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ABSTRACT
Assigning family labels to malicious apps is a common practice
for grouping together malware with identical behavior. However,
recent studies show that apps labeled as belonging to the same
family do not necessarily behave similarly: one app may lack or
have extra capabilities compared to others in the same family, and,
conversely, two apps labeled as belonging to different families may
exhibit close behavior. To reveal these inconsistencies, this paper
presents AndrEnsemble, a characterization system for Android
malware families based on ensembles of sensitive API calls extracted
from aggregated call graphs of different families. Our method has
several advantages over similar characterization approaches, in-
cluding a greater reduction ratio with respect to original call graphs,
robustness against transformation attacks, and flexibility to be ap-
plied at different granularity levels. We experimentally validate our
approach and discuss three specific use cases: mobile ransomware,
SMS Trojans and banking Trojans. This left us with some inter-
esting findings. First of all, malicious operations in these types of
malware are not necessarily exercised by using several sensitive
API calls all together. Second, SMS Trojans have larger ensembles
of API calls compared to the other types. Last but not least, we
identified several samples with identical ensembles though being
labeled as part of different families.
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1 INTRODUCTION
Android is the most popular Operating System (OS) worldwide,
with a larger market share than Windows PC and Windows phone
together [1]. Android is a complex system that can integrate third-
party software from on-line markets, some of which are weakly
vetted [2]. This altogether poses several security and privacy con-
cerns. In terms of security, new attack vectors are discovered at
an unprecedented rate [3], while, in terms of privacy, apps have
access to a wide range of information they often collect in bulk [4].
Some Android apps also impact the integrity of web resources in a
negative way by manipulating them in various ways [5].
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Malicious or potentially unwanted applications are programs
purposely designed to attack the security and privacy of the devices
and their users. Moreover, Android apps are commonly hardened
with advanced anti-analysis techniques, including obfuscation [3, 6]
and packing [7], which turn their analysis into a really challenging
task. To cope with this challenge, Anti-Virus (AV) vendors and cy-
ber security firms characterize newly discovered threats, label them
with a family name, and share the specimens together with associ-
ated Indicators of Compromise (IoC) with the security community.
Labels are usually assigned based on some static information, in-
cluding code structures [8] and other IoCs which are easy to modify
using different transformation attacks [9, 10].

Despite the importance of the labeling process, AV vendors use
different criteria to name samples and families [11]. As a result, re-
cent studies have shown that not all samples associated to a family
are always related [12]. Furthermore, it is common to find the op-
posite: two apps in different families with related behaviors [13]. In
addition, the majority of the labels assigned are not consistent with
the actual behavior of apps [14] and, in most cases, each AV engine
produces a different security report and risk score for a malicious
application. Two main strategies are proposed to deal with these
inconsistencies: i) considering sub-families (or variants) to divide
families into smaller groups of apps with more akin behavior [13],
and ii) extracting a unique behavioral core from each malware fam-
ily. Both of these strategies suffer from important limitations as we
explain next.

On the one hand, methods proposed for dividing families into
sub-families are error-prone and inaccurate due to their depen-
dence on either uncontextualized features or manual inspection.
First, features extracted by related work are currently not robust
enough to address this problem as they are easy to manipulate and
bypass [15]. Second, human-dependent systems cannot keep up
with the amount of malware being processed nowadays [16–18].
Moreover, the accuracy of manual inspection has been repeatedly
questioned [19]. On the other hand, some systems are designed to
extract a semantic core from a number of Android applications [20]
or from their corresponding families [21, 22]. While promising, they
suffer from a number of limitations, including scalability issues [20],
memory complexity [21], and their excessive reliance on features
extracted from specific code structures (e.g., loops) [22].

