
AndrEnsemble: Leveraging API Ensembles
to Characterize Android Malware Families

Omid Mirzaeiq, Guillermo Suarez-Tangil♣, Jose M. de Fuentesq,
Juan Tapiadorq, and Gianluca Stringhini♠

qUniversidad Carlos III de Madrid, ♣King’s College London, ♠Boston University
{omid.mirzaei,jfuentes,jestevez}@uc3m.es, guillermo.suarez-tangil@kcl.ac.uk, gian@bu.edu

ABSTRACT
Assigning family labels to malicious apps is a common practice
for grouping together malware with identical behavior. However,
recent studies show that apps labeled as belonging to the same
family do not necessarily behave similarly: one app may lack or
have extra capabilities compared to others in the same family, and,
conversely, two apps labeled as belonging to different families may
exhibit close behavior. To reveal these inconsistencies, this paper
presents AndrEnsemble, a characterization system for Android
malware families based on ensembles of sensitive API calls extracted
from aggregated call graphs of different families. Our method has
several advantages over similar characterization approaches, in-
cluding a greater reduction ratio with respect to original call graphs,
robustness against transformation attacks, and flexibility to be ap-
plied at different granularity levels. We experimentally validate our
approach and discuss three specific use cases: mobile ransomware,
SMS Trojans and banking Trojans. This left us with some inter-
esting findings. First of all, malicious operations in these types of
malware are not necessarily exercised by using several sensitive
API calls all together. Second, SMS Trojans have larger ensembles
of API calls compared to the other types. Last but not least, we
identified several samples with identical ensembles though being
labeled as part of different families.

KEYWORDS
Android Malware, Malware Analysis, Malware Classification

1 INTRODUCTION
Android is the most popular Operating System (OS) worldwide,
with a larger market share than Windows PC and Windows phone
together [1]. Android is a complex system that can integrate third-
party software from on-line markets, some of which are weakly
vetted [2]. This altogether poses several security and privacy con-
cerns. In terms of security, new attack vectors are discovered at
an unprecedented rate [3], while, in terms of privacy, apps have
access to a wide range of information they often collect in bulk [4].
Some Android apps also impact the integrity of web resources in a
negative way by manipulating them in various ways [5].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIACCS’19, July 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Malicious or potentially unwanted applications are programs
purposely designed to attack the security and privacy of the devices
and their users. Moreover, Android apps are commonly hardened
with advanced anti-analysis techniques, including obfuscation [3, 6]
and packing [7], which turn their analysis into a really challenging
task. To cope with this challenge, Anti-Virus (AV) vendors and cy-
ber security firms characterize newly discovered threats, label them
with a family name, and share the specimens together with associ-
ated Indicators of Compromise (IoC) with the security community.
Labels are usually assigned based on some static information, in-
cluding code structures [8] and other IoCs which are easy to modify
using different transformation attacks [9, 10].

Despite the importance of the labeling process, AV vendors use
different criteria to name samples and families [11]. As a result, re-
cent studies have shown that not all samples associated to a family
are always related [12]. Furthermore, it is common to find the op-
posite: two apps in different families with related behaviors [13]. In
addition, the majority of the labels assigned are not consistent with
the actual behavior of apps [14] and, in most cases, each AV engine
produces a different security report and risk score for a malicious
application. Two main strategies are proposed to deal with these
inconsistencies: i) considering sub-families (or variants) to divide
families into smaller groups of apps with more akin behavior [13],
and ii) extracting a unique behavioral core from each malware fam-
ily. Both of these strategies suffer from important limitations as we
explain next.

On the one hand, methods proposed for dividing families into
sub-families are error-prone and inaccurate due to their depen-
dence on either uncontextualized features or manual inspection.
First, features extracted by related work are currently not robust
enough to address this problem as they are easy to manipulate and
bypass [15]. Second, human-dependent systems cannot keep up
with the amount of malware being processed nowadays [16–18].
Moreover, the accuracy of manual inspection has been repeatedly
questioned [19]. On the other hand, some systems are designed to
extract a semantic core from a number of Android applications [20]
or from their corresponding families [21, 22]. While promising, they
suffer from a number of limitations, including scalability issues [20],
memory complexity [21], and their excessive reliance on features
extracted from specific code structures (e.g., loops) [22].

In this paper, we propose AndrEnsemble, an approach to char-
acterize Android malware families. Unlike previous works, our
method does not rely on a precise human-vetting process, which
makes it more scalable and more suitable for learning in the pres-
ence of concept drift [23]. Also, instead of operating on a per-app
granularity, it looks at groups of apps and leverages differential anal-
ysis to extract common family behavior [24]. Thus, AndrEnsemble

https://doi.org/10.1145/nnnnnnn.nnnnnnn


is more resilient to feature perturbations and manipulations. Our
approach to build up a semantic-based core works as follows: we
first create an aggregated call graph where each node represents a
method and each edge shows an invocation between two different
methods. Methods are represented as hashes computed with a cus-
tom fuzzy hashing function. Thus, similar methods across a group
of samples are treated as a single node in the aggregated call graph.
Aggregated call graphs have fewer nodes (since common hashes
are considered as a single node) and connections as compared to
individual call graphs. Both of these improve the performance of
graph mining algorithms. Second, AndrEnsemble can deal with
repackaged apps [25] more effectively. By looking at common meth-
ods in malware, non-popular methods (typically attributed to the
original repackaged app) are discarded [24]. Additionally, a greedy
algorithm is used to mine paths from the aggregated call graph
depending on the maximum length which is justified. This makes
the method applicable at different granularity levels similar to re-
cent works [26, 27]. Each path may contain one or more calls to
sensitive API methods. Therefore, less frequent edges in a family
are also pruned to speed up the mining process.

Contributions. This work makes the following contributions:

• We propose a new characterization approach for Android
malware families based on common ensembles of sensitive
API calls. Contrarily to other related works which rely on
individual API methods, we consider ensembles of API meth-
ods that are shared by a number of samples in each family.
Also, our approach can be tuned to different granularity
levels.

• We study and report common and rare ensembles of API
methods in three types of Android malware: ransomware,
SMS Trojans and banking Trojans. We discuss real examples
for each type by linking these ensembles to apps’ behavior.

• We report some anomalies that exist in the current family
labeling of Android malware. In particular, we give examples
of apps with identical and with very similar behavior despite
belonging to different families.

2 APPROACH
This section presents our approach in detail. We first provide an
overview of our system and then describe each component in detail.

2.1 System Overview
The system proposed in this work is composed of five main steps
as depicted in Fig. 1. Given a specific Android malware family, it
first computes the fuzzy hash values (h1,h2, . . . ,hn ) of all extracted
methods from applications (a1,a2, . . . ,an ) using a number of fea-
tures (f1, f2, . . . , fn ). In parallel, we obtain the method call graphs
of all apps (д1,д2, . . . ,дn ). Next, the method call graph of each appli-
cation is converted to a hash graph (HG), where nodes are hashes
and edges are connections between hashes, all of which are re-
constructed based on the methods connections of the method call
graph. In the third step, hash graphs of different apps are all merged
into an aggregated hash graph (AHG). We then extract paths using
graph mining algorithms and we record ensembles of sensitive API
methods (s1, s2, . . . , sn ) observed in these paths. Finally, app feature

vectors (v1,v2, . . . ,vn ) are created based on these ensembles. These
vectors can be used as signatures to characterize family behavior.

2.2 Method Hashing (Step #1)
The first step involves computing fuzzy hash values of all methods
extracted from the apps which do belong to the same family (see
step #1 in Fig. 1). These values are used later to build call graphs
and to extract sensitive API calls which are shared among a number
of methods that resemble each other. This makes the system more
resilient to transformation attacks compared to similar systems that
rely on common sensitive API calls of identical method call graphs.

