim Mattson. 2003. The Transmeta code morphing
software: using speculation, recovery, and adaptive retranslation to address real-
life challenges. In Proceedings of International Symposium on Code Generation and
Optimization (CGO). 15–24.

[14] Leila Delshadtehrani, Sadullah Canakci, Manuel Egele, and Ajay Joshi. 2020.
Sealable Protection Keys for RISC-V. arXiv preprint arXiv:2012.02715 (2020).

[15] Leila Delshadtehrani, Sadullah Canakci, Manuel Egele, and Ajay Joshi. 2021.
SealPK: Sealable Protection Keys for RISC-V. In Proceedings of Design, Automation
and Test in Europe (DATE). 1–4.

[16] Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay
Joshi, and Manuel Egele. 2020. PHMon: A programmable hardware monitor and
its security use cases. In Proceedings of USENIX Security Symposium (Security).
807–824.

[17] Leila Delshadtehrani, Schuyler Eldridge, Sadullah Canakci, Manuel Egele, and
Ajay Joshi. 2017. Nile: A programmable monitoring coprocessor. IEEE Computer
Architecture Letters 17, 1 (2017), 92–95.

[18] Daniel Y Deng, Daniel Lo, Greg Malysa, Skyler Schneider, and G Edward Suh.
2010. Flexible and efficient instruction-grained run-time monitoring using on-
chip reconfigurable fabric. In Proceedings of the International Symposium on
Microarchitecture (MICRO). 137–148.

[19] Daniel Y Deng and G Edward Suh. 2012. High-performance parallel accelerator
for flexible and efficient run-time monitoring. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN). 1–12.

[20] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu,
Jonathan M Smith, Thomas F Knight Jr, Benjamin C Pierce, and Andre DeHon.
2015. Architectural support for software-defined metadata processing. In Pro-
ceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 487–502.

[21] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. Efficient protection of path-sensitive control security. In Proceedings
of USENIX Security Symposium (Security). 131–148.

[22] Kemal Ebcioglu, Erik Altman, Michael Gschwind, and Sumedh Sathaye. 2001.
Dynamic binary translation and optimization. IEEE Trans. Comput. 50, 6 (2001),
529–548.

[23] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.
2017. Jitguard: hardening just-in-time compilers with SGX. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS).

https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://github.com/bu-icsg/PHMon

FlexFilt: Towards Flexible Instruction Filtering for Security ACSAC ’21, December 6–10, 2021, Virtual Event, USA

2405–2419.
[24] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza

Sadeghi. 2018. IMIX: In-Process Memory Isolation EXtension. In Proceedings of
USENIX Security Symposium (Security). 83–97.

[25] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control
flows using intel processor trace. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 585–598.

[26] Google. 2020. The Chromium Projects. [online] https://www.chromium.org/
Home.

[27] Google. 2020. What is V8? [online] https://v8.dev/.
[28] Cosmin Gorgovan, Amanieu d’Antras, and Mikel Luján. 2016. MAMBO: A low-

overhead dynamic binary modification tool for ARM. ACM Transactions on
Architecture and Code Optimization (TACO) 13, 1 (2016), 1–26.

[29] Joseph L Greathouse, Hongyi Xin, Yixin Luo, and Todd Austin. 2012. A case for
unlimited watchpoints. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
159–172.

[30] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo Chen.
2020. Harmonizing performance and isolation in Microkernels with efficient
intra-kernel isolation and communication. In Proceedings of USENIX Annual
Technical Conference (ATC). 401–417.

[31] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI:
Transparent backward-edge control flow violation detection using Intel processor
trace. In Proceedings of the ACM Conference on Data and Application Security and
Privacy (CODASPY). 173–184.

[32] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-process iso-
lation for high-throughput data plane libraries. In Proceedings of USENIX Annual
Technical Conference (ATC). 489–504.

[33] John L Henning. 2000. SPEC CPU2000: measuring CPU performance in the new
millennium. Computer 33, 7 (2000).

[34] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[35] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R
Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing unique code target prop-
erty for control-flow integrity. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS). 1470–1486.

[36] Yannis Juglaret, Catalin Hritcu, Arthur Azevedo de Amorim, Benjamin C Pierce,
Antal Spector-Zabusky, and Andrew Tolmach. 2015. Towards a fully abstract
compiler using Micro-Policies: Secure compilation for mutually distrustful com-
ponents. arXiv preprint arXiv:1510.00697 (2015).

