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Abstract—Android’s security model severely limits the ca-
pabilities of anti-malware software. Unlike commodity anti-
malware solutions on desktop systems, their Android coun-
terparts run as sandboxed applications without root priv-
ileges and are limited by Android’s permission system.
As such, PHAs on Android are usually willingly installed
by victims, as they come disguised as useful applications
with hidden malicious functionality, and are encountered on
mobile app stores as suggestions based on the apps that a
user previously installed. Users with similar interests and app
installation history are likely to be exposed and to decide to
install the same PHA. This observation gives us the oppor-
tunity to develop predictive approaches that can warn the
user about which PHAs they will encounter and potentially
be tempted to install in the near future. These approaches
could then be used to complement commodity anti-malware
solutions, which are focused on post-fact detection, closing
the window of opportunity that existing solutions suffer from.
In this paper we develop ANDRUSPEX, a system based on
graph representation learning, allowing us to learn latent
relationships between user devices and PHAs and leverage
them for prediction. We test ANDRUSPEX on a real world
dataset of PHA installations collected by a security company,
and show that our approach achieves very high prediction
results (up to 0.994 TPR at 0.0001 FPR), while at the same
time outperforming alternative baseline methods. We also
demonstrate that ANDRUSPEX is robust and its runtime
performance is acceptable for a real world deployment.

1. Introduction

While becoming the most popular mobile OS in the
world, Android has also attracted significant interest by
malicious parties, who started developing apps with mali-
cious purposes targeting this platform [2], [40], [70], [86].
Millions of these malicious Android apps are observed
every year [2], carrying out various types of harmful
activity including stealing private information from the
victim devices [83], sending premium SMS messages,
performing click fraud, and encrypting the victim’s data in
exchange for a ransom [3], [47]. Similar to what happens
for desktop computers, not all malicious Android applica-
tions come with clearly harmful content, but some present
unwanted components that are often an annoyance to the
user (e.g., adware [22], [31], [35], [75]) or without user
consent (e.g., click fraud [16]). In this paper, we adopt
the terminology used by Google and refer to these poten-
tially unwanted Android apps as potentially harmful apps

(PHAs) [25]. Unlike traditional desktop malware, which is
often installed by automatically exploiting vulnerabilities
in the victim’s Web browser and carrying out drive-by
download attacks [57], Android PHAs tend to be manually
installed by victims, who willingly choose to install apps
that promise useful functionalities but come together with
harmful code or advertising SDKs that hide malicious
functionalities [70], [79], [86]. In fact, the preliminary
analysis that we performed ahead of this study on a real
world dataset of apps installed by millions of real users
showed that 93.1% of PHAs are manually installed via
either the Google play store or other well known side-
loading apps like com.sec.android.easyMover
and com.huawei.appmarket.

To mitigate the threat of PHAs on Android, the se-
curity community has followed two directions. The first
one is to analyze Android apps to identify malicious
behavior [1], [4], [26], [55], [13], [45], [80], [82]. In
the real world, this analysis usually takes place when
apps are submitted to an Android marketplace. For ex-
ample, Google uses a vetting system known as Android
Bouncer [52]. While quite effective in detecting malicious
Android apps, these systems suffer from the limitation
that the Android ecosystem is quite fragmented, and users
install apps from a variety of sources, including alternative
marketplaces that do not employ strict enough security
measures [2], [77]. To complement market-level detection,
a plethora of commercial anti-malware software products
are available to users. Unfortunately, the Android security
model severely limits their capabilities [21]. Unlike tra-
ditional desktop anti-malware software, mobile solutions
run as sandboxed apps without root privileges [21] and
cannot proactively block malicious downloads or even
automatically remove a PHA once they find it; instead,
they periodically scan the mobile device for suspicious
apps and simply warn the user about newly discovered
threats, prompting them to manually remove the detected
PHAs. This is far from ideal because detection happens
after the PHAs have been installed, leaving a window of
vulnerability during which attackers can cause harm to the
victims and their devices undetected.

In this paper, we propose to mitigate the aforemen-
tioned issues by complementing existing on-device anti-
malware solutions with the capability of predicting future
PHA installations on the device. Our intuition is that
since the installation of a PHA on Android is usually
a consequence of a user’s own rational choices, the in-
stallation of a certain PHA on a user’s device can be
predicted by observing the apps that the user has installed



in the past, together with which PHAs “similar” users
have installed. For example, users with similar interests
(e.g., gaming) might be active on the same third party
marketplaces and receive suggestions to install similar
PHAs (e.g., disguised as free versions of popular games).
If we were able to predict which PHA a user will attempt
to install in the near future, we could display a warning to
them ahead of time and potentially convince them not to
install that app, closing the window of vulnerability be-
tween installation and detection introduced by traditional
Android anti-malware software.

To achieve an effective prediction of which PHAs will
be installed on mobile devices in the future, we develop
a system called ANDRUSPEX. Our approach is based on
graph representation learning [27]. This technique allows
us to automatically discover important features in raw
data, without the need for feature engineering. ANDRUS-
PEX first builds a graph of PHA installation events on a
global scale, in which edges represent which devices in-
stalled which PHAs. It then applies representation learning
to learn the low dimensional vertex representation of the
PHA installation graph at time t. Finally, ANDRUSPEX
predicts new links that will be formed between devices
and PHAs that at time t + δ based on their respective
properties and the currently observed links at time t. In
production, ANDRUSPEX would then warn the user about
suspicious applications that they will encounter and likely
be interested in installing in the near future (e.g., on a
third party Android marketplace), complementing current
on device Android anti-malware solutions that can only
act after the fact.
Contributions. Our contributions are summarized as fol-
lows;

• We present ANDRUSPEX, a system based on
graph representation learning which allows us to
predict which PHAs a user might be tempted to
install on an Android device ahead of time. To
the best of our knowledge, we are the first ones to
propose a predictive system in the area of Android
malware mitigation.

• We test ANDRUSPEX on a dataset of tens of
millions of PHA installations collected from real
devices that installed the Android anti-malware
program of a major security company. We show
that ANDRUSPEX can achieve very good per-
formance prediction (up to 0.994 TPR at 0.0001
FPR), significantly outperforming simpler baseline
methods.

• We also show that ANDRUSPEX could be effec-
tively used in the wild since it has both acceptable
performance and it does not significantly reduce its
detection performance when the system needs to
be retrained.

2. Motivation

The main motivation behind our approach is that,
unlike desktop malware, PHAs on Android are usually
willingly installed by less attentive users [23]. To confirm
this motivation, we performed a preliminary analysis of
the PHA installation events reported by 2.4M devices that
installed a commercial mobile security product during
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Figure 1: PHA installation over time for a device d1.
The goal of our approach is to correctly predict that d1

will install m3 in the future and close the window of
vulnerability.

March 2019 (see Section 4 for more details about the
dataset). When a PHA is detected, the security product
records its installer package names and how it was in-
stalled on the device (i.e., pre-installed or user-installed).
Matching this information with the official package names
of Android market apps we find that 93.1% of the PHAs
identified on those devices were manually installed by
users through Google Play or alternative marketplaces.
This is confirmed by a recent work by Kotzias et al. [36],
which showed that the Google Play market is responsible
for 87% of all PHA installations and for 67% of unwanted
app installations. Since the Google Play market is the
official market of Android apps, end users may trust apps
distributed from Google Play and willingly install them.
In short, our preliminary analysis, combined with the fact
that anti-malware systems on Android are severely limited
by the platform’s security model, and cannot proactively
block known PHAs nor automatically remove them after
they are detected, shows that a predictive approach to PHA
mitigation, allowing the user to be warned ahead of time,
would be beneficial.

The main research challenge is how to do this effec-
tively. Looking at device activity in isolation does not
provide enough information to predict the upcoming PHA
installations for a given mobile device. For example, in
Figure 1 there is no easy way to predict that m3 will
be installed based on the past installation activity on d1.
One possible solution is to collect abundant additional
information about d1 (e.g., application categories, device
types, marketplace information, etc.) and leverage feature
engineering to create features for PHA installation events.
These features can then be used to train a machine learn-
ing model to predict future installations. However, such
process requires domain knowledge and is essentially a
manual endeavor that is time-consuming and problem-
dependent.