In this paper, we propose AndrEnsemble, an approach to char-
acterize Android malware families. Unlike previous works, our
method does not rely on a precise human-vetting process, which
makes it more scalable and more suitable for learning in the pres-
ence of concept drift [23]. Also, instead of operating on a per-app
granularity, it looks at groups of apps and leverages differential anal-
ysis to extract common family behavior [24]. Thus, AndrEnsemble
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is more resilient to feature perturbations and manipulations. Our
approach to build up a semantic-based core works as follows: we
first create an aggregated call graph where each node represents a
method and each edge shows an invocation between two different
methods. Methods are represented as hashes computed with a cus-
tom fuzzy hashing function. Thus, similar methods across a group
of samples are treated as a single node in the aggregated call graph.
Aggregated call graphs have fewer nodes (since common hashes
are considered as a single node) and connections as compared to
individual call graphs. Both of these improve the performance of
graph mining algorithms. Second, AndrEnsemble can deal with
repackaged apps [25] more effectively. By looking at common meth-
ods in malware, non-popular methods (typically attributed to the
original repackaged app) are discarded [24]. Additionally, a greedy
algorithm is used to mine paths from the aggregated call graph
depending on the maximum length which is justified. This makes
the method applicable at different granularity levels similar to re-
cent works [26, 27]. Each path may contain one or more calls to
sensitive API methods. Therefore, less frequent edges in a family
are also pruned to speed up the mining process.

Contributions. This work makes the following contributions:

• We propose a new characterization approach for Android
malware families based on common ensembles of sensitive
API calls. Contrarily to other related works which rely on
individual API methods, we consider ensembles of API meth-
ods that are shared by a number of samples in each family.
Also, our approach can be tuned to different granularity
levels.

• We study and report common and rare ensembles of API
methods in three types of Android malware: ransomware,
SMS Trojans and banking Trojans. We discuss real examples
for each type by linking these ensembles to apps’ behavior.

• We report some anomalies that exist in the current family
labeling of Android malware. In particular, we give examples
of apps with identical and with very similar behavior despite
belonging to different families.

2 APPROACH
This section presents our approach in detail. We first provide an
overview of our system and then describe each component in detail.

2.1 System Overview
The system proposed in this work is composed of five main steps
as depicted in Fig. 1. Given a specific Android malware family, it
first computes the fuzzy hash values (h1,h2, . . . ,hn ) of all extracted
methods from applications (a1,a2, . . . ,an ) using a number of fea-
tures (f1, f2, . . . , fn ). In parallel, we obtain the method call graphs
of all apps (д1,д2, . . . ,дn ). Next, the method call graph of each appli-
cation is converted to a hash graph (HG), where nodes are hashes
and edges are connections between hashes, all of which are re-
constructed based on the methods connections of the method call
graph. In the third step, hash graphs of different apps are all merged
into an aggregated hash graph (AHG). We then extract paths using
graph mining algorithms and we record ensembles of sensitive API
methods (s1, s2, . . . , sn ) observed in these paths. Finally, app feature

vectors (v1,v2, . . . ,vn ) are created based on these ensembles. These
vectors can be used as signatures to characterize family behavior.

2.2 Method Hashing (Step #1)
The first step involves computing fuzzy hash values of all methods
extracted from the apps which do belong to the same family (see
step #1 in Fig. 1). These values are used later to build call graphs
and to extract sensitive API calls which are shared among a number
of methods that resemble each other. This makes the system more
resilient to transformation attacks compared to similar systems that
rely on common sensitive API calls of identical method call graphs.

To generate a fuzzy hash value for each method (mj ) we con-
sider several features, including the control flow graph signature
created by Cesare’s grammar (G j ) [28], a method’s name (Nj ) and
its class name (Cj ), a method’s intents (Ij ), its sensitive API calls
(Sj ), and, finally, native and incognito methods (Mj ) found within
the method. Thus, the method hashing process is performed by ap-
plying a regular hash function on these features extracted for each
method [24, 25] by dividing them into pieces (or segments). These
segments contain fragments of traditional hashes joined together
for comparative purposes and are obtained using a rolling hash. A
rolling hash makes use of a trigger value to determine the number
of segments in each feature [29].