To generate a fuzzy hash value for each method (mj ) we con-
sider several features, including the control flow graph signature
created by Cesare’s grammar (G j ) [28], a method’s name (Nj ) and
its class name (Cj ), a method’s intents (Ij ), its sensitive API calls
(Sj ), and, finally, native and incognito methods (Mj ) found within
the method. Thus, the method hashing process is performed by ap-
plying a regular hash function on these features extracted for each
method [24, 25] by dividing them into pieces (or segments). These
segments contain fragments of traditional hashes joined together
for comparative purposes and are obtained using a rolling hash. A
rolling hash makes use of a trigger value to determine the number
of segments in each feature [29].

In what follows, we use the short form of hj when we refer to
the fuzzy hash value calculated for method j. A fuzzy hash value
can be shared by two or more methods if they are exactly the same
(exact match) or are slightly different (approximate match).

2.3 Building an Aggregated Hash Graph (Steps
#2 & #3)

In the second step, we aim at creating a specific form of call graph,
whichwe call aggregated hash graph (AHG), per family. Here, nodes
are hashes obtained from step #1, and edges show whether or not
there are connections between pairs of hashes (i.e., between differ-
ent methods). An aggregated hash graph merges similar methods
of different apps of a particular family into one node. This will thus
speed up the extraction of common behaviors from the resulting
graph.

To build this comprehensive graph, we first build a hash graph
(HG) for each application separately. Thus, methods extracted from
each app are assigned a hash value as described in Section 2.2. Then,
hashes are connected to each other based on methods connections
in the call graph (see #2 in Fig. 1). For instance, there is an edge
between hi and hj (hi → hj ) if and only if there is a call in method
i to method j (i → j).

When such graph is generated for all apps in one family, an
aggregated graph is obtained by simply merging common nodes
(or hashes) and adding all edges that exist between each pair of
nodes (see #3 in Fig. 1). Also, a unique weight (w1,w2, . . . ,wn ) is
assigned to each edge by summing up common ones in apps. The
weight of an edge is 1 in the aggregated graph if it is present in
only one application.

Therefore, an AHG is a weighted bi-directional graph for each
family where each weight shows howmany apps in the family share
the same connection between two hashes and in the same direc-
tion. Thus, one can obtain meaningful insights about the common



Feature
Extraction

...

a1
a2

an

Apps

Methods  
Hashing

...

f1
f2

fn ...

h1
h2

hn

Call Graph
Extraction

...

a1
a2 

an 

...

gn 

g1

Hash Graph
Extraction

m3

m2
m1

m2

m4

m5

m1

m3

h2h1

h3
h4h6

h5

AHG

Path Extraction  
(Graph Mining)

e2

e1
...

Creating
Feature Vectors 

en

1

2 3

Hash Graphs
Aggregation

h3

h2
h1

h2

h4
h5

h1

h3

...

w1

w2

w3

w4

w5
w6

w7

Ensembles of
Sensitive API
Methods

4

...

...

5

v2

v1

...

vn

Figure 1: Overall architecture of the proposed system.