Another plausible solution is looking at the installation
behavior of multiple devices, treating a device’s historical
installation activities as its behavioral profile, and group-
ing devices with similar profiles together [84]. This way,
we can predict which PHA a given device’s owner will
install based upon the PHAs that have been installed by
those with similar profiles. For instance, as we can see in
Figure 2a (¶), d1, d3, and d4 share similar behavioral
profiles. Given how Android marketplaces work, it is
likely that m1 and m3 are apps that the owner of d3

is interested in, and they might even been suggested by
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Figure 2: Global view of PHA installation events (Figure 2a) and potential prediction clues captured by random walks
(Figure 2b) from this global graph.
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Figure 3: PHA installations follow a power law distribu-
tion (Figure 3a) and have implicit correlations (Figure 3b)
between PHA degrees and the average degrees of all
vertices reachable by 2 hops (i.e., by a path (mi,dz,mj),
blue) and 4 hops (i.e., by a path (mi,dz,mj ,dl,mh), or-
ange) using one day PHA installation data (see Section 4).

the marketplace itself. As such, it is more likely that d3

will install those PHAs in the future than a randomly
chosen PHA. It is however not trivial to group devices
with similar behavioral profiles. For example, we can use
the Jaccard similarity coefficient to calculate the similarity
between two devices, but this leads to a O(n2) time
complexity method [84] to generate pair wise similarity

for potentially millions of devices, which renders such
approach practically infeasible.

To mitigate the aforementioned limitations, we pro-
pose to approach the problem of predicting PHA instal-
lations in a principled way, by looking at the collective
PHA installation events from a global perspective instead
of focusing on a device level (see · in Figure 2a). As
it can be seen, this graph provides aggregated historical
information of how the PHAs have been installed by
mobile devices globally, and yields additional structural
information by representing the relations between devices
and PHAs as a bipartite graph. This graph enables us to
capture the collective behavior from all devices, and elicit
the similarities between the download activity of different
devices.

Leveraging this global installation graph for predic-
tion, however, presents two challenges. The first challenge
is the distribution of PHA installations among the devices.
We use data on the PHAs installed by real devices over a
period of one day (see Section 4) for illustration purposes.
As we can see in Figure 3a, the distribution of PHA
installations (i.e., vertex degrees from a graph perspec-
tive) follows a power law distribution. This indicates that
there are popular PHAs with a number of installations
that greatly exceed the average and that the majority of
the PHA population only appears in a small number of de-
vices. Preferential attachment [5], [50] has been proposed
as an effective mechanism to explain conjectured power
law degree distributions. We show in Section 5.2 that
such model is promising but insufficient to predict PHA
installation, which instead requires a model that considers
both popular and less popular PHAs at the same time.

The second challenge is modeling the implicit re-
lationships among PHAs with limited information. For
example, in the real world, a user may choose to install
m1 due to a deceitful full-screen ad displayed in m5,
and m3 could be willingly installed by a user on device
d4 because recommended by the same app store from
which m5 was initially installed. Inferring these relation-
ships from observing app installation is challenging. The
global installation graph as depicted in Figure 2a ¸ can
help identify these hidden relationships. In Figure 3b, we
show possible correlations between PHA degrees and the
average degrees of all vertices reachable by 2 hops (i.e.,
by a path (mi,dz,mj), blue) and 4 hops (i.e., by a path



(mi,dz,mj ,dl,mh), yellow). We can observe two inter-
esting aspects. The first aspect is that there is a negative
correlation in both cases. This indicates that PHAs with
larger installations (i.e., popular PHAs) are co-existing
with smaller ones (i.e., less popular PHAs). The second
aspect is that the correlation coefficient decreases with the
increasing number of hops. For example, the correlation
coefficient between PHA degrees and the average degrees
of 2-hop vertices is −0.28 while the correlation coefficient
of those 4 hops away is −0.11.

Core idea. To address both challenges, in this paper,
we put random walk [78], [51] and graph representa-
tion learning [6] in use. Graph representation learning
allows us to take both popular and unpopular PHAs into
account, while random walk enables us to harvest the
aforementioned explicit and implicit relationships among
PHAs for each device. Take Figure 2b (À) for instance,
if we want to predict the next PHA that d1 will in-
stall, we can take a random walk starting from d1 to
capture the aforementioned implicit relationship. Suppose
we obtain a random walk (d1,m5,d4,m3) as illustrated
in Figure 2b (À), offers us an indication that d1 may
potentially install the malicious app m3 in the near future.
Similarly, as we can see in Figure 2b (Á), a random walk
(d3,m5,d4,m3,d2,m2) may capture the higher proxim-
ity relationship between d3 and m2, and in turn, facilitate
the prediction. In Section 3 we show that leveraging graph
representation learning to extract useful information from
the random walks enables us to understand the explicit and
implicit dynamics between devices and PHAs without a
time-consuming feature engineering step, and allows us
to make accurate PHA installation predictions up to one
week ahead of the real installations.

Problem formulation. We formalize our PHA installa-
tion prediction problem as follows. Let D and M de-
note all unique devices and PHAs respectively, and E
denote all observed PHA installation events. We define
our global PHA installation graph as a bipartite graph
G[t0,tT ] = (V,E), where V = D ∪M denotes vertices
in the graph, each edge e = (di,mj, tk) ∈ E represents
a device di ∈ D installs a PHA mj ∈ M at a par-
ticular timestamp tk ≤ tT . Our goal is to learn lower
d-dimensional representations of V in G[t0,tT ], denoted
as ΦV ∈ R|V|×d, by taking global PHA installation
information into consideration. With the learned vertex
embeddings ΦV, ANDRUSPEX trains a prediction func-
tion f : G(t0,tT ] → E(tT ,tT+∆] that outputs a list of edges
(i.e., PHA installations) that are not present in G[t0,tT ],
but predicted to appear in the graph G(tT ,tT+∆] (see ¸ in
Figure 2a for illustration).

Note. In this paper, we do not aim to understand how
PHAs are distributed nor do we target to detect unknown
PHAs through graph analysis. We also do not investigate,
from a behavioral perspective, how PHAs operate and
propagate once installed in the devices. Rather, our main
goal is to predict the exact PHAs that are likely to be
installed by the end users in the near future given their
historical installation activities and the collective PHA
installation events on a global scale.
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Figure 4: System overview of ANDRUSPEX

3. Methodology

3.1. System Overview

The system overview of ANDRUSPEX is depicted in
Figure 4. ANDRUSPEX’s frontend component is installed
on mobile devices, alongside an existing mobile malware
detection product. Every time the malware detection prod-
uct detects that a PHA has been installed, the mobile
device sends data to our backend infrastructure (¶). AN-
DRUSPEX’s backend component uses this data to build
a global PHA installation graph (·). It then leverages
graph representation learning (Section 3.3) to capture the
collective behavior from all devices and understand the
implicit relationships among the PHAs in a latent space
(¸). ANDRUSPEX periodically trains a prediction engine
based upon these historical installations, and predicts the
impending PHA installations on the mobile devices that
installed the frontend component in the future (¹). When
ANDRUSPEX predicts that a mobile device’s user will
attempt to install a certain PHA in the near future (for
example because this PHA will appear as a suggestion
on a third party market) it sends an alert to the mobile
device, so that the device’s owner can be warned about
the threat and reach an informed decision to not install a
PHA which might weaken their device security.