In what follows, we use the short form of hj when we refer to
the fuzzy hash value calculated for method j. A fuzzy hash value
can be shared by two or more methods if they are exactly the same
(exact match) or are slightly different (approximate match).

2.3 Building an Aggregated Hash Graph (Steps
#2 & #3)

In the second step, we aim at creating a specific form of call graph,
whichwe call aggregated hash graph (AHG), per family. Here, nodes
are hashes obtained from step #1, and edges show whether or not
there are connections between pairs of hashes (i.e., between differ-
ent methods). An aggregated hash graph merges similar methods
of different apps of a particular family into one node. This will thus
speed up the extraction of common behaviors from the resulting
graph.

To build this comprehensive graph, we first build a hash graph
(HG) for each application separately. Thus, methods extracted from
each app are assigned a hash value as described in Section 2.2. Then,
hashes are connected to each other based on methods connections
in the call graph (see #2 in Fig. 1). For instance, there is an edge
between hi and hj (hi → hj ) if and only if there is a call in method
i to method j (i → j).

When such graph is generated for all apps in one family, an
aggregated graph is obtained by simply merging common nodes
(or hashes) and adding all edges that exist between each pair of
nodes (see #3 in Fig. 1). Also, a unique weight (w1,w2, . . . ,wn ) is
assigned to each edge by summing up common ones in apps. The
weight of an edge is 1 in the aggregated graph if it is present in
only one application.

Therefore, an AHG is a weighted bi-directional graph for each
family where each weight shows howmany apps in the family share
the same connection between two hashes and in the same direc-
tion. Thus, one can obtain meaningful insights about the common
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Figure 1: Overall architecture of the proposed system.
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Figure 2: A subgraph of the AHG extracted for the oldboot
family with nodes and edges which are common in more
than 70% of apps (Thickness of edges is a representative of
their prevalence in the whole family).

behavior in a particular family by inspecting these connections and
their corresponding weights. Fig. 2 shows a subgraph of the AHG
extracted for the oldboot family with 11 apps. Here, each weight
(represented by the thickness of an edge) shows how many apps
share a particular method or an edge across the family.

The main difference between building an AHG and simply merg-
ing all call graphs of applications in a family is that, in the former
case, similar methods are assigned with equal hashes and, thus,
are considered as a single node. Instead, in the latter case, an in-
distinguishable change between methods renders different nodes.
Therefore, our system is more resilient to automatic transformation
attacks where we intend to extract common malicious behavior
from a collection of apps belonging to a specific Android malware
family.

2.4 Extracting Ensembles of API Calls (Step #4)
Building an aggregated hash graph per family using method hashes
reveals two important pieces of information: i) the frequency of
similar methods in all apps, ii) and the frequency of methods calls
in all similar methods in a family. However, inspecting popular
methods or calls gives a limited understanding of the behavioral
capabilities of a malware family. Thus, in the last step, we extract
ensembles of sensitive API calls observed either in methods or
consecutive method calls of the aggregated graph (see #4 in Fig. 1).

API calls are appropriate representatives of an app’s behavior.
Sensitive API calls are those which can threaten user’s security and
privacy and can be used to perform various operations, ranging
from OS-related to generic ones such as file system operations. We
have considered 40 sensitive API calls which cover a wide range of
activities as shown in [24]. These methods can be used for a variety
of purposes. On the one hand, some API methods can be used to
record device specific information (e.g., DeviceId or SubscriberId),
location information, installed packages, and running processes or
services. On the other hand, some of the API calls can be used to
leak sensitive information to remote servers either by sending text
messages or by establishing remote connections. Furthermore, we
have considered methods by which malware specimens can manip-
ulate critical information such as files (e.g., by creating, deleting
or encrypting), processes and apps’ contents that are handled by
content providers. Finally, we have considered methods that are
used by some apps to dynamically load classes and to deliver their
malicious functionality at runtime.