-6074010104152933699

-7589235862953779195

-8321382001720240121

-6014947107783122934

-2391109007418419189

4055605434613397516

781162766712901647

2569016463448686608

-2372489041729654765

-3590626980666683366

-2389075813158021090

6437422521504374815

-8182793026499620828

3262424287851980837

-6335599766298642392

-6658154154862452695

-5443890664056422356

-4537928331469328337

4306417586136623153

-3973651639743985614

-5265754014110635981

5570514025736839221

6082780848765970486

3231065394794872887

-4401825011537522631

-3922128387350908869

1431905014638266428

-3409980142110908353

837867815331676224

-7702104803511717823

625747190244012277

5068354748713129972

-4325615257576748984

3489999496598586380

-182406596594081717

476515252000702540

-1606017459488081843

739194831489007695

9041987647263878650

-7277972588221298603

6690150646356596824

-3330305929708844967

-8210327612896946086

4911202594085877851

5371591603591407709

8414659753321158750

7498152347458162784

-6357318097241327519

-1081807011337764765

-3941551607654662044

8081256081722493029

4025441264062447719

-1414046220774358936

-2800607309468258199

-2594392470278786979

7051451848518013629

3753137508686399848

5216667805235576946

-4035252150488745866

-3823974397490179977

254838747601363064

-6665298368902230727

7930455097298133114

5017444995435972287

2345989103554793596

-7833800423515735939

-4091824553131079552

1635061216367364227

-1047172860748408700

-4947304595625906043

6166787219416510598

-815362980737480569

8932653825862867082

-1858639343472550216

-9128750125067560595

614762703252351120

-816974003823396718

7201233474440255636

8840561971306049686

-7922911384508340198

9001024182607913121

-6530785264471879517

-2185605731321071452
-1972160043795310426

5283371498883405994

-4179025150003527509

2426595272687216812

6443447059132211376

3644210240914553009

8372083893089863859

7432436001213728952

4808564893597012155

1974165494080610779

-1697355504403019061

3003953371557102597

-718177540768999223

8096861070590746827

-7246079665837625361

-477379065279199025

7542713448112546000

8741390616476221653

-5022223051283425065

-8983145198988027868

-1679425557257619237

-8466899526680919844

-2155098581399406370

-7043943710538347483

-2928913161830086431

-1488714489977900829

1304619671450667236

658324016846790672

4408071931408236776

-3508862332007511831

-2327196899896532755

4150708806868261105

9034077337658605810

1239749460867938547

8017526531899097333

-4184987795690647306

-4450286463835807703

-8114655490880108296

125597704319174911

-4041911684114011775

514840500741523721

-5917514712734260982

-328813338681655029

-4308002245909856196

2684906692499560562

-9006827107773914856

-5140248579149129447

-1781152090679035621

-894480297832828644

-7608858487126888163

8398895364835340576

-5416319399634654942

4097112798763444274

1959238770463365412

3295588401191090631

5672666949668397352

-3420654959031434966

617466833108161927

8294544699005341996

-4993672819795552206

-110224826090958546

-8839565741185173200

4138147610866155831

2337159640447972229

-4001219131714397895

62271093358506307

8323783387727302710

-3726687494948064953

-388951564840130232

6840572613539468839

7981010872945722082

-7883733091745010291

3844373110202769744

9062252082266894674

3279926619345963349

7084656299938380122

-4882974772622714531

311852587996756318

8702452399458494820

6326998214761083622

-6605677645673823898

133647264167221608

380884262087510076

-941572830725836437

3175162559507718508

-1941201981229055635

3317344097337758063

5340027137163438448

-2822078799721000588

-6322528593902347911

-1908972695888219782

2765702822594152828

-2631448321571106435

9146759189562911102

9221597442177825153

-3536706582026434169

3853901909574961900

9087820480865177995

3283225905655863692

-4716051041466715070

-3935247718545178221

4454993144979220884

-2443273122786557547

-30245470330584675

4468119994177855905

457122120670073250

-4776505934067963485

5836246562593350054

-2460389556947795545

9039392158529212842

-7535182608305464915

6194899430783596977

-9001091817332962894

-674816182057311821

-6278276512770500169

-531619917163715169

-6623466395662132802

8138882011697160949

3790495396008974784

8133105619205732045

1005182298284837622

2536727768424196551

-6125204970239782456

-7434039820109966903

4925241190390596043

-6639004195995706932

8326572890175699362

-995260417526221243

8704290607388838354

177689310535655891

4380366331912697634

3342473897480406593

-5046556128302310949

876601895974909690

7332212345114368478

-3467325882777056798

3643091245097114084

6498281407783549420

2578698988673413615

5409893105501860338

-5563808776168244748

-2962306596133252619

5986476241769935353

-2847435104485355014

-4272664121090952706

-4152761926190021547

194414881352628737

-4059104365651140094

-7397014746096494071

-4995900416492321363

-2422529120503152110

4092167582525085443

1760137792055247369

8205249911121629719

9001697954383112728

3934338188847958554

-4820367556259184099

2632425446779240990

-1143893002222536160

1621717110665235547

4824536211917507108

2215463164783454760

-8999405089056992725
3179333092846927072

-6097626745642999250

-5906684628749123025

-9213043368603514319

5299239914562841139

8467189306846016052

4059972800494930485

-3677801794643013066

380883261957509689

5719823702566967872

8067369735242095169

8502690276911319621

-7357094064588772794

139903299526252641

-3756768690558070200

-7556387443339851190

8907706205454027341

7177135175397608014

7962585213993220688

7287959306006966867

-7133019078233320875

-7592525728275027368

5004157713130367577

-4062979989468964262

-3918818215987416485

-5983571273081838002

-7848160620102217627

-4643394495544429983

-1182410991482955164

6573976626888991333

6977965712742738535

7413104435237034600

8137167497867850346

-2280262222909798297

1901365758296431215

-4624433343244799896

3987140669064308019

-8189571604726902157

8517092089865566838

3827763422123885175

-8178070893182934408

8783864418857106042

3682069322797961852

-5097638952775666581

3779261019131198090

3690098253089420

2400435947045972622

8337997253204628111

-3197427636269757609

-1299449074608176493

4294309996199611029

-7460854145735374186

9022063675629927064

-1533748389628691815

-5265320721602413924

-7862257724190491998

3992598709457318564

-3348656924909028699

-7198915883809807705

-6498918393905972567

-8642685246342186325

-3945751331593028948

-2642774524080209235

-3606398723279189329

-7676852937945283918

6870799024260207284

-1255309814486736098

2762204851571417784

4085477263013612217

-3963938510452661571

-4569330935155316030

-8132161894145248568

-6726092578762145079

-9042601349698196790

-4884079034346177845

4690277067147473612

-8210936489883428147

5734013876709628365

-4413402195463472431

-946287727298086189

7388578307213466325

3137194126026857175

-4519715364373802280

-8679429902308557020

6178411441079698139

-5999650811469368332

-4794393403176824097

4068104343371811552

-1715082471210550559

-5780145576414092574

6112699366062897892

-3317793229492241690

8034147912634899921

-2524530365356659992

4018715492321253500

4122532672414338855

3296213513573423852

2136452913615126994

-3398013491432064274

4238025046172783344

456027753308551976

935440957733708533

1696264790107449705

-7739285782999764233

8130761480019333886

8318790151307672319

-5361308686326646016

7549037363806993153

-1461471220034966782

1929990111665580025

-20185647923385593

-8464233251890928887

7279140449608145675

-7337756297521640677

-5112956627476960483

1082965089055998750

8357591687022355233

485597083461673762

815653934663334363

-5619629158782194908

5398130825756756773

-6050409367017829593

5619763571615722280

274149813777210157

-1301107201417778385

-8268244938540168400

6606571199029087025

268462906294293299

-702378068299101388

2527524666088540981

6564920288454241081

8189457578928386875

7270841299802217277

-8711703706309917889

4112122053604997953

8321269641875811138

-4697323230874586417

5970566151606047556

-2482242691290434744

-1787456792908455093

-5914635552301595827

2241513267027561294

-8209974094323059888

-356877318925198511

2190302692704306003

5169288111544972116

748979004263551829

-3866280660257248455

1200129898747212584

4928300178215781212

-6030312819295780002

2984844873999358816

2204792958655359842

600583586891503078

2447886534936634215

4278584738802473833

56480753292974956

-6973228113785505646

-4946550654184346770

-8053187375638154385

-8947787009435090063

-1718566143354485900

-4323698316717014155

4306902451350985591

6643723798248189747

5121792763400397690

-1171088147450172546

-6445936211532868734

3112710886909878422

8769920135182771078

-1863501071864351865

6782706146203769737

-2152084305111700597

-4413224249980462196

6092412326171186063

-6298130595483319408

7039090144184933267

-4196421239311295596

6248320037945758614

8092383255311821977

7168031732678730648

-619639733455754343

242491884442123163

-8113784802768431847

420877090862330782

-6685207552175905887

-4898009216512412766

-4998684422214769757

-4500722522270354517

3057845338765378478

-7289987811196200803

-4772130138065878096

2328629189388243890

-5858006260261562893

-7140206314547059554

-2866136123720346697

4836792262729497076

-8073364195137991749

-6076183914752896064

753387728894229441

8832143478653830942

356097397329034059

4998735404947314166

1027039351525237703

-6999639434270934072

6078185887028259787

-3075194395126267145

1982677389903023053

8728400619563570126

-5167963472708363443

2489904598018802640

1215280449282726866

3329273580910328789

5848609268963673665

-3495057594633657380

3715898723489828346

-181813756715824337

-1424939976831458417

5768834720053783525

3879492260642638822

-5033832273614746649

5244392720381209576

-3718034004954264597

-6703134028508193811

-540970988819491857

6146258685322220712

-6028093207290949805

5869855536886422516

4282839311603215870

-8559490242085170186

-7312295467325468080

7012885765627923284

-4333037439507645445

8972686002690245628

3407300067575901013

-8613590030233101311

-6013057703112003631

3532088051993904133

-6365414490938300927

-8919237181736382400

7805946087674646700

-2364826550288743414

-9153725632381598709

-2281721002449013748

5355360929876775950

-4665760636021889614

-7707166328786314222

-1582404190089077767

-7680449781887701996

-2431446473334754281

7846291920500196377

-8240112541257917242

-8078633778936398815

481618104376228898

5104558984338086947

-8919747673712233436

3934629753232380965

480344624388141233

5092561791841133609

-5652294200784167894

-8622090480965818873

-7131472084428579796

-3601523244162171858

4987591248583868980

3900653049155394609