[37] Henrik Karlsson. 2020. OpenMZ: a C implementation of the MultiZone API. Mas-
ter’s thesis. School of Electrical Engineering and Computer Science (EECS), KTH
Royal Institute of Technology.

[38] Haeyoung Kim, Jinjae Lee, Derry Pratama, Asep Muhamad Awaludin, Howon
Kim, and Donghyun Kwon. 2020. RIMI: instruction-level memory isolation for
embedded systems on RISC-V. In Proceedings of the International Conference on
Computer-Aided Design (ICCAD). 1–9.

[39] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
2019. Spectre attacks: Exploiting speculative execution. In Proceedings of IEEE
Symposium on Security and Privacy (S&P). 1–19.

[40] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No need to hide: Protecting safe regions on commodity hardware. In
Proceedings of the European Conference on Computer Systems (EuroSys). 437–452.

[41] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings of USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). 147–163.

[42] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the European Conference on Computer Systems
(EuroSys). 1–16.

[43] Samuel Lindemer, Gustav Midéus, and Shahid Raza. 2020. Real-time Thread
Isolation and Trusted Execution on Embedded RISC-V. In Proceedings of the
InternationalWorkshop on Secure RISC-VArchitecture Design Exploration (SECRISC-
V).

[44] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-weight contexts: An OS ab-
straction for safety and performance. In Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 49–64.

[45] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan.
2017. Transparent and efficient CFI enforcement with intel processor trace. In
Proceedings of the IEEE International Symposium on High performance computer
architecture (HPCA). 529–540.

[46] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
memory disclosure with efficient hypervisor-enforced intra-domain isolation. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications

Security (CCS). 1607–1619.
[47] Microsoft. 2020. ChakraCore. [online] https://github.com/Microsoft/ChakraCore.
[48] Mozilla. 2020. SpiderMonkey: The Mozilla JavaScript runtime. [online] https:

//developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey.
[49] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. 2019.

libmpk: Software abstraction for Intel Memory Protection Keys (Intel MPK). In
Proceedings of USENIX Annual Technical Conference (ATC). 241–254.

[50] ARM. 2009. ARM security technology, building a secure system using TrustZone
technology. [online] http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[51] ARM. 2018. ARM Architecture Reference Manual ARMv7-A and ARMv7-R
edition. (2018).

[52] Digilent’s ZedBoard Zynq FPGA. 2020. Development board documentation.
[online] http://www.digilentinc.com/Products/Detail.cfm?Prod=ZEDBOARD/.

[53] Hex-Five. 2020. MultiZone Hex Five Security. [online] https://hex-five.com/.
[54] IBM Corporation. 2017. Power ISA version 3.0b. (2017).
[55] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Software Developers

Manual. (2019).
[56] RISC-V. 2021. RISC-V Proxy Kernel and Boot Loader. [online] https://github.com/

riscv/riscv-pk.
[57] Nick Roessler and André DeHon. 2018. Protecting the stack with metadata

policies and tagged hardware. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P). 478–495.

[58] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, StefanMangard, and Daniel Gruss. 2020. Donky: Domain Keys–Efficient
In-Process Isolation for RISC-V and x86. In Proceedings of USENIX Security Sym-
posium (Security). 1677–1694.

[59] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2018. Mobilizing
the micro-ops: Exploiting context sensitive decoding for security and energy
efficiency. In Proceedings of the ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA). 624–637.

[60] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-
sensitive fencing: Securing speculative execution via microcode customization.
In Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). 395–410.

[61] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-
tion with Protection Keys (MPK). In Proceedings of USENIX Security Symposium
(Security). 1221–1238.

[62] Andrew Waterman, Krste Asanovic, and SiFive Inc. 2019. The RISC-V instruction
set manual, volume i: unprivileged ISA, Document Version 20191213. Technical
Report.

[63] Andrew Waterman, Krste Asanovic, and SiFive Inc. 2019. The RISC-V Instruction
Set Manual Volume II: Privileged Architecture, Document Version 20190608-Priv-
MSU-Ratified. Technical Report.

[64] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The RISC-V instruction set manual, volume i: Base user-level ISA. UCB, Tech.
Rep. UCB/EECS-2011-62 (2011).

[65] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu Zang, and Haibing Guan.
2018. Comprehensive VM protection against untrusted hypervisor through retro-
fitted AMD memory encryption. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA). 441–453.