It is worth noting that although some of these methods have
been recently deprecated, only 20% of Android devices are running
the newest major version of this OS [18]. This suggests that old
Android malware with outdated API calls can still affect a large
number of users, and, for this reason, we have not excluded these
methods from our list. In addition, some of the methods considered
here may not look sensitive alone but they could potentially be
malicious when they appear with other API calls in an ensemble.

To extract ensembles of API calls from each family, we first
identify all source methods in the AHG, i.e., those methods which
are either isolated (indeдree = 0 and outdeдree = 0), or they have
not been called from any other methods (indeдree = 0). Afterwards,
we extract all paths originating from source methods using a greedy
path mining algorithm with respect to the weights of the edges.



This implies that all edges in a particular path do have a common
frequency among apps which belong to the same family. Once these
paths are extracted, we collect sensitive API calls appearing in each
path. In particular, the union of sensitive calls along one path results
in a unique ensemble of sensitive API calls for that specific path.
So, we are finally left with several ensembles of API calls per family
which have different percentages of prevalence among apps.

2.5 Creating Feature Vectors (Step #5)
Once ensembles of sensitive API calls are extracted, each application
is assigned a binary feature vector. Each feature (named fj in figures)
is a unique ensemble of API calls in a family. The length of this
vector for each app is thus equal to the total number of extracted
ensembles from the entire dataset, and the presence or absence of
an ensemble is shown with 1 or 0.

To measure similarities and differences between vectors, we use
the cosine similarity metric as defined in Eq. 1. Specifically, given
two vectors, A1 and A2, their cosine similarity is computed by
scaling the dot product of these vectors to their magnitudes. Thus,
the output is in the [0, 1] interval.

Simcos (A1,A2) =
A1 · A2

∥A1∥∥A2∥
(1)

Contrarily to the cosine similarity, the cosine distance expresses
vectors dissimilarity in positive space (i.e., [0, 1]). This is done by
subtracting the cosine similarity from 1 as follows:Distcos (A1,A2) =
1−Simcos (A1,A2). Thus, the cosine distance of two vectors is close
to 0 when they are highly similar, and it is almost 1 when two
vectors are completely different.

3 EVALUATION
In this section we evaluate our approach. We first present our exper-
imental setting and describe our dataset. We then apply our system
to about 700 families and 16K apps, and we present our results by
grouping these families by type of family (i.e., ransomware, and
two types of Trojans). We also describe how our approach can help
in extracting the common malicious behavior of these families and
how it finally leads to a fine-grained understanding of security
sensitive operations which are exercised by each family.

3.1 Experimental Setting and Dataset
The proposed system has been implemented in Python. Our imple-
mentation extracts all method’s features as well as call graphs using
Androguard [30], a full Python reverse engineering tool developed
for Android apps. We have evaluated our system on the biggest aca-
demic dataset of Android apps, known as AndroZoo [31]. Families
have been all extracted using Euphony [11].

Experiments are all conducted on a 2.4 GHz Intel Xeon Ubuntu
server with 40 CPUs and 128 GB of RAM. As we are interested in
extracting common behavior from all apps in a medium and big size
families, we discard those which contain less than 7 apps. Also, to
alleviate the expensive process of path mining in large call graphs,
we only extract paths with a maximum length of 2. Finally, we
have excluded paths that include edges shared by less than 70% of
apps. Therefore, if a family does not contain ensembles of sensitive

API calls shared by more than 70% of apps, it is removed from the
dataset as well.

AndroZoo contains around 8M Android apps from more than
3,000 families. The apps are gathered from 15 known markets and
1 unknown repository. However, the majority of them (≈ 97%) are
collected from 3 main app markets, including Google Play, Anzhi
and AppChina. Each app in this dataset is regularly scanned by
various Anti-Virus (AV) vendors to separate malicious apps from
benign ones. Around 1%, 33% and 17% of apps in the three markets
in AndroZoo are malware according to at least 10 different AV
vendors. Thus, our dataset of malicious apps is a subset of this huge
market with 117 families and 3,050 malware specimens (see Table
1).