292340798281311241

-829307876512314315

7444741537198582839

-7323447570446519240

5757036114292676467

-4714966611613482256

6018173671823443007

-7095574650504469664

8479477932653620290

-3260170993631945661

-7059635399251492751

3951518986845412426

3061191586728965196

8834389016947770445

-6104412806090537906

7366277347805754449

-9086737177189991340

7223979633792281685

-6759605798143350936

4828276252276161627

4460397576661650529

6889760176559837371

3678282195075490917

4078171039017086055

-452750422542435140

688282945277015147

4300483982930513426

3935726158993056878

-6280783682563382159

3317345097211757682

4134643746630498037

8449104222082165876

9013266390834809974

-8813982898699854728

7756800114981350523

4079134682835123326

3209670548243502211

-7684329028403160340

-7963654812480045939

4198154700003497102

9064056906135712621

-8571039906087650158

-3593776525702540141

-6699563658842327914

1069088096059925657

2465289349623334045

7675248506880072862

7285438335167190175

-7913333139955319648

-2194449423559488213

-6933729392404988764

5232267962722774181

-353091970140461914

-1980287500968112271

-441444980530778968

-5966604643314504531

3073963047516294318

-9114658473902766927

-5263362755466070861

8076314924012463284

6219147234507746487

-2678025390419585860

6392268783461426378

1546277804210429118

-3992769457967772479

2919740433485143234

4168506898349667523

-335142748918100796

-4445141915117466427

-6790958151413500730

7925743009687614665

5571815462144853194

-5861213602046559028

-1133061535435800791

7707404372140145871

916084382849166549

-4576222417929077545

-3191406887291818791

-595548874215569201

5290313521989835997

-8694437393004931874

-4819216620527379232

-3543979845451474736

165129178052699371

7009856777734337773

7567649704571416230

4678440767746053360

-7505791770567564760

2372779282155678963

6285221101628032244

-5545922352015426315

6001844188578415866

-6217285987707347715

4372716574792346878

1114822732536570964

-8879929939394577151

5045651514608254210

1495787409383711959

-4084405286017690356

765260657760468238

-2000695804296068020

-1266193980980206319

-6677787787415403246

-4688526240371411693

2112173281442989337

-3329396373186326847

-4937945013867573436

-182112005312916195

5971566221125520261

-5020007417047593694

2412645508261419227

8392807714802922790

2884592542348252456

2861371933686850439

-2076758392860879571

3208882925374969806

6273339504943934768

-4368986326693853903

-8289216140902786509

-1018752163095513802

-7546525032857678537

7050588143515798840

-2388285948934440396

-8111274642037375686

1394337638981782846

-5275970135107865279

-1461632496842664637

-1459634578328166858

-5745693010102452927

-6512897867735366329

4015340989374571851

7419816586234535244

6273338505061934989

1251473320632585555

-3295400969955044010

4086239893587385687

-824355838294491815

-6625693497350013606

-9052612553518412913

-5663704521276078755

-2356413742638025378

-9120660262124190365

-8113014627840961176

3272691308829498730

-5113798954249831062

6668637836459769198

-1180387453614217385

-1508430490724586124

6171678621777239413

-6388999176274766125

-2232180750943138441

-5250510299643125868

274208321829064058

8535972049707775363

-3547009961848515690

-5772877526278897087

5283624768090498967

-5885899628662190244

888878315136271757

5677812035397350798

-6945148922053864047

-2782134141992745988

688365737320975763

4009856497871070612

6426390620236182934

8784716845119026585

-2386249467794641386

-5090206991259941475

626651832604301893

5319779268214535067

-4184762821283158616

-180367200900305495

-5188690268054080086

-6335015548804593081

2402952346827171245

-464822561062617528

450272171608640946

8893526314038113523

-7526094904607808610

-249956245750398058

-4984460495582681672

-898879212432188066

-2499969492356164164

-6948361673023283778

-6835328018964412993

8962805711769611716

-8465223718785759799

-1300535491464849161

5245530061957080524

7602688087504429986

9111259637772809680

-1388995240989872687

-7112696867745600043

5475830517660352420

-2741997773757534758

6586874356152491484

-4820715020631896838

-6028993086983109154

-1757229154620854816

4584793191695946320

3541845514480379366

-5469719345584284182

5355432321049040363

102812043528199603

8515287593997561326

-8442408499456496145

2525218394791947763

-4210414790584873483

4267743214745395442

-3853827782270947357

-594428994314762759

8548878449260994042

5013664495174116860

-6276169150220403202

4562357672077836885

-1595894762089818624

-1033645396491960831

3768205942822466475

1812379908905567748

-223537844261399035

5236960866109533702

-2754045759557323519

5634004335383957001

-4787381186160992754

-471911292849304048

-2585697116815428078

-725040328374215148

2657577045546296853

-5275736146208033258

2818520692319690329

-2811203362819564007

-6576084979543937509

-5526315675895637414

-1871024493009842658

-5629144353494831583

-7934644469088401885

-6751784257436832218

4300482982792513063

-2306162689659154401

7452871663020496425

5301053644360050220

-7084463393550440545

710892015275019825

-2585516306524666316

1971049736831371451

-203676955208954314

2436676041475984952

7966290966496281379

-2139147043779877316

-6090480559440542147

5826073496849190837

-2615199612568496575

6446634823524005443

1476236568937143877

-5214659578397728159

4841225907152799304

3080271369026540812

-4977873604600940978

-3181024231290841521

3336306249639388153

-7705599953155791274

8961811448534174873

5845151697378871416

9221736189300010587

3630521027644140366

2549996149759061600

3808734437266656867

7439909923381714533

-448427283174396312

-7481220212871725462

1685089639536737899

2498299560167165548

220182457027653231

-1793755251323103630

1007773430140686661

2688095340383112820

6648080818533588599

-5537021200046287240

5986746374952334969

4306903451224985210

4490986671373031036

-4491362940512021910

9064057906009712256

-5720139614464547198

5517601737682436715

-3038869896263521343

-797895661542478200

4191203789046128269

-6625206284892336247

-6390194936190490991

-2910195648147204460

-4570821241465053546

4510574672972533399

-315110160424874342

-9021813120416408977

4516274219108371557

-2425866965178480989

-9130019843882522972

1411829703786999461

3958213926214330022

-3558105836895606159

7447820104569817995

5714326905464295085

2211420507038033582

-5221745588160000336

6972399339716728498

-8599161407951278087

-1018983860203764103

4256585679982497172

-1229282411371829576

-4198085759362828684

2462980755598470845

1882395143469481662

4956019866430262975

4943629098871892256

-9121818234344782911

-3420340866718101821

-2273951142763616572

-3193105249957286203

-5371857047922514234

-5506791055637904225

-6646608983222726963

1987212508615855824

-8430444399236206893

9203805339648116437

-6910594867891540724

5549716456446723799

-5144596312606080732

6962172007736123100

2427970318415173343

-3988403609113982000

2531460647979833059

7055078

-7500350524742080559

-703695700028651800

8355448075658839787

-8619619744426410260

8119311457483845586

3772231909066868462

3860224377547433597

-2868616539368667408

8446233261277388072

-5647070778829351182

3508800434467533217

-3809947198095429899

-4603513662555756807

-1515479012796928262

1619570839169562363

5883160915665231541

7337143622764134142

-6692742346083723521

-5823832123291601150

4446974283740737283

-2991230575794196732

-8898858974330611796

-190431293383641337

4830946466574082348

-7754023179803011315

890053549456828175

7586872428364930833

-1175554141788334316

-433568425193425129

1254138890357810329

-969903837851236581

902609826664103502

-6339889665133535458

8806231677752135455

-505291400817420510

-6744209430862680284

2270896310513483558

4621906805212122417

4802393656284430121

-4822600501137457366

1664264127994195757

4032396915523053358

8154453527711778608

-8922572018433382776

1514957960401084247

-4709479814637740237

7261627063901294578

7939814679056465721

2395897619509440317

-921496090785644737

7435156180794836804

7908386727724045281

-8458180664882800821

1558324183777048546

392190170463354704

7252319840357862101

5837760433049503715

1909399883058393401

-1941607875130888358

5408357521485725531

-4583890525266606249

1936382284431619933

8638084877654859749

3777253660349650784

1365415928280377186

-3686589237284030621

-4076834071105810588

9013811432158562151

-5869830003998359704

-1733610028272214167

2663558538901290858

-8938599953994164372

-7367682898103693459

-352476065871188111

2238866015513970546

-4291699357484351629

-1468994160086499465

3734920605996562296

-4905513838502463621

-5367789153305221250

-6026128466748432511

-2185947683327676723

-4785038016942381178

-8386066012170238655

2810086632796518281

2955179364194696888

-8277299537764556915

-7311801189614646732

1859091207452766189

482186603772569489

6606757081641379730

-7981764681533016173

-1791551110071958051

-248350778869422098

1233069693463851673

5177363596991768323

4003231730783182831

-4092965531390281827

7310156138971250591

8423374774262007712

-3832815722820892766

-7182611671320016989

4043551790465384356

1251071645742593961

5730201174090475847

-6028738774044345380

-5225274034542595157

-8324950333613199442

-3479019555111352401

-1360314853068773454

-6085462878404906836

6466891951003944884

-1800283931431282672

-4478096031595024458

8621879123337699255

-5701892793556725832

-3243464868830300231

-7178803028431511622

-8847026419719053379

-7957417964827256897

-4924575153691308095

6064922483570513860

4545326400174655430

634977361185306567

7880678067421992268

-6593693884889485366

-3089101202353938482

3580458507997503439

-6669232024488693807

-7469090491687588025

1159787915467561050

3430492282282772473

-2388443798712983589

-7531141467353992539

486659325517475808

-7507401614127261360

5618053735403234907

7190500365277258747

3580104366446026406

1244819061861016753

7595537805916353191

-6149295902189118029

-6480360394891897129

-3680682385005303825

-6686226396795187215

-962476947628347406

-6671422095062140940

-5311588131668795399

8229868378301964282

8995311058693718011

-2163663511354400771

-6597068113484250795

Figure 2: A subgraph of the AHG extracted for the oldboot
family with nodes and edges which are common in more
than 70% of apps (Thickness of edges is a representative of
their prevalence in the whole family).

behavior in a particular family by inspecting these connections and
their corresponding weights. Fig. 2 shows a subgraph of the AHG
extracted for the oldboot family with 11 apps. Here, each weight
(represented by the thickness of an edge) shows how many apps
share a particular method or an edge across the family.