3.2. ANDRUSPEX Workflow

Following the system overview in Figure 4, the work-
flow of ANDRUSPEX at the backend is depicted in Fig-
ure 5. Its operation consists of three steps: ¶ reconstruc-
tion of the global PHA installation graph, · graph repre-
sentation learning, and ¸ PHA installation prediction.
Step 1: Reconstruction of the Global PHA installation
graph (¶ in Figure 5). The goal of this step is building
an installation graph that encapsulates a comprehensive
view of how PHAs are installed by mobile devices on
a global scale. To build the graph, ANDRUSPEX takes
as input the streams of detected PHA installation events
generated by the mobile devices. These events are treated
as tuples, in the format of (di,mj , tk). Let A denote
the symmetric adjacency matrix of G. Adi,mj = 1 if
di and mj are linked in the same installation event,
otherwise Adi,mj = 0. The output of this step is a global
PHA installation graph G represented by the adjacency
matrix A|D|×|M|. This matrix will be used by the graph
representation learning module in the next step.
Step 2: Graph representation learning (· in Figure 5).
The core of ANDRUSPEX is learning the low dimensional
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Figure 5: ANDRUSPEX’s architecture. ANDRUSPEX collects PHA installation events from the mobile devices that
have installed a mobile security product. These events are used to build a global PHA installation graph. ANDRUSPEX
then learns the low dimensional vertex representations and uses them to build and validate ANDRUSPEX’s predictive
model.

vertex representations (i.e., vertex embeddings) of the
PHA installation graph. Essentially, ANDRUSPEX takes
a number of truncated random walks from each vertex
di ∈ D in the graph G. These random walks effec-
tively capture the high-order indirect connections between
mobile devices and PHAs. In this way, ANDRUSPEX
explicitly builds a high-order proximity transition matrix
between D and M. It then factorizes this matrix together
with a decay factor to account for the strength of the
implicit connections (see technical details in Section 3.3).
The output of this step is the low dimensional vertex
representations (i.e., ΦV) that will be used to model PHA
installation events in the latent space.
Step 3: PHA installation prediction (¸ in Figure 5).
Taking the vertex embeddings as the input, ANDRUSPEX
models the observed PHA installation events in the latent
space and trains a prediction model to predict future
installations. First, ANDRUSPEX models the observed
PHA installations by concatenating two low dimensional
vertex embeddings in the latent space (see Section 6 for
the influence of alternative edge representations). That is,
φe = concat(φdi

, φmj
), where e ∈ E. Effectively, each

PHA installation event is represented by a 2d-dimensional
vector. ANDRUSPEX then formulates the prediction task
as a binary prediction problem for edges (i.e., PHA in-
stallations) in the graph where two classes are considered:
positive or presence of edges and negative or absence of
edges. ANDRUSPEX samples an equal number of non-
existing edges [54] from the observed PHA installation
edges (i.e., positive class) to form the negative class and
train the prediction model. The output of the PHA instal-
lation prediction is a list of edges (i.e., PHA installations)
that are not present in [t0, tT ], but predicted to appear in
the (tT , tT+∆]. These predictions can then be leveraged
to warn the user ahead of time about PHAs that they are
likely to encounter and might be enticed to install.
End-to-end solution. We envision ANDRUSPEX to be
deployed as an end-to-end solution to warn the end user
about PHAs that they will likely encounter in the future.
At the backend, ANDRUSPEX continuously collects and
monitors PHAs installed on all mobile devices that install
the security application. If an end user installs a known
PHA, the installation event would trigger the on-device
security engine to send the detection back to ANDRUS-
PEX. The system would then calculate the probability
of this end user to install a related PHA based on the
telemetry from other devices. If the probability is higher
than a threshold, ANDRUSPEX notifies the end user with

1st 1st

1st 1st 1st

1st

1st 1st

1st

d1

d2

d3

d4

d5

m1 m2 m3 m4 m5

1st 1st

1st 1st 1st

1st

1st 1st

1st

(a)

1st 3rd 2nd 3rd 1st

2nd 1st 1st 1st 2nd

2nd 3rd 2nd 3rd 1st

2nd 2nd 1st 2nd 1st

2nd 2nd 1st 3rd

d1

d2

d3

d4

d5

m1 m2 m3 m4 m5

(b)

Figure 6: Illustration of the l-order proximity matrix via
random walk. Figure 6a shows a 1-order matrix and
Figure 6b shows a 3-order proximity matrix for the PHA
installation graph shown in Figure 2a. We use grayscale to
illustrate the diminishing correlation among vertices (see
Figure 3b). A blank cell implies that l-order proximity is 0.
As it can be seen, the 3-order proximity matrix (Figure 6b)
offers more information comparing to 1-order proximity
matrix (Figure 6a).

a summary of why the system reached such a decision. For
example, ANDRUSPEX could highlight the key aspects of
a PHA distribution campaign as shown in the case studies
in Section 6. This summary would be displayed to the end
user when they use the security app as in-app messages.
The rationale of using in-app messages is to explain to the
end user the potential risk associated with the known on-
device PHAs. This way, the end user would benefit from
an informative explanation rather than a short notification
via the status bar. We are planning to collaborate with
usable security experts in the future to design an effective
in-app warning approach(e.g., modularity based approach
[46].

3.3. Graph Representation Learning

The key challenge of ANDRUSPEX is building a
model that learns both explicit relations between devices
and PHAs, and implicit relationships among PHAs from
the global PHA installation graph, and predict the fu-
ture installations. To address this challenge, we use a
graph representation learning model [81]. Representation
learning [6], [81] is able to extract useful information to
build prediction models without feature engineering. This
characteristic of representation learning is particularly de-
sirable since it enables us to understand the explicit and



implicit dynamics between devices and PHAs without a
time-consuming feature engineering step.

Random walk has been proven to provide insightful
transitive associations between two vertices in a graph,
and has been successfully applied in numerous settings,
e.g., community detection [56], [63], personalized PageR-
ank [53], and Sybil account detection [18], [10], [68]. The
core of ANDRUSPEX is building a high-order proximity
matrix by conducting truncated random walks with a
decay factor on the global PHA installation graph. This
proximity matrix captures both direct and indirect rela-
tionships between devices and PHAs, and, at the same
time, discriminates the strength between different orders
of proximity (see Section 2) due to the decay factor.
The low dimensional representations are later learned by
factorizing this high-order proximity matrix using random
walk approximation techniques. We provide the following
definition to describe the technical details of ANDRUS-
PEX in formal terms.
l-order proximity. Let RWd0 = (d0,m1

i ,d
1
j ,m

2
z,

...,dl−1
h ,ml

k, ...) denote a random walk starting from a
device vertex d0 on a PHA installation graph G =
(D∪M,E), where superscript denotes the rank of vertex
occurrence in the random walk. l-order proximity between
d0 ∈ D and ml

k ∈M is defined by a decay function C
(see Eq 1) of the rank of occurrence (i.e., C(l)) and the
transition probability between them in the random walk.
If there is no walkable path from d to ml

k , the l-order
proximity is 0.
Example. Given a random walk RWd0

1
=

(d0
1,m

1
5,d

1
4,m

2
3) as illustrated in À Figure 2b, m3

is at 2-order proximity of d1. Similarly, given a random
walk RWd0

3
= (d0

3,m
1
5,d

1
4,m

2
3,d

3
2,m

3
2) as illustrated in

Á Figure 2b, m2 is at 3-order proximity of d3.
Figure 6 shows two l-order proximity matrices induced

by random walks. Figure 6a shows an example of 1-order
proximity matrix and Figure 6b shows a 3-order proximity
matrix induced by random walks on the PHA installation
graph (see Figure 2a). We can see that, with the increasing
value of l, l-order proximity captures more high-order
relationship information between devices and PHAs.