Table 1: Statistics of the dataset considered for case study,
including the number of apps, number of families and the
average size of applications (MB).

Malware Type #Apps #Families Avg. Size
Ransomware 824 7 4.98
SMS Trojan 1,967 98 9.88

Banking Trojan 259 12 10.20
Total 3,050 117 8.35

3.2 Description of Experiments
Our system is evaluated with three types of malware families: ran-
somware (§3.3), SMS Trojan (§3.4) and Banking Trojan (§3.5) fami-
lies. We have obtained the type of each family from AndroZoo. Our
choice is motivated by the increasing popularity of these types of
malware in recent years [17, 32].

For each type, i) we report the most common and rarest ensem-
bles of sensitive API calls, ii) we present a case study to discuss one
of the most popular families, and iii) we study the following two
scenarios: a) where two apps from different families do share the
same signature, and b) where two apps from different families have
similar signatures (i.e., those that are different in two ensembles
of API calls). These scenarios are used to provide an intra-family
characterization. To report these scenarios, we rely on the cosine
distance between the apps’ feature vectors (as discussed in Sec-
tion 2.5). All these three steps together allow us to confirm the
applicability of our approach. We next describe each of the types
of families studied. Furthermore, we have evaluated the time and
memory complexity of our system for each type as summarized in
Table 2.

Table 2: Average amount of time took in each step of our
approach per family (in sec.).

Malware Type AHG Extraction Ensemble Extraction
Ransomware 35.51 266.17
SMS Trojan 44.92 44.31

Banking Trojan 57.19 67.81

3.3 Ransomware
Android ransomware families are categorized into two general
groups, screen lockers and crypto ransomware [33, 34]. Apps from



the first group lock the smartphone screen, while those in the sec-
ond group encrypt the victim’s valuable files, both with the goal of
extorting users to pay a ransom. Also, there are few families such
as Cokri and DoubleLocker which have both capabilities. On the
one hand, screen lockers follow three major strategies to achieve
their goals, including activity hijacking, modifying specific param-
eters and disabling certain UI buttons. The main purpose of these
strategies is to guarantee that the ransomware activity is always on
top of other activities. On the other hand, crypto ransomware uses
standard or customized crypto-systems to encrypt critical files.

Our dataset contains 824 ransomware samples from 7 different
Android families as shown in Table 1. However, apps are not evenly
distributed across families. For instance, the svpeng family has 604
specimens, whereas jisut contains only 4 malicious apps. In general,
we could extract 25 ensembles of sensitive API methods by applying
our method on ransomware apps. Experimental results (Fig. 3) show
that 11 ensembles are present in more than 70% of ransomware
specimens. Instead, only few ensembles are rare — they are present
in less than 2% of apps (e.g., ensembles 4, 14 and 25 in Table 3).
More details are presented in Appendix A.

3.4 SMS Trojan
From a general point of view, a Trojan is a type of malware that
disguise itself as a legitimate application and commonly violates
personal or confidential information stored on the device by per-
forming secret operations. A smartphone Trojan can be seen as
an application that affects the way a mobile device is being con-
trolled [35]. Once installed on the victim’s device, it performs a
wide range of silent activities, ranging from harvesting user or de-
vice specific information to intercepting incoming and/or outgoing
text messages, sending premium SMS messages and connecting the
device to a botnet to name a few. As Android Trojans commonly
masquerade as popular legitimate apps available in official markets,
they affect a large number of users.