The main difference between building an AHG and simply merg-
ing all call graphs of applications in a family is that, in the former
case, similar methods are assigned with equal hashes and, thus,
are considered as a single node. Instead, in the latter case, an in-
distinguishable change between methods renders different nodes.
Therefore, our system is more resilient to automatic transformation
attacks where we intend to extract common malicious behavior
from a collection of apps belonging to a specific Android malware
family.

2.4 Extracting Ensembles of API Calls (Step #4)
Building an aggregated hash graph per family using method hashes
reveals two important pieces of information: i) the frequency of
similar methods in all apps, ii) and the frequency of methods calls
in all similar methods in a family. However, inspecting popular
methods or calls gives a limited understanding of the behavioral
capabilities of a malware family. Thus, in the last step, we extract
ensembles of sensitive API calls observed either in methods or
consecutive method calls of the aggregated graph (see #4 in Fig. 1).

API calls are appropriate representatives of an app’s behavior.
Sensitive API calls are those which can threaten user’s security and
privacy and can be used to perform various operations, ranging
from OS-related to generic ones such as file system operations. We
have considered 40 sensitive API calls which cover a wide range of
activities as shown in [24]. These methods can be used for a variety
of purposes. On the one hand, some API methods can be used to
record device specific information (e.g., DeviceId or SubscriberId),
location information, installed packages, and running processes or
services. On the other hand, some of the API calls can be used to
leak sensitive information to remote servers either by sending text
messages or by establishing remote connections. Furthermore, we
have considered methods by which malware specimens can manip-
ulate critical information such as files (e.g., by creating, deleting
or encrypting), processes and apps’ contents that are handled by
content providers. Finally, we have considered methods that are
used by some apps to dynamically load classes and to deliver their
malicious functionality at runtime.

It is worth noting that although some of these methods have
been recently deprecated, only 20% of Android devices are running
the newest major version of this OS [18]. This suggests that old
Android malware with outdated API calls can still affect a large
number of users, and, for this reason, we have not excluded these
methods from our list. In addition, some of the methods considered
here may not look sensitive alone but they could potentially be
malicious when they appear with other API calls in an ensemble.

To extract ensembles of API calls from each family, we first
identify all source methods in the AHG, i.e., those methods which
are either isolated (indeдree = 0 and outdeдree = 0), or they have
not been called from any other methods (indeдree = 0). Afterwards,
we extract all paths originating from source methods using a greedy
path mining algorithm with respect to the weights of the edges.



This implies that all edges in a particular path do have a common
frequency among apps which belong to the same family. Once these
paths are extracted, we collect sensitive API calls appearing in each
path. In particular, the union of sensitive calls along one path results
in a unique ensemble of sensitive API calls for that specific path.
So, we are finally left with several ensembles of API calls per family
which have different percentages of prevalence among apps.

2.5 Creating Feature Vectors (Step #5)
Once ensembles of sensitive API calls are extracted, each application
is assigned a binary feature vector. Each feature (named fj in figures)
is a unique ensemble of API calls in a family. The length of this
vector for each app is thus equal to the total number of extracted
ensembles from the entire dataset, and the presence or absence of
an ensemble is shown with 1 or 0.

To measure similarities and differences between vectors, we use
the cosine similarity metric as defined in Eq. 1. Specifically, given
two vectors, A1 and A2, their cosine similarity is computed by
scaling the dot product of these vectors to their magnitudes. Thus,
the output is in the [0, 1] interval.

Simcos (A1,A2) =
A1 · A2

∥A1∥∥A2∥
(1)

Contrarily to the cosine similarity, the cosine distance expresses
vectors dissimilarity in positive space (i.e., [0, 1]). This is done by
subtracting the cosine similarity from 1 as follows:Distcos (A1,A2) =
1−Simcos (A1,A2). Thus, the cosine distance of two vectors is close
to 0 when they are highly similar, and it is almost 1 when two
vectors are completely different.

3 EVALUATION
In this section we evaluate our approach. We first present our exper-
imental setting and describe our dataset. We then apply our system
to about 700 families and 16K apps, and we present our results by
grouping these families by type of family (i.e., ransomware, and
two types of Trojans). We also describe how our approach can help
in extracting the common malicious behavior of these families and
how it finally leads to a fine-grained understanding of security
sensitive operations which are exercised by each family.

3.1 Experimental Setting and Dataset
The proposed system has been implemented in Python. Our imple-
mentation extracts all method’s features as well as call graphs using
Androguard [30], a full Python reverse engineering tool developed
for Android apps. We have evaluated our system on the biggest aca-
demic dataset of Android apps, known as AndroZoo [31]. Families
have been all extracted using Euphony [11].

Experiments are all conducted on a 2.4 GHz Intel Xeon Ubuntu
server with 40 CPUs and 128 GB of RAM. As we are interested in
extracting common behavior from all apps in a medium and big size
families, we discard those which contain less than 7 apps. Also, to
alleviate the expensive process of path mining in large call graphs,
we only extract paths with a maximum length of 2. Finally, we
have excluded paths that include edges shared by less than 70% of
apps. Therefore, if a family does not contain ensembles of sensitive

API calls shared by more than 70% of apps, it is removed from the
dataset as well.

AndroZoo contains around 8M Android apps from more than
3,000 families. The apps are gathered from 15 known markets and
1 unknown repository. However, the majority of them (≈ 97%) are
collected from 3 main app markets, including Google Play, Anzhi
and AppChina. Each app in this dataset is regularly scanned by
various Anti-Virus (AV) vendors to separate malicious apps from
benign ones. Around 1%, 33% and 17% of apps in the three markets
in AndroZoo are malware according to at least 10 different AV
vendors. Thus, our dataset of malicious apps is a subset of this huge
market with 117 families and 3,050 malware specimens (see Table
1).

Table 1: Statistics of the dataset considered for case study,
including the number of apps, number of families and the
average size of applications (MB).

Malware Type #Apps #Families Avg. Size
Ransomware 824 7 4.98
SMS Trojan 1,967 98 9.88

Banking Trojan 259 12 10.20
Total 3,050 117 8.35

3.2 Description of Experiments
Our system is evaluated with three types of malware families: ran-
somware (§3.3), SMS Trojan (§3.4) and Banking Trojan (§3.5) fami-
lies. We have obtained the type of each family from AndroZoo. Our
choice is motivated by the increasing popularity of these types of
malware in recent years [17, 32].

For each type, i) we report the most common and rarest ensem-
bles of sensitive API calls, ii) we present a case study to discuss one
of the most popular families, and iii) we study the following two
scenarios: a) where two apps from different families do share the
same signature, and b) where two apps from different families have
similar signatures (i.e., those that are different in two ensembles
of API calls). These scenarios are used to provide an intra-family
characterization. To report these scenarios, we rely on the cosine
distance between the apps’ feature vectors (as discussed in Sec-
tion 2.5). All these three steps together allow us to confirm the
applicability of our approach. We next describe each of the types
of families studied. Furthermore, we have evaluated the time and
memory complexity of our system for each type as summarized in
Table 2.

Table 2: Average amount of time took in each step of our
approach per family (in sec.).