Given the l-order proximity matrix, formally, the ob-
jective function for learning low dimensional representa-
tions (i.e., Φ) is defined in Eq 1

L =
∑

1≤l≤K
di,(mj ,mj′ )

C(l)E
mj∼P ldi
mj′∼PN

[
F(φTdi

φm
j′
,φTdi

φmj )
]

+λΦ‖Φ‖22 (1)

where C(l) = 1/l denotes the decay function, P ldi(·)
denotes the l-order probability distribution of a PHA mj

sampled from a random walk RWdi
(see Eq 2), PN

denotes a uniform distribution of all items from which
a PHA i′ was drawn, and F(φTdiφmj′ , φ

T
di
φmj ) is a rank-

ing objective function discriminating the observed PHAs
installations (i.e., φTdiφmj ) from unobserved PHA instal-
lations (i.e., φTdiφmj′ ) in the low dimensional embedding
space (see Eq 3). Eq 2 is formalized as:

Dataset Date(s) # Dev. # PHA V E
DS1 Mar 1 2019 644,823 63,650 708,473 844,531
DS2 Mar 1-14 2019 1,272,505 99,464 1,371,969 1,675,952
DS3 Mar 1-31 2019 1,864,021 131,903 1,995,924 2,509,744

TABLE 1: Summary of experimental datasets.

P lvx(vy) =


Avx,vydeg(vy)∑

v
y′

Avx,vy′
deg(vy′ )

l = 1, vx ∈ D

Avy,vxdeg(vy)∑
v
y′

Av
y′ ,vx

deg(vy′ )
l = 1, vx ∈M

p1
vx(vα)pl−1

vα (vβ)p1
vβ

(vy) otherwise
(2)

approximates the probability of sampling a l-th neighbor
vy for vx given a random walk (vx, vα, ..., vβ , vy), where
vα denotes the vertex after visiting vx and vβ denotes
the vertex before vy. In this way, it simplifies the cumu-
lative process of counting all intermediate vertices from
all possible random walks from vx to vy in a recursive
manner. Note that if vx ∈ D, then vα ∈M. Otherwise, if
vx ∈M, then vα ∈ D. For example, given a random walk
RWd0

1
= (d0

1,m
1
5,d

1
4,m

2
3) as illustrated in À Figure 2b,

vx is d0
1, vα is m5, vβ is d4 and vy is m2

3).
We define the ranking objective function F(·) as follows:

F(φTdiφmj′ , φ
T
diφmj ) = 1(δ> ε

k )log(δ) (3)

where δ = φTdiφmj′−φ
T
di
φmj and 1ζ : ζ → {0, 1} denotes

an indicator function for condition ζ, where ζ = δ > ε
k .

we employ a random walk approximation technique [15]
to approximate the matrix factorization results. Eq 1 is
accordingly minimized using asynchronous stochastic gra-
dient descent [61] in the paper.

4. Dataset

To evaluate ANDRUSPEX’s performance, we focus on
Android PHA detection data collected by a major security
company’s mobile security product. This company offers
end users to explicitly opt in to its data sharing program
during the setup process when the app is run for the
first time to help improving its detection capabilities. The
end users are shown a dialog about the purpose of the
telemetry collection in the license agreement, and how the
global privacy policy of the security company safeguards
the data. The license agreement specifies that the telemetry
is “processed for the purposes of delivering the product by
alerting the User to potentially malicious applications as
well as improving the app security feature” and is “kept
in an encrypted pseudonymized form.” To preserve the
anonymity of users and their devices, client identifiers are
anonymized and it is not possible to link the collected data
back to the users and the mobile devices that originated it.
The mobile security app only collects detection metadata
(e.g., anonymized device identifier, timestamp, file SHA2,
etc.), and it cannot inspect network traffic data, hence the
company does not collect any actual communication/user
data, or other types of PII. The telemetry used in this paper
does not contains any personally identifiable information
(PII). The product runs periodically scanning the apps that
the user installed and records meta information associated
with PHAs that are detected based on pre-defined signa-
tures or whose behavior violates the pre-defined policies.



From this dataset, we extract the following information:
anonymized device identifier, timestamp, file SHA2, PHA
package name, and other detection information (e.g., in-
stallation types, installer packages).

We collect 31 days of data over March 2019 to thor-
oughly investigate the prediction effectiveness, stability,
and resilience of a real world deployment of ANDRUS-
PEX. On average, we collect 2.4 million raw detection
events from 1.8 million end users (the majority of the
users run Android 6.0 Marshmallow or above) located in
over 200 countries and territories per day. From these 31
days of raw data, we build three datasets summarized in
Table 1. DS1 is a single day data using raw data collected
on March 1 2019. DS2 and DS3 are one week data
(between March 1 and March 7 2019) and one month
data (between March 1 and March 31 2019). We use all
three datasets to compare ANDRUSPEX’s performance
to those of the baseline methods (see Section 5.2). We
later focus on DS2 and DS3 and use them to evaluate
ANDRUSPEX’s prediction and runtime performance given
different real world scenarios.
Reproducibility. Note that ANDRUSPEX can operate
on fully anonymized data (e.g., device identifiers and
PHA packages names can be replaced by other unique
identification schemes) to protect the end users’ privacy.
It is straightforward for the researchers to reproduce
ANDRUSPEX’s results by generating bipartite networks
matching the characteristics stated in Table 1 and Fig-
ure 3a.
Data Limitations. It is important to note that the PHA
detection data is collected passively. That is, a PHA
detection event is recorded when the product detects a
potentially harmful application that matches a pre-defined
signature including its behavior, communications, and pol-
icy violations. Any events pre-emptively blocked by other
security products (e.g., application store link blacklists,
cloud-based app reputation system) cannot be observed.
Additionally, any PHAs that did not match the predefined
signatures are also not observed. The prediction model
used in this paper can, therefore, predict the PHA observed
by the mobile security product from this security company.
We discuss more details on the limitations underlying the
data used by ANDRUSPEX in Section 7.

5. Evaluation

In this section, we describe the experiments used to
evaluate ANDRUSPEX. We designed several experiments
that allow us to answer the following research questions:
RQ1: What is ANDRUSPEX’s performance in predict-
ing the upcoming PHA installation events and how does
its performance compare to baseline and state-of-the-art
methods?
RQ2: Can we interpret and explain ANDRUSPEX’s pre-
diction performance?
RQ3: How does ANDRUSPEX cope with data latency
issues that arise in real world deployment? In other words,
does ANDRUSPEX still work if mobile devices report
data about the infections that they encountered with a
significant delay?
RQ4: What is ANDRUSPEX’s prediction performance
when we need to retrain the model periodically?

RQ5: Is ANDRUSPEX’s runtime performance acceptable
for a real world deployment?

5.1. Experimental Setup

Implementation. We implement ANDRUSPEX’s graph
representation learning component in C++ using the
OpenMP [17] library, the PHA graph reconstruction com-
ponent using Python 3.7.2 and the NetworkX library,
and employ the Random Forest [12] implementation from
Sklearn as the prediction engine. In terms of baseline im-
plementations (see Section 5.2), preferential attachment is
implemented in Python 3.7.2 and the rest are implemented
in C++. All experiments are carried out on a server with
dual 2.67GHz Xeon CPU X5650 and 256GB of memory.
Training/test data split. For DS1, all methods are trained
on the first 18 hours data (00:00 - 18:00) and tested on
the following 6 hours data (18:00 - 24:00). For DS2, all
methods are trained on the first 6 days of data (March
1 - March 6 2019) and tested on the 7th day of data
(i.e., March 7 2019). For DS3, all methods are trained
on the first 3 weeks of data (March 1 - March 24 2019)
and tested on the 4th week of data (i.e., March 25 - 31
2019). In this setup, we deliberately eliminate the temporal
bias that may be introduced using traditional training/test
splits [54]. However, different training and test ratios are
therefore introduced due to the fact that PHA installations
are not evenly distributed. Details of the training and test
data are summarized in Table 2.
Prediction formulation. We formulate our prediction task
as a binary prediction problem for edges in the network
where two classes are considered: positive (i.e., observed
edges) and negative (i.e., absence of edges). For both
training and test data, we sample an equal number of non-
existing edges [54] from the observed PHA installation
edges to form the negative class. In this way, we are able
to generalize ANDRUSPEX’s performance by evaluating
its performance on a set of data not used for training,
which is assumed to approximate the typical unseen data
that the model will encounter in the wild, reducing the
chance of overfitting.
Choosing the prediction model. A plethora of prediction
models for supervised learning exist. Usually, some work
better than others for a specific dataset or domain. In this
paper, we experimented with several different prediction
models, and select Random Forest [12] as the prediction
engine due to its scalability, bias-variance trade-off, and
overall good performance given all methods. We use 10-
fold cross validation for all methods. We also provide a
detailed discussion in Section 7 and examine how different
models may impact the prediction results.
Hyperparameters. We use grid search on DS1 to identify
the best parameters. Experimentally, we set the embedding
size d to 128, the high-order proximity threshold l to 4
(effectively, the random walk was truncated at length 6),
and negative sampling times [15] to 50. For all baselines,
we use the best parameters stated in the respective papers.
We also set the number of trees in the random forest
algorithm to 20. Note that hyperparameters optimization
remains an active research area in the machine learning
community. We refer the reader to [7] for an overview.
Evaluation metrics. We use the true positive rate
(TPR) [58], the false positive rate (FPR) [58], the area