SMS Trojans are malware specimens that usually monetize users
by sending text messages to premium rate numbers [9, 36]. Our
dataset contains 1,967 apps from 98 SMS Trojan families. We have
extracted 168 different ensembles of API methods from these apps.
Results show that 3 ensembles of API methods (i.e., <delete(), ex-
ists()> and delete() and getClassLoader()) are present in more than
50% of apps in the different families. On the other hand, almost
half of the ensembles are specific to very few apps in our dataset.
In particular, 91 ensembles of API methods (54%) are present in
less than 2% of apps in the SMS Trojan families. Also, ensembles
with length 2 are more prevalent among SMS Trojan families as
compared to ransomware. In addition, two long ensembles with 6
sensitive API methods exist in 5 malware specimens. More details
are provided in Appendix B.

3.5 Banking Trojan
The main goal of banking Trojans is to steal banking or credential
information. They usually do this by either intercepting SMS mes-
sages [37], or by overlaying a fake window on top of other financial
apps and websites [38]. In addition, other variants of Android bank-
ing Trojans may have some additional capabilities. Studies show

that most of banking Trojans target specific geographical locations.
For example, Russia and Australia are usually on top of this list [37].

Our dataset contains 259 apps and 12 Banking Trojan families
from which we have extracted 50 unique ensembles of sensitive
API methods. There are 2 ensembles of API methods, including
getClassLoader() and getInputStream() that are shared by more than
50% of apps from different families. This means that more than
half of apps in different families intercept from open connections,
and they load their malicious classes at runtime like SMS Trojan
applications and similar to the very recently detected variant of
Rotexy family1. On the contrary, there are 9 API ensembles which
are common among less than 5% of apps. Also, ensembles of length
one are more prevalent among banking Trojans than ensembles of
other lengths. More details are presented in Appendix C.

4 CONCLUSION AND FUTUREWORK
In this paper, we proposed a new approach to characterize Android
malware families based on ensembles of API methods that are exer-
cised by the majority of apps. Instead of relying on individual API
calls, we extract ensembles of API calls to make the approach more
resilient against transformation attacks. In addition, API ensembles
provide the analysts with more meaningful insights of the behavior
of an app. We make use of a fast graph-mining algorithm to extract
these common and sensitive API ensembles from an aggregated
form of method call graph.

Experimental results obtained from applying ourmethod to three
types of Android malware, including Ransomware, SMS Trojans,
and banking Trojans reveal several interesting findings. First, mali-
cious operations do not necessarily contain several sensitive API
methods. In fact, a considerable number of common ensembles (≈
72% in ransomware, ≈ 21% in SMS Trojans, and ≈ 52% in banking
Trojans) contain only one sensitive API method. Second, opposite to
ransomware and banking Trojans, ensembles of two API methods
were the most common in SMS Trojans. Finally, we found several
samples with identical ensembles though belonging to different
families.

This work can be extended in various ways as future work. More
exhaustive static analysis tools such as Soot2 can be used to extract
call graphs. Additionally, a query-like based system can be leveraged
to mine a dataset for threat discovery. Also, ensembles of API calls
could be mapped to relevant behavior by developing and training
an expert system.
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APPENDIX
A RANSOMWARE

Case Studies. To confirm the validity of our approach, we select
the most recently detected ransomware families from our dataset
and discuss their app feature vectors in detail. Also, we compare
the results with what is known from each family from other re-
search works and security reports. We have selected the porndroid
and gepew ransomware families both of which with apps that are
present in the wild since 2014.
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Figure 3: Distribution of sensitive API call ensembles among
ransomware samples from different families.

Table 3: Mapping between feature numbers and ensembles
of sensitive API methods extracted from ransomware fami-
lies.