Malware Type AHG Extraction Ensemble Extraction
Ransomware 35.51 266.17
SMS Trojan 44.92 44.31

Banking Trojan 57.19 67.81

3.3 Ransomware
Android ransomware families are categorized into two general
groups, screen lockers and crypto ransomware [33, 34]. Apps from



the first group lock the smartphone screen, while those in the sec-
ond group encrypt the victim’s valuable files, both with the goal of
extorting users to pay a ransom. Also, there are few families such
as Cokri and DoubleLocker which have both capabilities. On the
one hand, screen lockers follow three major strategies to achieve
their goals, including activity hijacking, modifying specific param-
eters and disabling certain UI buttons. The main purpose of these
strategies is to guarantee that the ransomware activity is always on
top of other activities. On the other hand, crypto ransomware uses
standard or customized crypto-systems to encrypt critical files.

Our dataset contains 824 ransomware samples from 7 different
Android families as shown in Table 1. However, apps are not evenly
distributed across families. For instance, the svpeng family has 604
specimens, whereas jisut contains only 4 malicious apps. In general,
we could extract 25 ensembles of sensitive API methods by applying
our method on ransomware apps. Experimental results (Fig. 3) show
that 11 ensembles are present in more than 70% of ransomware
specimens. Instead, only few ensembles are rare — they are present
in less than 2% of apps (e.g., ensembles 4, 14 and 25 in Table 3).
More details are presented in Appendix A.

3.4 SMS Trojan
From a general point of view, a Trojan is a type of malware that
disguise itself as a legitimate application and commonly violates
personal or confidential information stored on the device by per-
forming secret operations. A smartphone Trojan can be seen as
an application that affects the way a mobile device is being con-
trolled [35]. Once installed on the victim’s device, it performs a
wide range of silent activities, ranging from harvesting user or de-
vice specific information to intercepting incoming and/or outgoing
text messages, sending premium SMS messages and connecting the
device to a botnet to name a few. As Android Trojans commonly
masquerade as popular legitimate apps available in official markets,
they affect a large number of users.

SMS Trojans are malware specimens that usually monetize users
by sending text messages to premium rate numbers [9, 36]. Our
dataset contains 1,967 apps from 98 SMS Trojan families. We have
extracted 168 different ensembles of API methods from these apps.
Results show that 3 ensembles of API methods (i.e., <delete(), ex-
ists()> and delete() and getClassLoader()) are present in more than
50% of apps in the different families. On the other hand, almost
half of the ensembles are specific to very few apps in our dataset.
In particular, 91 ensembles of API methods (54%) are present in
less than 2% of apps in the SMS Trojan families. Also, ensembles
with length 2 are more prevalent among SMS Trojan families as
compared to ransomware. In addition, two long ensembles with 6
sensitive API methods exist in 5 malware specimens. More details
are provided in Appendix B.

3.5 Banking Trojan
The main goal of banking Trojans is to steal banking or credential
information. They usually do this by either intercepting SMS mes-
sages [37], or by overlaying a fake window on top of other financial
apps and websites [38]. In addition, other variants of Android bank-
ing Trojans may have some additional capabilities. Studies show

that most of banking Trojans target specific geographical locations.
For example, Russia and Australia are usually on top of this list [37].

Our dataset contains 259 apps and 12 Banking Trojan families
from which we have extracted 50 unique ensembles of sensitive
API methods. There are 2 ensembles of API methods, including
getClassLoader() and getInputStream() that are shared by more than
50% of apps from different families. This means that more than
half of apps in different families intercept from open connections,
and they load their malicious classes at runtime like SMS Trojan
applications and similar to the very recently detected variant of
Rotexy family1. On the contrary, there are 9 API ensembles which
are common among less than 5% of apps. Also, ensembles of length
one are more prevalent among banking Trojans than ensembles of
other lengths. More details are presented in Appendix C.

4 CONCLUSION AND FUTUREWORK
In this paper, we proposed a new approach to characterize Android
malware families based on ensembles of API methods that are exer-
cised by the majority of apps. Instead of relying on individual API
calls, we extract ensembles of API calls to make the approach more
resilient against transformation attacks. In addition, API ensembles
provide the analysts with more meaningful insights of the behavior
of an app. We make use of a fast graph-mining algorithm to extract
these common and sensitive API ensembles from an aggregated
form of method call graph.

Experimental results obtained from applying ourmethod to three
types of Android malware, including Ransomware, SMS Trojans,
and banking Trojans reveal several interesting findings. First, mali-
cious operations do not necessarily contain several sensitive API
methods. In fact, a considerable number of common ensembles (≈
72% in ransomware, ≈ 21% in SMS Trojans, and ≈ 52% in banking
Trojans) contain only one sensitive API method. Second, opposite to
ransomware and banking Trojans, ensembles of two API methods
were the most common in SMS Trojans. Finally, we found several
samples with identical ensembles though belonging to different
families.

This work can be extended in various ways as future work. More
exhaustive static analysis tools such as Soot2 can be used to extract
call graphs. Additionally, a query-like based system can be leveraged
to mine a dataset for threat discovery. Also, ensembles of API calls
could be mapped to relevant behavior by developing and training
an expert system.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. This work
has been supported by the Comunidad de Madrid (Spain) under
the grant CYNAMON (P2018/TCS-4566), co-financed by European
Structural Funds (ESF and FEDER). Also, it has been partially sup-
ported by the EPSRC under grants N028112 and N008448.

REFERENCES
[1] Statcounter. 2018. Operating System Market Share Worldwide. http://gs.

statcounter.com/os-market-share.
[2] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li

Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond Google Play: A

1https://securelist.com/the-rotexy-mobile-trojan-banker-and-ransomware/88893/
2https://sable.github.io/soot

http://gs.statcounter.com/os-market-share
http://gs.statcounter.com/os-market-share


Large-Scale Comparative Study of Chinese Android App Markets. In Proceedings
of the Internet Measurement Conference 2018. ACM, 293–307.

[3] Vincent Haupert, Dominik Maier, Nicolas Schneider, Julian Kirsch, and Tilo
Müller. 2018. Honey, I Shrunk Your App Security: The State of Android App
Hardening. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 69–91.

[4] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan Fang, Rui Shao, and Yan
Chen. 2018. FlowCog: context-aware semantics extraction and analysis of in-
formation flow leaks in android apps. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 1669–1685.

[5] Xiaohan Zhang, Yuan Zhang, Qianqian Mo, Hao Xia, Zhemin Yang, Min Yang,
Xiaofeng Wang, Long Lu, and Haixin Duan. 2018. An empirical study of web
resource manipulation in real-world mobile applications. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). 1183–1198.

[6] Omid Mirzaei, Jose M. de Fuentes, Juan Tapiador, and Lorena Gonzalez-Manzano.
2019. AndrODet: An adaptive Android obfuscation detector. Future Generation
Computer Systems 90 (2019), 240–261.

[7] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, Xueqiang Wang, and X Wang. 2018. Things you may not know about android
(un) packers: a systematic study based onwhole-system emulation. In 25th Annual
Network and Distributed System Security Symposium, NDSS. 18–21.

[8] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Jorge Blasco.
2014. Dendroid: A text mining approach to analyzing and classifying code
structures in android malware families. Expert Systems with Applications 41, 4
(2014), 1104–1117.

[9] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. Droidchameleon: evaluating
android anti-malware against transformation attacks. In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications security.
ACM, 329–334.

[10] Pavel Laskov et al. 2014. Practical evasion of a learning-based classifier: A case
study. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 197–211.

[11] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F
Bissyandé, Yves Le Traon, Jacques Klein, and Lorenzo Cavallaro. 2017. Euphony:
Harmonious unification of cacophonous anti-virus vendor labels for Android
malware. In Proceedings of the 14th International Conference on Mining Software
Repositories. IEEE Press, 425–435.

[12] Sevil Sen, Emre Aydogan, and Ahmet I Aysan. 2018. Coevolution of Mobile
Malware and Anti-Malware. IEEE Transactions on Information Forensics and
Security 13, 10 (2018), 2563–2574.