Training Test
Dataset Period Ratio # Events # Dev # Apps Period Ratio # Events # Devs # Apps
DS1 00:00 - 18:00 (Mar. 1) 0.73 844,531 644,823 63,650 18:00 - 24:00 (Mar. 1) 0.27 317,474 189,327 26,083
DS2 March 1 - 6 0.86 2,050,865 1,272,505 99,464 March 7 0.14 334,383 237,594 32,961
DS3 March 1 - 24 0.84 3,194,838 1,864,021 131,903 March 25 - 31 0.16 599,458 404,417 47,099

TABLE 2: Training/test data split. We deliberately eliminate the temporal bias [54] that may be introduced using
traditional training/test split.

under the ROC curve (AUC) score [28], and the average
precision (AP) [34], [44] to extensively evaluate AN-
DRUSPEX’s performance. TP, TN, FP, and FN in the rest
of the section denote the number of true positives, true
negatives, false positives, and false negatives, respectively.
Thresholds. Note that predicting the exact PHA installa-
tions for end users is a challenging task in the real world.
A higher false positive rate leads to worse user experience
hence higher customer churn rate. For example, a 0.01
FPR for 317,474 events (see DS1, Table 2) may have
an undesirable impact on approximately 3,174 end users
in a six hour window which is not acceptable in a real
world deployment. We therefore fix the FPR at three
scales, respectively 0.0001, 0.001 and 0.005 from real
world usability perspective.

5.2. Comparison Study (RQ1)

Experimental setup. We use all three datasets (see Ta-
ble 1) in this section to comparatively study prediction per-
formance of baseline methods and ANDRUSPEX. Train-
ing and test data are split following the setup specified in
Section 5.1.
Baselines. In this section we aim at understanding whether
ANDRUSPEX is required for the task of predicting PHA
installations, or whether existing baseline methods are
sufficient for the task at hand. For comparison purposes,
we implemented the following four baseline methods.
Preferential Attachment. Preferential attachment [5], [50]
is a popular network growth model, in which vertices
accumulate new edges in proportion to the number of
the edges they already have. The rationale of using pref-
erential attachment as a baseline is to verify if popular
PHAs dominate the future PHA installations. In this paper,
we use PA score(vi, vj) =

|N(vi)|×|N(vj)|
2×|E| to compute

the normalized preferential attachment score of all vertex
pairs.
First-order and Second-order proximity. We use
LINE [74] as the first-order and second-order proximity
baseline. This method directly generates vertex
embeddings by taking explicit relationships (first-
order proximity) and indirect relationships (second-order
proximity) into consideration. It is able to partially
preserve the local and global structure of the graph by
conducting edge sampling. The rationale of using LINE
is to verify if a limited number of proximity can already
offer good prediction results.
High-order proximity via matrix factorization. Chen et
al. [14] provided a collaborative similarity embedding
(CSE) framework to model high-order proximity by cap-
turing the similarities of two vertex sets respectively (i.e.,
device-device and PHA-PHA similarities in this paper),
and integrate them into a single objective function through
shared embedding vectors. The rationale of using CSE as
a baseline is to understand if high-order proximity matrix

factorization itself can offer superior prediction results for
the real world deployment.

Excluded methods. We also experimented with
BiNE [24], an embedding model specialized for bipartite
graphs and Jodie [37], a coupled recurrent neural network
based embedding model. However, BiNE does not finish
the computation for DS1 after 72 hours while Jodie
failed to train due to the out-of-memory issue in a TITAN
V 12GB graphics card. Therefore, we exclude them from
the comparison study for practicality reasons.

Experimental Results. Table 3 shows the prediction
performance of ANDRUSPEX compared to the baseline
systems. As it can be seen, ANDRUSPEX outperforms
the baseline methods in all three datasets regarding all
evaluation metrics. We can also note that the high-
order proximity method (i.e., CSE) performs better than
first/second-order proximity methods, and first/second-
order proximity methods perform better than preferential
attachment. These results demonstrate that higher prox-
imity between devices and PHAs is crucial to capture the
implicit relations and improve prediction results. However,
the high-order proximity baseline is less effective than
ANDRUSPEX since it does not consider the diminishing
coefficient with the increasing order (see Section 3.3).
In general, ANDRUSPEX reports a TPR above 0.991
for a FPR of 0.0001 in all three datasets (e.g., given
DS1 and 0.001 FPR, ANDRUSPEX is able to correctly
predict 314,616 out 317,474 PHA installation events with
2,857 FNs), while the high-order proximity baseline only
reaches a TPR of 0.893 in the best case (i.e., given
DS2) for a FPR of 0.0001, representing a substantial 10%
TPR difference comparing to ANDRUSPEX (i.e., high-
order proximity leads to 283,504 TPs with 35,779 FNs
which represent 10 times more FNs and 31,112 less TPs
comparing to ANDRUSPEX). For different FPR values
(0.0001 - 0.005), ANDRUSPEX consistently reports TPRs
ranging from 0.991 to 0.998 for all three datasets. The
high-order proximity baseline gets close to ANDRUS-
PEX’s prediction performance given a FPR of 0.005. Yet,
this represents a 50 times increase in FPR comparing
to the optimal operational FPR of 0.0001. In addition,
we can observe that the preferential attachment baseline
performs the worst. This supports our hypothesis that
popular PHAs are not the dominant factor when predicting
future installations, but rather that rare PHAs also need to
be factored in for effective predictions. Figure 7 shows the
ROC curve of ANDRUSPEX compared to the baseline
systems. As it can be seen, ANDRUSPEX outperforms
the baseline methods in all three datasets, which further
confirms ANDRUSPEX’s operational capability in the real
world deployment (see Section 5.6 for ANDRUSPEX’s
runtime performance).



DS1 DS2 DS3

Method
TPR

@
0.0001

TPR
@

0.001

TPR
@

0.005

ROC
AUC AP

TPR
@

0.0001

TPR
@

0.001

TPR
@

0.005

ROC
AUC AP

TPR
@

0.0001

TPR
@

0.001

TPR
@

0.005

ROC
AUC AP

Pref. Attach. 0.072 0.268 0.512 0.977 0.974 0.099 0.310 0.593 0.980 0.978 0.094 0.338 0.584 0.981 0.980
1st-order prox. 0.782 0.898 0.936 0.983 0.986 0.837 0.927 0.950 0.982 0.986 0.844 0.927 0.965 0.990 0.990
2nd-order prox. 0.863 0.922 0.959 0.992 0.993 0.867 0.918 0.953 0.993 0.993 0.868 0.941 0.966 0.993 0.994
high-order prox. 0.873 0.969 0.985 0.997 0.997 0.893 0.957 0.977 0.996 0.996 0.879 0.951 0.978 0.995 0.996

ANDRUSPEX 0.991 0.996 0.998 0.999 0.999 0.994 0.997 0.998 0.999 0.999 0.992 0.996 0.997 0.999 0.999

TABLE 3: Prediction performance comparison study: ANDRUSPEX vs. baseline approaches.