#Feature Ensemble of Sensitive API Methods

1 delete(), exists()
2 getClassLoader()
3 insert(), query()
4 insert()
5 openConnection()
6 connect()
7 getInputStream()
8 getApplicationInfo()
9 getSubscriberId()
10 openConnection(), connect(), getInputStream()
11 getFilesDir()
12 mkdir(), exists()
13 crypto
14 loadLibrary()
15 query()
16 mkdir()
17 setDataAndType()
18 exists(), mkdir()
19 exists()
20 delete()
21 getDeviceId()
22 getActiveNetworkInfo()
23 mkdir(), delete(), exists()
24 addFlags()
25 openConnection(), connect(), getInputStream(), getFilesDir(), exists()

Porndroid is a ransomware family which hides behind a fake pornog-
raphy app. Security reports show that once an app from this family
is downloaded, it downloads another file, known as LockerPin [39].
Then, the user is locked out of the device and the pin number of
the phone is changed. The apps in this family usually display a
warning window from an official source (e.g., security agencies
like FBI) and threaten the victims to pay the ransom in return for
the illegal pornographic websites they have accessed with their
smartphones. If this ransom is not paid, all files are deleted and the
phone is restarted to its factory settings.

Our dataset contains 10 different apps from the porndroid family
and 8 ensembles of API calls are shared by more than 70% of apps.
The behaviors shown by these ensembles of APIs are aligned with
actions described by commercial reports and threat intelligence
gathered from each of the families. In particular, all samples (100%)
do contain 3 common API calls, including getActiveNetworkInfo()
and getClassLoader() and addFlags(). The first method is used to
obtain details about the current active data network and can be used
to check whether or not the compromised device is connected to the
Internet. Once confirmed, the apps download the original malicious

application (i.e., LockerPin). The second method is used to retrieve
the loader of a specific class at runtime. This implies that all apps in
this family share malicious classes which are not installed as part
of the application package and are loaded dynamically during exe-
cution. In other words, all apps execute the LockerPin application
once it is downloaded successfully. Finally, the third method is used
to make sure that ransomware activity is overlaid always on top of
other activities. This is done to prevent the victim from accessing
other components of the device. The ransomware can set the value
of this method to “FLAG_ACTIVITY_NEW_TASK” to restart itself
and overwrite previous activities whenever the ransomware is not
displayed on top.

Moreover, 90% and 80% of apps in this family include query() and
delete() API methods respectively. These are present in 3 ensembles
as shown in Table 3. The former method is used to retrieve and leak
victim’s personal information through Android content provider
[40], while the latter is used to delete critical files should the ransom
not satisfied.
Intra-family characterization. The last step in our evaluation is
to look at the intra-family dependencies. For this, we compare the
feature vector of an app with all other apps by using cosine distance.
The results are presented in Fig. 4a. Our method reveals several
cases where apps in two different ransomware families have exactly
the same signature. For instance, 4654EC...48F2.apk from slocker
family and 8905B3...99DC.apk from gepew family do share exactly
the same feature vector. Further inspections show that both of these
apps do contain methods which are not installed as parts of both
apps’ packages. Thus, they make use of dynamic loading to retrieve
the class loader of those methods and to load the malicious methods
into memory at run-time (feature #2 in Table 3). This comes to show
the effectiveness of our approach to understand common behaviors
between two families with the same capabilities.

We also look at the dual: when apps of two different families
have different feature vectors. For instance, C3829A...03DB.apk from
svpeng family and 877D3B...2AE4.apk from slocker family are differ-
ent in two features. In particular, the first app overlays its window
on top of other windows (feature #24 in Table 3). This app also
has a keyword database to identify encryption-related words in UI
widgets (feature #15 in Table 3). This is similar to variants of the
ransomprober family [33]. Instead, the the second app does not
have any of these capabilities. These two differences are the main
distinctions between the two families. However, all other features
are shared. This indicates that two families have evolved from one
another. It also shows to what extent we can use our system to
explain the differences between apps.