[13] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
Ground Truth Analysis of Current Android Malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’17).
Springer, Bonn, Germany, 252–276.

[14] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Av-
class: A tool for massivemalware labeling. In International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 230–253.

[15] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and
Bo Li. 2018. Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach. computers & security 73
(2018), 326–344.

[16] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
et al. 2016. Reviewer integration and performance measurement for malware
detection. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 122–141.

[17] Kaspersky Lab. 2018. Kaspersky Lab Threat Predictions For 2018.
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/
07164714/KSB_Predictions_2018_eng.pdf.

[18] Symantec. 2018. Executive Summary - 2018 Internet Security Threat
Report. https://www.symantec.com/content/dam/symantec/docs/reports/
istr-23-executive-summary-en.pdf.

[19] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur,
Mauro Conti, and Muttukrishnan Rajarajan. 2015. Android security: a survey
of issues, malware penetration, and defenses. IEEE communications surveys &
tutorials 17, 2 (2015), 998–1022.

[20] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
2015. Apkcombiner: Combining multiple android apps to support inter-app
analysis. In IFIP International Information Security Conference. Springer, 513–527.

[21] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon J. Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models. In Pro-
ceedings of the 24th Annual Network and Distributed System Security Symposium
(NDSS).

[22] Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio, Yung Ryn
Choe, Christopher Kruegel, and Giovanni Vigna. 2018. Using Loops For Malware
Classification Resilient to Feature-unaware Perturbations. In Proceedings of the
34th Annual Computer Security Applications Conference. ACM, 112–123.

[23] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept
drift in malware classification models. In PROCEEDINGS OF THE 26TH USENIX
SECURITY SYMPOSIUM (USENIX SECURITY’17). USENIX Association, 625–642.

[24] Guillermo Suarez-Tangil and Gianluca Stringhini. 2018. Eight Years of Rider
Measurement in the AndroidMalware Ecosystem: Evolution and Lessons Learned.
arXiv preprint arXiv:1801.08115 (2018).

[25] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged
smartphone applications in third-party android marketplaces. In Proceedings of
the second ACM conference on Data and Application Security and Privacy. ACM,
317–326.

[26] Fady Copty, Matan Danos, Orit Edelstein, Cindy Eisner, DovMurik, and Benjamin
Zeltser. 2018. AccurateMalware Detection by Extreme Abstraction. In Proceedings
of the 34th Annual Computer Security Applications Conference. ACM, 101–111.

[27] Omid Mirzaei, Guillermo Suarez-Tangil, Juan Tapiador, and Jose M de Fuentes.
2017. Triflow: Triaging android applications using speculative information flows.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communica-
tions Security. ACM, 640–651.

[28] Silvio Cesare and Yang Xiang. 2010. Classification of malware using structured
control flow. In Proceedings of the Eighth Australasian Symposium on Parallel and
Distributed Computing-Volume 107. Australian Computer Society, Inc., 61–70.

[29] Dustin Hurlbut-AccessData. 2009. Fuzzy Hashing for Digital Forensic Investiga-
tors. (2009).

[30] Geoffroy Gueguen. 2012. Androguard. https://github.com/androguard/
androguard.

[31] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on.
IEEE, 468–471.

[32] Christiaan Beek, Diwakar Dinkar, Yashashree Gund, German Lancioni, Niamh
Minihane, Francisca Moreno, Eric Peterson, Thomas Roccia, Craig Schmugar,
Rick Simon, Dan Sommer, Bing Sun, RaviKant Tiwari, and Vincent Weafer. 2017.
McAfee Labs Threats Report. Technical Report. McAfee Labs.

[33] Jing Chen, Chiheng Wang, Ziming Zhao, Kai Chen, Ruiying Du, and Gail-Joon
Ahn. 2018. Uncovering the face of android ransomware: Characterization and
real-time detection. IEEE Transactions on Information Forensics and Security 13, 5
(2018), 1286–1300.

[34] Nicoló Andronio, Stefano Zanero, and Federico Maggi. 2015. Heldroid: Dissecting
and detecting mobile ransomware. In International Workshop on Recent Advances
in Intrusion Detection. Springer, 382–404.

[35] Mikko Hyppönen and Tomi Tuominen. 2017. F-Secure State of cy-
ber security. https://www.f-secure.com/documents/996508/1030743/
cyber-security-report-2017.

[36] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of my
market: detecting malicious apps in official and alternative android markets.. In
Proceedings of the 19th Annual Network and Distributed System Security Symposium
(NDSS), Vol. 25. 50–52.

[37] Roman Unuchek. 2017. A new era in mobile banking Trojans. https://securelist.
com/a-new-era-in-mobile-banking-trojans/79198/.

[38] Lukas STEFANKO. 2018. Banking Trojan found on Google Play
stole 10,000 Euros from victims. https://lukasstefanko.com/2018/09/
banking-trojan-found-on-google-play-stole-10000-euros-from-victims.html.

[39] Lukas Stefanko. 2015. Aggressive Android ransomware spread-
ing in the USA. https://www.welivesecurity.com/2015/09/10/
aggressive-android-ransomware-spreading-in-the-usa.

[40] Ming Fan, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, and Ting Liu. 2017.
Dapasa: detecting android piggybacked apps through sensitive subgraph analysis.
IEEE Transactions on Information Forensics and Security 12, 8 (2017), 1772–1785.

[41] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The evolution of android malware and android analysis techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 76.

APPENDIX
A RANSOMWARE

Case Studies. To confirm the validity of our approach, we select
the most recently detected ransomware families from our dataset
and discuss their app feature vectors in detail. Also, we compare
the results with what is known from each family from other re-
search works and security reports. We have selected the porndroid
and gepew ransomware families both of which with apps that are
present in the wild since 2014.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07164714/KSB_Predictions_2018_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07164714/KSB_Predictions_2018_eng.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017
https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017
https://securelist.com/a-new-era-in-mobile-banking-trojans/79198/
https://securelist.com/a-new-era-in-mobile-banking-trojans/79198/
https://lukasstefanko.com/2018/09/banking-trojan-found-on-google-play-stole-10000-euros-from-victims.html
https://lukasstefanko.com/2018/09/banking-trojan-found-on-google-play-stole-10000-euros-from-victims.html
https://www.welivesecurity.com/2015/09/10/aggressive-android-ransomware-spreading-in-the-usa
https://www.welivesecurity.com/2015/09/10/aggressive-android-ransomware-spreading-in-the-usa


f2 f20 f1 f24 f22 f15 f23 f6 f5 f19 f18 f7 f12 f10 f16 f13 f11 f8 f17 f21 f9 f25 f3 f14 f4

Ensembles

0

100

200

300

400

500

600

700

800

N
um

b
er

of
ap

ps

802

753 746 731 725

662
646 641

590
570

521
498

447 442 442

104

60 57 57 46 34
16 15 14 12

Figure 3: Distribution of sensitive API call ensembles among
ransomware samples from different families.

Table 3: Mapping between feature numbers and ensembles
of sensitive API methods extracted from ransomware fami-
lies.

#Feature Ensemble of Sensitive API Methods

1 delete(), exists()
2 getClassLoader()
3 insert(), query()
4 insert()
5 openConnection()
6 connect()
7 getInputStream()
8 getApplicationInfo()
9 getSubscriberId()
10 openConnection(), connect(), getInputStream()
11 getFilesDir()
12 mkdir(), exists()
13 crypto
14 loadLibrary()
15 query()
16 mkdir()
17 setDataAndType()
18 exists(), mkdir()
19 exists()
20 delete()
21 getDeviceId()
22 getActiveNetworkInfo()
23 mkdir(), delete(), exists()
24 addFlags()
25 openConnection(), connect(), getInputStream(), getFilesDir(), exists()

Porndroid is a ransomware family which hides behind a fake pornog-
raphy app. Security reports show that once an app from this family
is downloaded, it downloads another file, known as LockerPin [39].
Then, the user is locked out of the device and the pin number of
the phone is changed. The apps in this family usually display a
warning window from an official source (e.g., security agencies
like FBI) and threaten the victims to pay the ransom in return for
the illegal pornographic websites they have accessed with their
smartphones. If this ransom is not paid, all files are deleted and the
phone is restarted to its factory settings.