ANDRUSPEX

2019-03-01 -- 2019–03-01

(a) DS1

ANDRUSPEX

2019-03-01 -- 2019–03-07

(b) DS2

ANDRUSPEX

2019-03-01 -- 2019–03-31

(c) DS3

Figure 7: ROC curves comparison: ANDRUSPEX vs. baseline approaches.

5.3. Interpretation of ANDRUSPEX Prediction
Performance (RQ2)

In this section, we aim at understanding why AN-
DRUSPEX performs better than the baseline methods (e.g.,
ruling out the potential overfitting, etc). To this end, we
leverage LargeVis [73], an efficient high-dimensional data
visualization system, to project and visualize both positive
(i.e., observed) and negative (i.e., non-existent) PHA
installation events (i.e., concatenated 2d-dimensional vec-
tors) into a 2-dimensional space. Such visualization can
facilitate the straightforward description, exploration, and
sense-making of the original data projected in the latent
space by ANDRUSPEX (see Section 3). Our hypothesis
is that, since we formulate the prediction task as a binary
classification problem (i.e., a PHA installation will be
observed or not), ANDRUSPEX’s low dimensional repre-
sentations should be able to separate these two categories
of events (i.e., positive events should be apart from
negative events) in the latent space.

The LargeVis visualization results from all methods
(see Section 5.2) are shown in Figure 8. For illustra-
tion purposes, we show the baseline results using DS1

and ANDRUSPEX’s results using all three datasets. Note
that preferential attachment does not produce embeddings
hence is excluded from the figure. As we can see, AN-
DRUSPEX can well separate positive (in yellow) from
negative (in blue) PHA installation events (see Figure 8d,
Figure 8e and Figure 8f) in the latent space without
relying upon the prediction models (see Section 7). At
the same time, the high-order proximity method (Fig-
ure 8c) can separate the two categories of events better
than first/second-order proximity methods do (Figure 8a
and 8b). This is consistent with the results obtained in
the comparison study (see Section 5.2). Our visualization
results demonstrate that ANDRUSPEX can offer a better
PHA installation event representation in the latent space,
providing us with a good explanation of why ANDRUS-
PEX performs better than the baseline methods as shown

Dataset Training
ratio

Data latency
ratio

Test
ratio

TPR
@

0.0001

TPR
@

0.001

TPR
@

0.005

ROC
AUC AP

DS2

0.86 0.00 0.14 0.994 0.997 0.998 0.9994 0.9995
0.79 0.07 0.14 0.994 0.997 0.998 0.9994 0.9995
0.70 0.16 0.14 0.993 0.997 0.998 0.9994 0.9995
0.61 0.25 0.14 0.991 0.994 0.997 0.996 0.995

DS3

0.839 0.00 0.161 0.992 0.995 0.997 0.9994 0.9995
0.769 0.07 0.161 0.992 0.995 0.997 0.9992 0.9994
0.679 0.16 0.161 0.991 0.994 0.995 0.9992 0.994
0.589 0.25 0.161 0.990 0.992 0.994 0.996 0.997

TABLE 4: ANDRUSPEX’s resilience to data latency.

in Section 5.2. In Section 7 we also show that the installa-
tion event representations obtained by ANDRUSPEX work
well with different prediction models.

5.4. Resilience to Data Latency (RQ3)

The mobile security product from the major security
company performs its detection periodically, and usually
sends detection data to the backend when the devices are
connected to a wireless network in order to minimize mo-
bile data usage. From the data perspective, we observe the
phenomenon that a device’s detection data is less frequent
and may be delayed for several hours or a couple of days.
In light of this constraint, we expect ANDRUSPEX to cope
with this limitation and remain operational. In this section,
we look at how ANDRUSPEX performs when facing such
data latency issue in a real world deployment.
Experimental setup. We use DS2 and DS3 (see Ta-
ble 1) to study ANDRUSPEX’s prediction performance
when dealing with the real world data latency issue. We
randomly remove 7%, 16% and 25% PHA installation
events from the training data to simulate the data latency.
Training, data latency and test ratio of these two datasets
are summarized in Table 4. We use the same parameters
and the evaluation metrics laid out in Section 5.1. Note
that we fix the test data ratio so that the prediction results
with the simulated data latency are comparable to those
without (see Table 3).
Experimental results. Table 4 summarizes the results
obtained using the aforementioned experimental setup.
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Figure 8: LargeVis projections of positive (i.e., observed) and negative (i.e., non-existent) PHA installation events
(i.e., concatenated 2d-dimensional vectors) from all methods (see Section 5.2). The visualization results demonstrate
that ANDRUSPEX can offer a good PHA installation event representation in the latent space. Note that preferential
attachment does not produce embeddings hence is excluded from the visualization. This figure is better viewed in color.

For clarification purposes, we also include the prediction
results from Table 4 in Section 5.2. Overall, ANDRUSPEX
shows strong resilience to data latency. For example, AN-
DRUSPEX’s prediction performance is not affected by any
of the evaluation metrics when data latency ratio is 7%.
When data latency ratio increases to 16%, ANDRUSPEX’s
prediction drops by 0.001 - 0.002 TPR given various FPR
thresholds. Even when the data latency ratio reaches 25%,
ANDRUSPEX can still offer high accuracy with a small
decrease of AUC and AP. For example, given 0.0001
FPR, ANDRUSPEX can reach 0.991 and 0.990 TPR in
predicting PHA installations respectively for DS2 and
DS3, dropping by 0.003 and 0.002 TPR respectively to
those from full training data. These results confirm that the
model can cope well with the data latency issue and pre-
dict PHA installations with high accuracy in a real world
deployment. In Section 7 we provide a detailed discussion
on how ANDRUSPEX’s resilience to data latency can deal
with the potential adversarial attacks [9].

5.5. Reliability over Time (RQ4)

In this section, we evaluate ANDRUSPEX’s prediction
accuracy when the system is deployed in the real world,
where periodical retraining is required. Our goal is to eval-
uate the reliability of the model’s prediction performance
over time.

median

interquantile
range

density plot
width=frequency

Figure 9: Violin plot [29] for ANDRUSPEX’s reliability
study using a 7-day rolling window over DS3. The white
dot in the middle is the median value, the thick black
bar in the centre represents the interquartile range and the
contour represents distribution shape of the data.

Experimental setup. We use DS3 (see Table 1) in this
section to study prediction performance of ANDRUSPEX
when periodical retraining is required. Training and test
data are split in a rolling one-week window following the
setup specified in Section 5.1. That is, we use the first 6
days in the window to form our training data and predict
the PHA installations on the 7th day. This setup reflects
the rapidly changing mobile threat landscape whereas new



Dataset
Graph

Construction
(seconds)

ANDRUSPEX
runtime

(seconds)

Pred. Eng.
training time

(seconds)
DS1 230.06 557.12 598.88
DS2 778.27 702.15 1,311.65
DS3 3,424.86 791.33 1,986.21

TABLE 5: ANDRUSPEX runtime performance

PHAs emerge daily. There are in total 24 evaluation points
in this setup. We reuse the same parameters and the
evaluation metrics as stated in Section 5.1.
Experimental results. We use violin plots to visualize the
distribution of TPRs and its probability density per FPR
threshold. Figure 9 shows the results obtained using the
aforementioned experimental setup. In this setup where re-
training is required frequently, ANDRUSPEX’s prediction
performance remains steady. For example, given a 0.0001
FPR, ANDRUSPEX shows a 0.9916 TPR on average with
a 0.0006 standard deviation. Given 0.001 and 0.005 FPRs,
ANDRUSPEX shows a 0.997 TPR on average with a
0.0002 standard deviation and a 0.998 TPR with a 0.0002
standard deviation respectively. These results demonstrate
that ANDRUSPEX can work well when frequent retraining
is required, and underpins its real world practicability.

5.6. Runtime Performance (RQ5)

Following our prediction performance analysis in the
previous sections, we evaluate ANDRUSPEX’s runtime
performance to answer several key practical questions
such as 1) how long does ANDRUSPEX take to construct
a PHA installation graph, 2) how long does ANDRUSPEX
take to build low dimensional representations of PHA
installations and 3) how long does ANDRUSPEX take to
train the prediction engine. To answer these questions,
we use all three datasets (see Table 1). ANDRUSPEX’s
runtime performance is summarized in Table 5.