[66] Yuanchao Xu, ChenCheng Ye, Yan Solihin, and Xipeng Shen. 2020. Hardware-
Based Domain Virtualization for Intra-Process Isolation of Persistent Memory
Objects. In Proceedings of the International Symposium on Computer Architecture
(ISCA). 680–692.

[67] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J Walls.
2020. Silhouette: Efficient protected shadow stacks for embedded systems. In
Proceedings of USENIX Security Symposium (Security). 1219–1236.

[68] Pin Zhou, Feng Qin,Wei Liu, Yuanyuan Zhou, and Josep Torrellas. 2004. iWatcher:
efficient architectural support for software debugging. In Proceedings of the
International Symposium on Computer Architecture (ISCA). 224–235.

A FLEXIBLE FILTERING CAPABILITY
Our Flexible Filters enable a software developer to filter in-
structions at bit granularity. In addition to filtering a specific in-
struction or a subset of an instruction,5 Flexible Filters can
be used to filter a group of instructions. To clarify this capability,
we examined the RV64I base instruction set, which consists of 55
instructions [62]. As shown in Table 6, these instructions can be

5For example, filtering a ret instruction, which is defined as a JALR instruction with
rd = x0, rs1 = x1, and imm = 0.

https://www.chromium.org/Home
https://www.chromium.org/Home
https://v8.dev/
https://github.com/Microsoft/ChakraCore
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.digilentinc.com/Products/Detail.cfm?Prod=ZEDBOARD/
https://hex-five.com/
https://github.com/riscv/riscv-pk
https://github.com/riscv/riscv-pk

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Leila Delshadtehrani, Sadullah Canakci, William Blair, Manuel Egele, and Ajay Joshi

Table 6: Opcode-based grouping of RV64I instructions [62].

Instruction group Opcode Number of instructions
LUI 0110111 1

AUIPC 0010111 1
JAL 1101111 1
JALR 1100111 1

BRANCH 1100011 6
LOAD 0000011 7
STORE 0100011 4
ALUI 0010011 16
ALU 0110011 15

FENCE 0001111 1
ECALL/EBREAK 1110011 2

Table 7: Cycle counts for FlexFilt configuration.

Mechanism Function or Instruction #Cycles

API config_filter 46
config_instr_domain 69

Custom Instruction
as Inline Assembly

SETMATCH 4
SETMASK 5
SETPRIV 4
WRIPR 4

divided into 11 groups, based on their opcodes. A software devel-
oper can configure a single Flexible Filter to filter any of the

above-mentioned group of instructions. Two or more groups of
instructions can be merged together and form a larger instruction
filtering group. As an example, consider the scenario where a secu-
rity developer defines secure versions of load and store instructions.
Then, she specifies a trusted portion of the code, where she replaces
all the load and store instructions with their secure counterparts.
To ensure that the trusted code does not execute an ordinary store
or load instruction at runtime, we can leverage FlexFilt. We group
all the LOAD and STORE instructions together (11 instructions with
the opcode = 0-00011) and configure one Flexible Filter to
prevent the execution of all the instructions in this group.

B FLEXFILT’S CONFIGURATION OVERHEAD
As discussed in Section 7.3, we devised a microbenchmark to mea-
sure FlexFilt’s configuration overhead. Table 7 shows the average
number of cycles to configure a Flexible Filter and an instruc-
tion domain. As discussed in Section 5.3, we provide a software API
to configure FlexFilt. The software API creates a wrapper function
around the custom instructions to facilitate their use. As expected,
using the software API is more costly compared to leveraging the
custom instructions as inline assembly. For example, leveraging
config_filter function to configure the Flexible Filters takes
46 cycles, on average, while using its corresponding custom instruc-
tions (SETMATCH, SETMASK, and SETPRIV) as inline assembly takes
less than 15 cycles.

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Instruction Filtering in Processors
	2.2 Shortcomings of Existing Approaches for Instruction Filtering
	2.3 Watchpoints and Hardware Monitors
	2.4 Hardware-Assisted Instruction Stream Customization

	3 Background
	4 Threat Model
	5 Design
	5.1 Hardware Design
	5.2 OS support
	5.3 Software Support

	6 Case Study
	6.1 JIT compilation
	6.2 V8 JIT Compilation Experiment

	7 Evaluation
	7.1 Implementation and Evaluation Framework
	7.2 Functional Verification
	7.3 Performance Evaluation
	7.4 FPGA Resource Utilization
	7.5 Comparison with a Hardware Monitor

	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Flexible Filtering Capability
	B FlexFilt's Configuration Overhead