Our dataset contains 10 different apps from the porndroid family
and 8 ensembles of API calls are shared by more than 70% of apps.
The behaviors shown by these ensembles of APIs are aligned with
actions described by commercial reports and threat intelligence
gathered from each of the families. In particular, all samples (100%)
do contain 3 common API calls, including getActiveNetworkInfo()
and getClassLoader() and addFlags(). The first method is used to
obtain details about the current active data network and can be used
to check whether or not the compromised device is connected to the
Internet. Once confirmed, the apps download the original malicious

application (i.e., LockerPin). The second method is used to retrieve
the loader of a specific class at runtime. This implies that all apps in
this family share malicious classes which are not installed as part
of the application package and are loaded dynamically during exe-
cution. In other words, all apps execute the LockerPin application
once it is downloaded successfully. Finally, the third method is used
to make sure that ransomware activity is overlaid always on top of
other activities. This is done to prevent the victim from accessing
other components of the device. The ransomware can set the value
of this method to “FLAG_ACTIVITY_NEW_TASK” to restart itself
and overwrite previous activities whenever the ransomware is not
displayed on top.

Moreover, 90% and 80% of apps in this family include query() and
delete() API methods respectively. These are present in 3 ensembles
as shown in Table 3. The former method is used to retrieve and leak
victim’s personal information through Android content provider
[40], while the latter is used to delete critical files should the ransom
not satisfied.
Intra-family characterization. The last step in our evaluation is
to look at the intra-family dependencies. For this, we compare the
feature vector of an app with all other apps by using cosine distance.
The results are presented in Fig. 4a. Our method reveals several
cases where apps in two different ransomware families have exactly
the same signature. For instance, 4654EC...48F2.apk from slocker
family and 8905B3...99DC.apk from gepew family do share exactly
the same feature vector. Further inspections show that both of these
apps do contain methods which are not installed as parts of both
apps’ packages. Thus, they make use of dynamic loading to retrieve
the class loader of those methods and to load the malicious methods
into memory at run-time (feature #2 in Table 3). This comes to show
the effectiveness of our approach to understand common behaviors
between two families with the same capabilities.

We also look at the dual: when apps of two different families
have different feature vectors. For instance, C3829A...03DB.apk from
svpeng family and 877D3B...2AE4.apk from slocker family are differ-
ent in two features. In particular, the first app overlays its window
on top of other windows (feature #24 in Table 3). This app also
has a keyword database to identify encryption-related words in UI
widgets (feature #15 in Table 3). This is similar to variants of the
ransomprober family [33]. Instead, the the second app does not
have any of these capabilities. These two differences are the main
distinctions between the two families. However, all other features
are shared. This indicates that two families have evolved from one
another. It also shows to what extent we can use our system to
explain the differences between apps.

B SMS TROJAN
Case Studies. Like in the previous section, we select two of the
most popular families (i.e., Cvmtld and Rusms) and provide a quali-
tative evaluation or our findings.
Cvmtld is an Android SMS Trojan which contains 19 different sam-
ples out of which: one sample is first detected in 2013, five samples
are first detected in 2014, and the rest have been all detected in
20163. We observe that 8 ensembles of API methods are shared

3https://www.virustotal.com

https://www.virustotal.com


0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ransomware

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) SMS Trojan

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Banking Trojan

Figure 4: The cosine distance of app vectors in different families for each type of malware (values close to 0 show high simi-
larity, whereas those close to 1 show significant difference). Two or more groups of apps with colors close to blue in one row
are those which are behaviorally similar in different families.

among all samples in this family. However, if we look at lower
granularity levels, we observe informative ensembles as well. All
specimens collect sensitive device information and leak them to
remote servers. They are also able to detect emulators and to evade
dynamic analysis (<myPid(), killProcess()>) similar to other families
reported in earlier works [41]. As these behaviors are common to
all samples in the family, we can say that these are the “core” capa-
bilities that characterize the family. However, there are other sets of
behaviors that can be used to characterized variants of the family.
As it is clear, 95% of samples send text messages to specific numbers
(sendTextMessage()). There are also behaviors that enable these apps
to update their capabilities during runtime (getClassLoader()).

Intra-family characterization. There are several examples (see
Fig. 4b) where two apps from different SMS Trojan families have
exactly the same behavior. 2F7794...88B8.apk from smsboxer family
and 971913...5B82.apk from darrma family share exactly the same
feature vector although they belong to different families. Both of
these apps are equipped with mechanisms to detect dynamic anal-
ysis systems and can halt their activities if they observe clues of
simulated environments. Also, they rely on Internet connection to
deliver their malicious functionalities and can encrypt/delete files.

When looking at apps with different behaviors, we observe
CD3A15...768D.apk from moavt family and 229C9A...8357.apk from
darrny. The first app collects the phone number string (via get-
Line1Number()) whereas the second one does not. In contrast, the
second app is able to detect emulators (using <myPid(), killProcess()>
ensemble of API calls) as compared to the first app.

C BANKING TROJAN

Case Studies.We next describe one of the most prevalent banking
Trojans according to our dataset, known as Fareac.
Fareac is a banking Trojan family which contains 37 different mal-
ware samples in our dataset. The results obtained reveal 27 different
ensembles of API methods which are shared by all applications in
this family. In particular, all apps in this family have similar be-
havior and share common characteristics. First of all, they check

whether or not the WiFi connection is enabled on the target device
(isWifiEnabled()). Once this is clarified, they load a native library
into memory (loadLibrary()) and call the loader to execute all loaded
malicious classes (getClassLoader()). Then, they steal victim’s cre-
dential information (using ensembles such as <setFlags(), getAppli-
cationInfo()> and query()) and some extra information (e.g., network
operator using getNetworkOperator()) by overlaying the windows
of other legitimate apps and services (addFlags()). Once these in-
formation are gathered, they encrypt all of them (crypto) and leak
them to remote servers by opening a connection (<openConnec-
tion(), connect()>). Also, they delete original files after encryption
procedure (using exists() and delete()).

Apps in Fareac family are also able to intercept data from cur-
rent open connection (getInputStream()). Additionally, they can all
detect simulated environments (<killProcess(), myPid()>), and, thus,
can bypass dynamic analysis. Indeed, this family is very hard to
be detected as it can potentially evade both static and dynamic
analyses.
Intra-family characterization. Similar to ransomware and SMS
Trojans, we have inspected several cases (see Fig. 4c) of two
apps in different banking Trojan families with identical and differ-
ent behavior. For instance, 6B03C9...807C.apk from sodsack family
and 3DC0F8...D204.apk from ztorg family are two bankers which
load their malicious code at run-time to evade static analysis.
On the other hand, 3CC01D...7012.apk from dhyvax family and
748ECD...0837.apk from the acecard family have different capabili-
ties. The former banker checks the list of files in different directories,
and creates files and folders, whereas the latter is able to delete files
or directories.


	Abstract
	1 Introduction
	2 Approach
	2.1 System Overview
	2.2 Method Hashing (Step #1)
	2.3 Building an Aggregated Hash Graph (Steps #2 & #3)
	2.4 Extracting Ensembles of API Calls (Step #4)
	2.5 Creating Feature Vectors (Step #5)

	3 Evaluation
	3.1 Experimental Setting and Dataset
	3.2 Description of Experiments
	3.3 Ransomware
	3.4 SMS Trojan
	3.5 Banking Trojan

	4 Conclusion and Future Work
	References
	A Ransomware
	B SMS Trojan
	C Banking Trojan