As we can see in Table 5, all three components (see
Figure 5 in Section 3) of ANDRUSPEX scale linearly
with regards to the input data size. In terms of graph
reconstruction time, ANDRUSPEX takes 230.06 seconds
to reconstruct the PHA installation graph given DS1. Re-
spectively, ANDRUSPEX takes 778.27 seconds given DS2

(i.e., one week data) and 3424.86 seconds given DS3

(i.e., one month data). This represents 3.5 and 14.9 times
increase of time given roughly 6.7 and 29.2 times more
raw input data. In terms of generating low dimensional
edge representations, ANDRUSPEX takes 598.88 seconds
to build the edge representations for DS1. Respectively,
ANDRUSPEX takes 702.15 and 791.33 seconds to build
corresponding edge representations for DS2 and DS3.
This represents 1.17 and 1.56 times increase of time
given roughly 1.98 and 2.97 times increase of input edge
sizes (see Table 1). In terms of training the prediction
engine, ANDRUSPEX also shows similar patterns. This
implies that the end-to-end operation of ANDRUSPEX
takes approximately 46.5 minutes for a typical usage
scenario (i.e., prediction for one week data using DS2,
see Section 5.5). In summary, ANDRUSPEX’s empirical
linear scalability exemplifies its computational advantage
and practical deployment in the wild.
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Figure 10: Case study: ANDRUSPEX predicts adware
installation

6. Case Studies

In this section, we provide two interesting case studies
that we encountered while operating ANDRUSPEX. They
demonstrate how ANDRUSPEX could be used as an early
warning tool, and how it may explain the implicit connec-
tions between PHAs.

6.1. Adware Installation Prediction

In this section, we carry out a detailed adware in-
stallation prediction case study. Figure 10 shows part
of a PHA installation graph built by ANDRUSPEX
on March 1, 2019. Vertices connected by thin solid
lines are observed PHA installations and the thick
solid line represents the prediction by ANDRUSPEX.
There are four repackaged adware apps that aggres-
sively use the MoPub library and consequently are
not available from the Google Play store. Respec-
tively they are candyjewels with SHA2 B2B9CC...,
archery with SHA2 94B928..., solitaire with
SHA2 7FBF5B... and wallpaperHD with SHA2
5F5555.... During the training, there are a number
of random walks with various numbers of hits leading
from candyjewels to wallpaperHD. The reason for
this is likely that those apps were available on the same
third party marketplace and suggested to populations of
users with similar app installation history. We only provide
a snippet of the unfolded random walks (dash lines) in
Figure 10 for clarification purposes. These random walks
exhibit various l-order proximities (see Section 3), and
the accumulation of these walks enables ANDRUSPEX to
capture the implicit relationship between candyjewels
and wallpaperHD. At the test time, once a device
dtest installs candyjewels, ANDRUSPEX is able to
predict that dtest may install wallpaperHD with high
confidence based upon the evidential information collected
from these random walks. Following up with the predic-
tion, ANDRUSPEX alerts the end user to be vigilant when
installing wallpaperHD app by displaying a summa-
rized description of the unfolded random walks. The end
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Figure 11: Case study: ANDRUSPEX predicts trojan in-
stallation

user can reach an informed decision to not install a PHA
which might weaken Android’s built-in security.

Additionally, we can observe that the unfolded ran-
dom walks shown in Figure 10 reveal some interesting
patterns that are not available in the detection data. For
example, adware may explore a user’s preference (e.g.,
candyjewels, archery, and solitaire are all
games), and lead the users to install additional adware
(e.g., wallpaperHD) which is favored by certain de-
mographics group playing these games. ANDRUSPEX is
able to capture these implicit patterns without collecting
additional data and could warn targeted users ahead of
time.

6.2. Trojan Installation Prediction

In this section, we carry out a detailed trojan
installation prediction case study. Figure 11 shows
part of a PHA installation graph built by ANDRUS-
PEX on March 1, 2019. Thin solid lines repre-
sent observed PHA installations and the thick solid
line represents the prediction by ANDRUSPEX. There
are four trojans repackaged from popular games, re-
spectively unlockmefree with SHA2 CAE573...,
flow with SHA2 27066F..., minecraft with
SHA2 ACDA9D... and bubbledexlue with SHA2
0274FE... from third party marketplaces. In addi-
tion, we have a third party marketplace application
yingyonghui with SHA2 44AEC2.... Note that
yingyonghui functions as a gateway to applications,
however it is itself associated with information leakage
risk since it collects both network and SMS data without
explicit notification to/consent from the users. The other
applications with limited hits during the random surfing
are classified as ‘misc’. We also provide a snippet of
the unfolded random walks (dash lines) in Figure 11 for
illustration purpose as we did in Section 6.1. As we can
see in Figure 11, there are multiple sources from different
application categories (e.g., unlockmefree is a game
and yingyonghui is a market application) that may
lead to the installation of trojan application minecraft.
For example, the trojan (e.g., minecraft) makers can
target third party marketplaces (e.g., yingyonghui)
which don’t enforce code review, and leverage a user’s
inclinations to install this popular application for free.

Additionally, the trojan makers can target specific appli-
cation categories (e.g., game), and tactically repackage
popular titles (e.g., bubbledexlue, unlockmefree
etc.) and spread additional trojans. ANDRUSPEX is able
to capture these different strategies by leveraging the col-
lective PHA installation graph. At the test time, if a device
dtest installs unlockmefree and yingyonghui, AN-
DRUSPEX can predict the impending installation of the
malicious version of minecraft with high confidence.

7. Discussion

Influence of different prediction models. In Section 5.3
we demonstrate that ANDRUSPEX can well separate
positive (i.e., observed) from negative (i.e., non-existent)
PHA installation events in the latent space without relying
on the prediction model (see Section 5.1). For discussion
purposes, we also illustrate how different prediction
models may impact evaluation results. To this end, we
select logistic regression [30] and gradient boosting [49],
respectively a linear and an ensemble model, to
demonstrate the impact of alternative prediction models.
As we can see in Table 6, ANDRUSPEX is less affected
by different models and attains reasonable prediction
capability in both cases. For example, ANDRUSPEX is
able to offer useful prediction performance (e.g., 0.900
TPR and 0.917 TPR given 0.0001 FPR respectively using
logistic regression and gradient boosting machine). In
contrast, all the baseline methods have shown substantial
drops in terms of prediction accuracy. This gives us
additional confidence that ANDRUSPEX can offer a better
PHA installation event representation and consequent
prediction in the latent space.

Influence of different edge representations. The core of
ANDRUSPEX is a graph representation learning algorithm
that learns the low dimensional vertex representations in
the latent space. Other than the concatenation used in
this paper, there are alternative methods to combine two
vertex representations to form a PHA installation event
representation. To this end, we used four other methods,
respectively average, Hadamard, weighted L1 and
weighted L2, to combine two vertex representations. We
train ANDRUSPEX using these edge-wise representations
obtained with the methods shown in Table 7. As we can
see in Table 7, all four alternative PHA installation event
representation methods do not offer comparable prediction
performance. ANDRUSPEX with the concatenation of
vectors is consistently the best edge representation.