B SMS TROJAN
Case Studies. Like in the previous section, we select two of the
most popular families (i.e., Cvmtld and Rusms) and provide a quali-
tative evaluation or our findings.
Cvmtld is an Android SMS Trojan which contains 19 different sam-
ples out of which: one sample is first detected in 2013, five samples
are first detected in 2014, and the rest have been all detected in
20163. We observe that 8 ensembles of API methods are shared

3https://www.virustotal.com

https://www.virustotal.com
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Figure 4: The cosine distance of app vectors in different families for each type of malware (values close to 0 show high simi-
larity, whereas those close to 1 show significant difference). Two or more groups of apps with colors close to blue in one row
are those which are behaviorally similar in different families.

among all samples in this family. However, if we look at lower
granularity levels, we observe informative ensembles as well. All
specimens collect sensitive device information and leak them to
remote servers. They are also able to detect emulators and to evade
dynamic analysis (<myPid(), killProcess()>) similar to other families
reported in earlier works [41]. As these behaviors are common to
all samples in the family, we can say that these are the “core” capa-
bilities that characterize the family. However, there are other sets of
behaviors that can be used to characterized variants of the family.
As it is clear, 95% of samples send text messages to specific numbers
(sendTextMessage()). There are also behaviors that enable these apps
to update their capabilities during runtime (getClassLoader()).

Intra-family characterization. There are several examples (see
Fig. 4b) where two apps from different SMS Trojan families have
exactly the same behavior. 2F7794...88B8.apk from smsboxer family
and 971913...5B82.apk from darrma family share exactly the same
feature vector although they belong to different families. Both of
these apps are equipped with mechanisms to detect dynamic anal-
ysis systems and can halt their activities if they observe clues of
simulated environments. Also, they rely on Internet connection to
deliver their malicious functionalities and can encrypt/delete files.

When looking at apps with different behaviors, we observe
CD3A15...768D.apk from moavt family and 229C9A...8357.apk from
darrny. The first app collects the phone number string (via get-
Line1Number()) whereas the second one does not. In contrast, the
second app is able to detect emulators (using <myPid(), killProcess()>
ensemble of API calls) as compared to the first app.

C BANKING TROJAN

Case Studies.We next describe one of the most prevalent banking
Trojans according to our dataset, known as Fareac.
Fareac is a banking Trojan family which contains 37 different mal-
ware samples in our dataset. The results obtained reveal 27 different
ensembles of API methods which are shared by all applications in
this family. In particular, all apps in this family have similar be-
havior and share common characteristics. First of all, they check

whether or not the WiFi connection is enabled on the target device
(isWifiEnabled()). Once this is clarified, they load a native library
into memory (loadLibrary()) and call the loader to execute all loaded
malicious classes (getClassLoader()). Then, they steal victim’s cre-
dential information (using ensembles such as <setFlags(), getAppli-
cationInfo()> and query()) and some extra information (e.g., network
operator using getNetworkOperator()) by overlaying the windows
of other legitimate apps and services (addFlags()). Once these in-
formation are gathered, they encrypt all of them (crypto) and leak
them to remote servers by opening a connection (<openConnec-
tion(), connect()>). Also, they delete original files after encryption
procedure (using exists() and delete()).

Apps in Fareac family are also able to intercept data from cur-
rent open connection (getInputStream()). Additionally, they can all
detect simulated environments (<killProcess(), myPid()>), and, thus,
can bypass dynamic analysis. Indeed, this family is very hard to
be detected as it can potentially evade both static and dynamic
analyses.
Intra-family characterization. Similar to ransomware and SMS
Trojans, we have inspected several cases (see Fig. 4c) of two
apps in different banking Trojan families with identical and differ-
ent behavior. For instance, 6B03C9...807C.apk from sodsack family
and 3DC0F8...D204.apk from ztorg family are two bankers which
load their malicious code at run-time to evade static analysis.
On the other hand, 3CC01D...7012.apk from dhyvax family and
748ECD...0837.apk from the acecard family have different capabili-
ties. The former banker checks the list of files in different directories,
and creates files and folders, whereas the latter is able to delete files
or directories.
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