Evasion. ANDRUSPEX may be subject to evasion by
attackers. At its core, ANDRUSPEX relies on graph
representation learning to embed both device and PHA
vertices into a latent space. Therefore, it may be subject
to adversarial attacks [9] from an adversary who might
influence the representation learning by adding/removing
edges from the PHA installation graph. In terms of adding
edges to influence prediction results, one technique that
could be used by the adversaries is leveraging the strategy
used by mimicry attacks, i.e., evading prediction by
injecting many irrelevant applications into alternative
markets and ensure the users to install them to cover
the prediction of a real trojan application. We argue



Method Logistic Regression XGBOOST
TPR
@

0.0001

TPR
@

0.001

TPR
@

0.005

ROC
AUC AP

TPR
@

0.0001

TPR
@

0.001

TPR
@

0.005

ROC
AUC AP

1st-order prox. 0.151 0.172 0.188 0.446 0.551 0.500 0.552 0.603 0.894 0.914
2nd-order prox. 0.722 0.821 0.869 0.923 0.959 0.633 0.768 0.852 0.981 0.982
high-order prox. 0.782 0.832 0.875 0.96 0.97 0.684 0.850 0.901 0.991 0.993
ANDRUSPEX 0.900 0.903 0.98 0.97 0.959 0.917 0.947 0.982 0.999 0.999

TABLE 6: ANDRUSPEX’s prediction performance (using DS1) with alternative prediction models, respectively logistic
regression and gradient boosting.

method operation
TPR

@
0.0001

TPR
@

0.001

TPR
@

0.005
AUC AP

Average (a+ b)/2 0.045 0.191 0.402 0.926 0.930
Hadamard (a1 ∗ b1, ..., ai ∗ bi) 0.056 0.159 0.347 0.921 0.922

weighted L1 (|a1 − b1|, ..., |ai − bi|) 0.053 0.187 0.347 0.896 0.903
weighted L2 ((a1 − b1)2, ..., (ai − bi)

2) 0.052 0.184 0.347 0.895 0.903
concat [a1, ..., ai, b1, ..., bi] 0.991 0.996 0.998 0.999 0.999

TABLE 7: ANDRUSPEX’s prediction performance (using DS1) with alternative edge representations.

that monetization is a key factor for mobile PHA
makers. If they could install irrelevant applications in
mobile devices, they would easily monetize from these
applications. In other words, it would not make sense for
the adversaries to distribute irrelevant applications since
it would make PHA delivery much more expensive to
prevent ANDRUSPEX from correctly predicting future
installations. In terms of removing edges to influence
prediction results, it is infeasible from a practicality
perspective. Once a PHA installation is observed by
the security product from this security company, the
adversaries cannot remove the edges (i.e., install events)
from the PHA installation graph. One possible strategy
can be leveraged by the adversaries is to prevent the
security product from sending back the telemetry data.
We already show in Section 5.4 that ANDRUSPEX can
well cope with data latency and predict PHA installations
with high accuracy in the real world deployment.
Additionally, an adversary may inject multiple similar
PHAs slightly differing from each other. The PHAs
would target a similar audience and their installation
would be predicted with similar probabilities. From a
performance perspective, such strategy would reduce
ANDRUSPEX’s TPR since the users will not install all
the very similar PHAs. From a practical perspective,
the users will be wrongly notified about a PHA not
fitting their intention. This could consequently lead to an
increased “customer churn rate.” One plausible approach
to mitigate this evasion attack is using in-app messages
to ask the end user to be vigilant of the markets and the
developers where they may install apps from (e.g., using
official markets). The rationale of using in-app messages
is to explain to the end user the potential risk associated
with the known on-device PHAs. More importantly,
the end users would have contextual information (e.g.,
which PHAs in what category) that may be more
effective to raise their awareness as observed by [46].
This way, the end user would benefit from an informative
explanation rather than a short notification via the status
bar. Consequently, the devices owner can still be warned
about the threat and reach an informed decision to not
install a PHA from that category which might weaken
their device security.

Bias. Our dataset is biased towards the end users of a
single mobile security product, and therefore still presents

some biases. However, the distribution of devices used
in this study is not heavily skewed towards any specific
region. It is also challenging to ascertain the coverage
of PHAs covered by our study since it is infeasible to
determine the total number of all PHAs. ANDRUSPEX,
however, is retrained frequently to accommodate newly
discovered PHAs. That is, ANDRUSPEX accumulates its
knowledge of known PHAs when it is retrained. For
instance, if a PHA was not initially included to train
ANDRUSPEX by the security company, this PHA will
later be used to retrain ANDRUSPEX once its signature
and associated detection events are made available to the
security company. As such, we believe the bias initially
introduced by ANDRUSPEX will diminish over time.
Limitations. As any prediction system, ANDRUSPEX has
some limitations. The main limitation of ANDRUSPEX is
that it can only predict PHAs that are already known to be
malicious. This makes sense in our application case, since
our goal is to solve the current limitations of the Android
security model, which allow PHAs to act undetected on
their victim devices until the user decides to uninstall
them. One way was to reduce this limitation is to retrain
ANDRUSPEX frequently, as new PHAs become known.
As we showed in Section 5.5, ANDRUSPEX can work
well on different observation window under frequent re-
training, underpinning its real world practicability. We ar-
gue that the advantage of proactive moderation compared
to existing Android anti-malware solutions significantly
overcomes these limitations.

8. Related Work

Predictive security. Prior work studied the feasibility
of forecasting future security incidents using observed
historical information [71]. The core idea of these
research work is to extract a set of pre-defined features
from historical data, and train a machine learning model
to predict, in a binary format, if a vulnerability is likely
to be exploited [11], if a PoC of a vulnerability would
be devised in the real world [64], if an enterprise would
be breached using publicly available security incident
datasets [43], the volume of actual malware infections
in a country [33], the likelihood of endpoints at risk of
infection in the future [8], etc. In recent years, researchers
also leveraged deep learning techniques such as RNN [66]
and CNN [65] to predict the exact upcoming security



events. Our approach focuses on learning low dimensional
representations of global malware installation graph and
predict emerging malware installations.

Applications of representation learning in security
research. The core idea of these research work is to
captures the posterior distribution of the underlying
explanatory factors for the observed input in latent space.
Lin et al. [41], [42] propose a function representation
learning method to obtain the high-level and generalizable
function representations from the abstract syntax tree
(AST). Rhodeb et al. [62] use RNNs to learn the
representations of their behavior profiles. Ding et
al. [19] represents an assembly function as a control
flow graph (CFG) and leveraging a customized PV-DM
model [39] to learn the latent representations of assembly
functions. Shen et al. [67] propose ATTACK2VEC model
to understand the evolution of cyberattacks in latent space.

Graph-based malware detection. The core idea of graph-
based malware detection is modeling the interactions
among malware, endpoints and network servers as
graphs, and leverage various machine learning models
to understand the patterns and detect previous unknown
malicious files or activities. For example, CAMP [60],
Mastino [59], and Polonium [48] built graphs from binary
activity data and detect malware. Similarly, Marmite [69],
NAZCA [32], AESOP [72] and Kwon et al. [38] built
graphs from binary download/distribution data and
detect previous unknown malware. Different from these
approaches, ANDRUSPEX predicts PHA installations in
the future instead of detecting them.

Closest work. The closest work to this paper is highly pre-
dictive blacklisting (HPB) [84]. Essentially, HPB builds
a victim correlation graph using Jaccard similarity over
occurrences of overlapping attackers among victims. How-
ever, HPB cannot scale to large dataset due to its quadratic
time complexity incurred by Jaccard similarity. From a
theoretical perspective, HPB is equivalent to weighted
one mode projection of a bipartite graph [85] which only
considers explicit attack-victim relationship. In contrast to
HPB, we demonstrate that ANDRUSPEX has an empirical
linear scalability coping with millions of vertices, and
considers both explicit and implicit relationships offering
accurate PHA installation predictions.

9. Conclusion

We presented ANDRUSPEX, a system that learns
latent relationships between PHAs and mobile devices
and leverages them for prediction. We showed that it is
possible to predict PHA installation on mobile devices
with very accurate results (0.994 TPR with 0.0001 FPR)
up to one week ahead of the real installations, and our
system is performant and can account for delays in re-
ceiving data, which are typical in real world deployments.
This prediction approach has the potential of successfully
complementing current on-device anti-malware systems,
which are inherently reactive. We plan to study how to
devise effective warning that could pro-actively sway users
into not installing the PHAs that they will encounter, for
example while browsing third party marketplaces. To this

end, we plan to work in the spirit of past research in usable
security and warning design [20], [76].
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